

AECOM 130 Robin Hill Road, Suite 100 Goleta, CA 93117 aecom.com

Project name: Del Amo Superfund Site

Project ref: 60566446

Date: July 13, 2018

Mr. Anhtu Nguyen U.S. Environmental Protection Agency 75 Hawthorne Street, SFD-7-2 San Francisco, CA 94105

CC: Carol Campagna, Shell Oil Products US Safouh Sayed, DTSC Lora Battaglia, APTIM Patrick Gobb, NewFields Edmond Bourke, C2 REM

TECHNICAL MEMORANDUM SOIL VAPOR EXTRACTION PILOT TESTING SOIL AND NAPL OPERABLE UNIT (OU-1) DEL AMO SUPERFUND SITE July 13, 2018

INTRODUCTION

This Technical Memorandum presents results of soil vapor extraction (SVE) pilot testing completed for the SVE remedy components at Property 23 shallow outdoor soil and Source Area (SA)-6 deep soil, as described in the Remedial Design (RD) Work Plan for the Soil and Non-Aqueous Phase Liquid (NAPL) Operable Unit (OU-1) for the Del Amo Superfund Site (Site, Figure 1) (AECOM 2018).

SVE was selected as the remedy for NAPL-impacted deep soil at SA-6 in the Record of Decision (ROD) and for shallow (≤15 feet below ground surface [bgs]) outdoor soil at Property 23, if warranted (USEPA 2013). Pre-design investigations at Property 23 confirmed that SVE is required for shallow outdoor soil at the northeastern and eastern areas (Figure 2) (AECOM 2017a). The pilot testing was completed to collect data sufficient to determine SVE full-scale system design parameters for the two remedy components. The deep SVE remedy is required by the ROD to protect groundwater outside the impacted areas by removing NAPL to limit migration to or contact with groundwater (USEPA 2013). Findings from the deep soil SVE pilot testing at SA-6 will additionally be applied to the SVE component of the in-situ chemical oxidation (ISCO)/SVE remedy. Pilot testing and corresponding well construction was conducted in accordance with Section 4 of the RD Work Plan (AECOM 2018).

SVE is applied with an emission control technology to extract volatile organic compounds (VOCs) from the vadose zone for mass removal; thermal oxidation was used for emission control during the SVE pilot test. Benzene and ethylbenzene are the principal constituents of concern (COCs) at Property 23/SA-6. Additional vapor sampling and testing was conducted to assess the potential for polychlorinated dibenzodioxin and polychlorinated dibenzofuran (dioxin and furan) compound formation as byproducts while using a thermal oxidizer for emission control at source areas within OU-1. Dioxin and furan sampling was completed by Air Kinetics, Inc. (AKI), an emissions/source testing contractor located in Anaheim, California, under the supervision of AECOM.

WELL INSTALLATION

Two SVE wells and ten vapor monitoring (VM) wells were installed in May 2017 for both the shallow outdoor soil and the deep soil pilot tests (12 total wells) (Figure 3). Each SVE well has five associated VM wells spaced radially around it at varying distances in the respective shallow and deep zones. Extraction well SVE-1A and monitoring wells VM-1A through VM-5A are screened in shallow outdoor soil (≤15 feet bgs). Extraction well SVE-1B and monitoring wells VM-1B through VM-5B are screened in the deeper NAPL-impacted soil (>15 feet bgs) with the bottom of the well screen at approximately 4 feet above the water table, which is at 46 feet bgs. Table 1 presents the well construction details for these wells. Attachment 1 includes the corresponding completed well construction diagrams.

TEST PROCEDURES

Pilot testing, field monitoring, sample collection and laboratory analyses were conducted in accordance with the procedures outlined in Section 4 of the RD Work Plan and associated Field Sampling Plan (FSP; Appendix F of the RD Work Plan) in April 2018 with details presented below.

Equipment

The pilot testing was performed using a mobile SVE unit (truck-mounted) equipped with a liquid ring pump and thermal oxidizer that was provided, permitted and operated by CalClean, Inc. of Tustin, California (CalClean) under AECOM supervision. The mobile remedial equipment was equipped with a diesel generator and a 25-horsepower liquid ring vacuum pump capable of producing a theoretical maximum of 28 inches of mercury (in. Hg) in vacuum and 410 standard cubic feet per minute (scfm) in total air flow. The thermal oxidizer used during pilot testing had a burner rating of 400,000 British thermal units (BTU) per hour maximum and propane was used as a supplemental fuel (stored in an onboard tank). The temperature set point for the thermal oxidizer during operation was 1,500 degrees Fahrenheit (°F). The stack was 18 inches in diameter with a height of 17 feet from the base of the SVE unit. Equipment specifications for the thermal oxidizer are included in Attachment 2. Temporary fencing was installed around the remediation equipment to create a secure compound located in the lower east parking lot of Property 23 (Figure 3). Traffic cones were placed around the applicable extraction and monitoring wells to provide continual safe access for pilot test readings.

The appropriate extraction well during each test was connected to the extraction system inlet manifold using 2-inch diameter, above-ground vacuum hose (covered by traffic guards where appropriate) and Camlock fittings, with a section of straight pipe with sample ports installed at the wellhead to collect field readings and vapor samples. Recovered vapors were routed through a knockout tank to separate out any liquids then to a thermal oxidizer for abatement in accordance with South Coast Air Quality Management District (SCAQMD) Permit No F24496 (Attachment 2).

Instrumentation

The SVE system was equipped with an inline Pitot tube with digital manometer to measure flow, vacuum and temperature gauges, a Horiba field analyzer equipped with an infrared detector to measure total VOCs, and sample ports on the system influent and effluent lines to collect vapor samples. The Horiba was calibrated to a mix of carbon monoxide, propane and carbon dioxide to read as hexane equivalent prior to the start of the pilot test. Vapor samples for field monitoring and laboratory analysis were collected in 1-liter Tedlar® bags using a vacuum sampling box, for the applicable extraction well samples, and a sample pump for the influent and effluent samples.

A MiniRAE 3000 photoionization detector (PID) with a 10.6 eV lamp, calibrated to 100 parts per million by volume (ppmv) isobutylene, and a Photovac MicroFID flame ionization detector (FID), calibrated to 100 ppmv methane gas, were used to measure VOC concentrations for field monitoring vapor samples collected at the extraction wellhead. Appropriate moisture traps were used to mitigate the potential for moisture influence. A Landtec GEM2000 Landfill Gas Analyzer and Extraction Monitor (Landtec), calibrated to a mixed gas of 15 percent volume methane, 15 percent volume carbon dioxide and balance nitrogen, was used to measure fixed gases (oxygen, carbon dioxide, and methane) as percent volume for field monitoring vapor samples collected at the extraction wellhead and system influent. A carbon filter was used to obtain methane readings.

A VelociCalc[®] Air Velocity Meter 9535 was used to measure relative humidity, temperature and flow rate at the extraction wellhead.

Dwyer 477-1-FM (0 to 20 inches of water) digital manometer and Dwyer Series 2000 Magnehelic® differential pressure gauges were used to measure vacuum at the vapor monitoring wells. Dwyer Series 2000 Magnehelic® differential pressure gauges, model numbers 2010 (0 to 10 inches of water) and 2100 (0 to 100 inches of water), were used to measure vacuum at the extraction wellhead.

Baseline Measurements

Initial baseline measurements were collected on April 2, 2018, prior to step and constant rate testing for shallow soil and deep soil gas. Ambient air samples were also collected during constant rate testing to detect dioxin/furan compounds to compare to SVE emissions and to evaluate dilution air chemical mass contributions to SVE emissions.

Baseline pressure readings were collected from all extraction and vapor monitoring wells prior to operation of the SVE test equipment. Vapor samples were collected using a vacuum box with sampling pump from the applicable extraction well, SVE-1A for the shallow outdoor soil test and SVE-1B for the deep soil test, to evaluate concentrations in the subsurface. Soil vapor samples were submitted to state-certified Eurofins Calscience Environmental Laboratory under chain-of-custody procedures to be tested for total petroleum hydrocarbons as gasoline (TPH-g) by USEPA Method TO-3M; VOCs by USEPA Method TO-15M; fixed gases by ASTM Method D-1946; and methane by SCAQMD 25.1.

Step Testing

Step testing was performed during the first day of the shallow outdoor soil and deep soil pilot tests (April 2 and April 9, 2018, respectively) in order to determine the relationship between the vacuum applied to the extraction wells and the vapor flow rate. Step test data was also used to help select an appropriate applied vacuum for the subsequent constant rate testing.

Step testing was conducted by incrementally applying a vacuum to the applicable extraction well in four consecutive steps. Flow rates, temperature and applied vacuum were documented every 30 minutes for the applicable extraction well and influent line (post-dilution) during each step. Horiba, PID, FID and Landtec readings for the applicable extraction well and treatment system influent line were collected every 30 minutes. Vacuum influence measurements were recorded approximately every 15 minutes during each step at the applicable VM wells.

Vapor samples for laboratory analysis were collected from the applicable extraction well and the system influent line using a vacuum box/sample pump and Tedlar sample bags. Samples were collected at the beginning of each step interval and at the end of the last step interval. The sample analyses were the same as stated above for baseline measurement vapor samples.

Constant Rate Testing

Constant rate testing was performed for shallow outdoor and deep soil to evaluate system influent concentrations, radius of influence (ROI) and mass removal rates. Shallow outdoor soil constant rate testing was performed from April 3 – 6, 2018 with a constant vacuum applied to SVE-1A of approximately 163 inches of water (12 in. Hg), as determined during the shallow outdoor soil step test. Deep soil constant rate testing was performed from April 9 – 13, 2018 with a constant vacuum applied to SVE-1B of approximately 53 inches of water (4 in. Hg), as determined during the deep soil step test. Selected vacuums for shallow and deep soil constant rate testing are further discussed in the *Pilot Test Results* section below.

Vacuum influence measurements were recorded at applicable VM wells periodically throughout the constant rate testing. Flow rates, temperature, applied vacuum and dilution configuration were documented approximately every 90 minutes for the applicable extraction well and system influent line. Temperature readings for the system effluent (and thermal oxidizer) were recorded approximately every 90 minutes. Horiba, PID, FID and Landtec readings for the applicable extraction well and treatment system influent line, as well as Horiba readings for the system effluent line, were documented every 90 minutes.

Vapor samples were collected at the beginning, mid-point and end of the constant rate tests from the applicable extraction well, influent line and effluent line using a vacuum box/sample pump and Tedlar sample bags. As previously mentioned, soil vapor samples were submitted to state-certified Eurofins Calscience Environmental Laboratory under chain-of-custody procedures. All vapor samples collected during the constant rate testing were analyzed for TPH-g and VOCs; only samples collected from the extraction well and influent line were additionally tested for fixed gases and methane.

Dioxin/Furan Compound Sampling and Analyses

Additional vapor sampling was conducted during the constant rate testing to detect the potential production of dioxin and furan compounds in soil vapor combusted within the thermal oxidizer. Ambient air sampling was also conducted for detecting possible background dioxin / furan compounds during the SVE pilot test.

During the shallow outdoor soil constant rate test, two 24-hour background ambient air samples were collected in sequence from April 4 - 6, 2018 and three 4-hour SVE emission sampling runs were performed daily from April 4 - 6, 2018. During the deep soil gas constant rate test, three 24-hour background ambient air samples were collected in sequence from April 10 - 13, 2018 and three 4-hour SVE emission sampling runs were performed daily from April 11 - 13, 2018. During each dioxin/furan SVE emission sampling run, the thermal oxidizer system was operating at nominal capacity.

Sample collection and testing for dioxins/furans was conducted by AKI, an emissions/source testing contractor that is approved by the SCAQMD through the Lab Approval Program (Source Testing) to conduct the sampling and test methods required for dioxin and furan compound sampling and monitoring.

USEPA Method TO-9A was used to assess potential dioxin / furan concentrations in ambient air samples, which were collected in a high volume air sampler equipped with a filter and adsorbent for sampling ambient air over a 24-hour sampling period. The air sampling equipment was placed cross-wind of the SVE pilot test equipment on the south side of the onsite truck maintenance building due to access to a nearby power supply.

The following parameters were collected during each of the daily emission sampling runs at the post-thermal oxidizer sample location:

- Concentrations of dioxins and furans California Air Resources Board (CARB) Method 428
- Sample Traverse Points SCAQMD Method 1
- Stack Gas Flow Rate SCAQMD Method 2
- Stack Gas Molecular Weight SCAQMD Method 3
- Stack Gas Moisture Content SCAQMD Method 4

The above pollutants and parameters were tested in accordance with procedures recommended in the SCAQMD Source Test Manual and CARB Stationary Source Test Manual.

The results of the test runs are reported in a source test report prepared by AKI included as Attachment 3.

PILOT TEST RESULTS

Baseline Measurements

Field Data

Table 2 summarizes the baseline vacuum readings collected with a Dwyer 477-1-FM digital manometer for all shallow and deep wells. The vacuum readings collected for shallow SVE and VM wells were all 0.0 inches of water whereas vacuum at deep SVE and VM wells ranged from 0.0 to 0.1 inches of water prior to the start of pilot testing.

Baseline vacuum readings were collected again for deep wells approximately 65 hours after shallow outdoor soil pilot testing was completed in order to confirm equilibrium conditions prior to the start of deep soil pilot testing. Equilibrium conditions were considered achieved as vacuum readings were within +/- 0.1 inches of water of the initial baseline conditions (Table 2) (AECOM 2018).

Soil Vapor Laboratory Analytical Data

Detected laboratory analytical concentrations in shallow and deep soil vapor samples are summarized in Table 3, and comprehensive laboratory analytical results are presented electronically with corresponding laboratory reports in Attachment 4. Data validation results indicate that the soil vapor data presented in this memorandum are usable for their intended purpose. Comprehensive data validation results are presented in Attachment 5. Benzene and ethylbenzene are the principal COCs detected in soil vapor based on the magnitude of the concentrations and the relative toxicities of the compounds, which is consistent with the shallow and deep soil data collected during pre-design investigations at Property 23 and SA-6 (AECOM 2017a;b).

AECOM

Baseline benzene concentrations of 6,800 ppmv and 7,600 ppmv were detected at SVE-1A and SVE-1B, respectively. Baseline ethylbenzene concentrations of 1,700 ppmv and 1,900 ppmv were detected at SVE-1A and SVE-1B, respectively. TPH-g was also detected at SVE-1A with a concentration of 13,000 ppmv and SVE-1B at 12,000 ppmv. Chlorinated VOCs, tetrachloroethene (PCE) and trichloroethene (TCE), were non-detect with a laboratory detection limit of 3.4 and 3.5 ppmv, respectively, for both SVE-1A and SVE-1B. Chromatograms were reviewed for any non-target VOCs present in soil vapor during the constant rate testing for the shallow and deep zones and are further discussed later in this section.

Based on the fixed gas analyses for baseline samples, low oxygen concentrations (approximately 3 percent) and high carbon dioxide concentrations (7 percent in the shallow zone to 15 percent in the deep zone) imply aerobic biodegradation is occurring in both the shallow outdoor soil and deep soil zones but is limited by supply of available oxygen. Methane concentrations of 290 ppmv and 360 ppmv detected at SVE-1A and SVE-1B, respectively, indicates that some anaerobic (methanogenic) biodegradation is occurring in both soil zones as well.

Shallow Soil Testing

Step Test Field Data

The results of the extraction well and system influent (post-dilution) field monitoring conducted during the shallow soil step testing are presented in Table 4. Vacuum influence data collected during each step are presented in Table 5.

As the average applied vacuum to SVE-1A increased from 56 inches to 234 inches of water with each step, the average well flow rate increased from 3.4 to 9.8 scfm (Table 5). At the same time, the vacuum influence recorded at the corresponding shallow VM wells also increased from approximately 0 to 0.13 inches of water for the initial step to 0.01 to 0.94 inches of water for the final step. The observed flow rate and vacuum influence were low and consistent with the very low permeability formation in shallow soil. Based on the results of the shallow soil step test, an applied vacuum of 163 inches of water (12 in. Hg) was selected for constant rate testing corresponding to a wellhead flow rate of approximately 7.4 scfm. Vacuum influence was observed at all corresponding VM wells at these conditions; however, VM-1A showed low vacuum influence throughout the shallow soil step test indicating that the monitoring well may not have been functioning properly, possibly due to the presence of silt/clay and moisture in shallow soils, or well completion, limiting vapor flow at this well location. Furthermore, vapor samples for field monitoring and laboratory analysis could be collected at the wellhead with the vacuum sample box at these conditions. At higher system vacuums, the vacuum sample box could not overcome the blower vacuum thereby preventing the collection of vapor samples at the wellhead.

Step Test Soil Vapor Laboratory Analytical Data

Soil vapor samples were collected at the SVE-1A wellhead and system influent at the start of each step (Steps 1 through 4) and at the end of the step testing (Step 4) (Table 3). A SVE-1A wellhead vapor sample could not be collected at the start of Step 4 as the vacuum sample box could not overcome the higher blower vacuum. The soil vapor sample for the end of step testing (Step 4) was collected after the system was shut down at the completion of step testing. The concentration data increased from initial Step 1 samples to initial Step 4 samples then decreased by the end of Step 4.

Benzene concentrations at SVE-1A ranged from 3,700 to 7,800 ppmv and ethylbenzene concentrations ranged from 930 to 3,200 ppmv. These concentrations were reduced at the system influent once dilution air was added to 81 to 710 ppmv and 9 to 300 ppmv for benzene and ethylbenzene, respectively. TPH-g was also detected at SVE-1A during shallow step testing with concentrations increasing from 9,100 ppmv (Step 1) to 14,000 ppmv (Step 3) with a final concentration of 12,000 ppmv. TPH-g concentrations at the system influent (post-dilution) increased from 170 ppmv (Step 1) to a final concentration of 1,400 ppmv. During the shallow outdoor soil step testing, PCE and TCE concentrations were non-detect at SVE-1A and non-detect at the system influent.

Constant Rate Test Field Data

The results of the extraction well, system influent and effluent field monitoring conducted during the shallow soil gas constant rate testing are presented in Table 6.

The results of the field monitoring for the soil vapor samples collected at SVE-1A using the PID show high VOC concentrations of greater than 15,000 ppmv and flame out conditions for the FID (due to the high VOC and low oxygen concentrations). Fixed gas concentrations measured with the Landtec were relatively stable throughout the constant rate testing at the wellhead (oxygen ranged from 2.3 to 3.5 percent; carbon dioxide ranged from 4.7 to 12 percent). The average applied vacuum at the wellhead was 164.8 inches of water at an average flow rate of 10.9 scfm.

System influent readings were also consistent throughout the constant rate testing at a post-dilution system vacuum of 20 to 21 in. Hg and a flow rate of 72.1 to 106.8 scfm. Due to the very low permeability formation and low vapor flow rates from the shallow well, a dilution air flow rate of approximately 90 scfm was added to the extracted vapors. Total VOC concentrations (Horiba measurements) at the post-dilution system influent ranged from 129 to 458 ppmv, with an average of 372 ppmv. The constant rate test was performed for 66.42 total hours.

Vacuum influence data collected during the constant rate testing are presented in Table 7. Figure 4 includes representative vacuum influence measurements collected during the shallow outdoor soil constant rate testing (end of Day 3). Vapor monitoring well VM-1A showed minimal vacuum response whereas all other shallow VMs showed vacuums ranging from 0.14 to 1.01 inches of water, approximately 1 percent and lower of average applied wellhead vacuum (Figure 4). The minimal vacuum response observed in VM-1A, the monitoring well closest to the extraction well, implies that this well had some problem during well construction and is not functioning properly.

Constant Rate Test Soil Vapor Laboratory Analytical Data

Initial, midpoint and final soil vapor samples for laboratory analysis were collected at hours 1.4, 39.4 and 66.4, respectively, during the constant rate test from the wellhead, system influent and effluent sample locations, and the corresponding data is presented in Table 3.

As previously mentioned, benzene and ethylbenzene are the principal COCs detected in soil vapor.

For samples collected at SVE-1A, benzene was detected at an initial concentration of 4,200 ppmv that increased throughout the constant rate test with midpoint and final concentrations of 7,600 ppmv. The post-dilution system influent benzene concentration ranged from 330 to 980 ppmv with effluent concentrations less than or equal to 1.3 ppmv. Ethylbenzene at the SVE-1A wellhead increased throughout the constant rate testing from an initial concentration of 970 ppmv to a midpoint of 1,900 ppmv and a final of 3,000 ppmv. The post-dilution system influent ethylbenzene concentration ranged from 83 to 670 ppmv with effluent concentrations less than or equal to 2.2 ppmv. TPH-g was also detected in all samples collected during constant rate testing at concentrations from 13,000 to 19,000 ppmv at SVE-1A and from 890 to 1,700 ppmv at the system influent (post-dilution). TPH-g concentrations were reduced to a range of 7 to 12 ppmv at the system effluent. PCE and TCE concentrations were non-detect at SVE-1A and non-detect at the system influent during constant rate testing. Based on a review of the chromatograms for the SVE-1A influent, other hydrocarbons are present in the vapor sample at a little less than 10 percent of the sample with heptane and methanol making up the biggest fraction. Heptane and methanol are not COCs for the site.

Based on the fixed gas analyses for vapor samples collected at SVE-1A during constant rate testing, lower oxygen concentrations (3.86 to 5.63 percent) and higher carbon dioxide concentrations (8.16 to 12.4 percent) imply aerobic biodegradation is occurring in the shallow outdoor soil but is limited by supply of available oxygen, confirming the results of the baseline samples. Methane concentrations of 250 ppmv to 300 ppmv detected at SVE-1A are consistent with the corresponding baseline samples indicating that some anaerobic (methanogenic) biodegradation is also occurring in shallow soil.

Deep Soil Testing

Step Test Field Data

The results of the extraction well and system influent (post-dilution) field monitoring conducted during the deep soil gas step testing are presented in Table 8. Vacuum influence data collected during each step are presented in Table 9.

As the average applied vacuum to SVE-1B increased from 26 inches to 57 inches of water for the step test, the average well flow rate increased from 67.6 to 132 scfm (Table 9). Note that the VelociCalc flow readings for the high flow rates observed during the deep zone testing were overestimated, and this issue is discussed later in the *Constant Rate Test Field Data* section below.

At the same time, the vacuum influence recorded at the corresponding deep VM wells also increased from approximately 1.30 to 3.58 inches of water for the initial step to 2.66 to 6.35 inches of water for the final step. The observed vacuum influence and flow rates during step testing in deep soil were significantly higher than step testing in shallow soil consistent with a more permeable formation.

Based on the results of the deep soil step test, an applied vacuum of 52 inches of water was selected corresponding to a wellhead flow rate of approximately 128 scfm as measured with the VelociCalc instrument. The selected vacuum was based on anticipated operating vacuum conditions during full-scale SVE implementation.

Step Test Soil Vapor Laboratory Analytical Data

Soil vapor samples were collected at the SVE-1B wellhead and system influent at the start of each step (Steps 1 through 4) and at the end of the step testing (Step 4) (Table 3). The concentration data remained relatively stable throughout the testing.

Benzene concentrations at SVE-1B ranged from 6,900 to 8,900 ppmv and ethylbenzene concentrations ranged from 2,200 to 3,000 ppmv. These concentrations were reduced at the system influent once dilution air was added to 3,100 to 5,700 ppmv for benzene and 870 to 2,700 ppmv for ethylbenzene. However, these concentrations are still significantly higher than the system influent concentrations during the shallow soil step testing. TPH-g was also detected at SVE-1B with concentrations increasing from 17,000 ppmv (Step 1) to 19,000 ppmv (Step 4) with a final concentration of 18,000 ppmv. TPH-g concentrations at the system influent (post-dilution) ranged from 5,700 ppmv (Step 1) to 12,000 ppmv (Step 3) with a final concentration of 11,000 ppmv detected at the end of deep soil step testing. PCE and TCE concentrations were non-detect at SVE-1B and non-detect at the system influent during the deep soil step test.

Constant Rate Test Field Data

The results of the extraction well, system influent and effluent field monitoring conducted during the deep soil constant rate testing are presented in Table 10.

The results of the field monitoring for the soil vapor samples collected at SVE-1B using the PID show high VOC concentrations of greater than 15,000 ppmv and flame out conditions for the FID (due to the high VOC and low oxygen concentrations), similar to during the shallow outdoor soil pilot testing at SVE-1A. Carbon dioxide concentrations measured with the Landtec at SVE-1B were relatively stable throughout the constant rate testing (carbon dioxide was 12.2 to 14.9 percent). Oxygen concentrations increased throughout the test from 1.2 percent on Day 1 (April 9, 2018) to 7.4 percent on Day 5 (April 13, 2018). The average applied vacuum at the wellhead was 53 inches of water at an average flow rate of 128 scfm. As stated previously, the VelociCalc flow readings at the wellhead during the deep zone test were overestimated, and an approach for determining a more accurate estimate of the flow rate is discussed later in the SVE Pilot Test Data Evaluation section.

System influent readings were also consistent throughout the constant rate testing at a post-dilution system vacuum of 5 in. Hg and average flow rate of 116.7 scfm. The wellhead flow rates were measured with a VelociCalc during deep soil step and constant rate testing and therefore are more varied than the flow rates measured at the post-dilution system influent with an inline Pitot tube and digital manometer, and this could account for the higher average flow rate at the wellhead. Due to the permeable formation and high vapor flow rates from the deep extraction well, less dilution air was added to the extracted vapors (in comparison to the shallow soil pilot test) so these flow rates are similar and any discrepancies are due to variable field instrumentation measurements. Flow rates will be measured with inline sensors and not a handheld VelociCalc during full-scale SVE remediation. Total VOC concentrations (Horiba measurements) at the post-dilution system influent ranged from 1,543 to 3,190 ppmv, with an average of 2,000 ppmv. The constant rate test was performed for 82.25 total hours.

Vacuum influence data collected during the constant rate testing are presented in Table 11. Figure 5 includes representative vacuum influence measurements collected during the deep soil constant rate testing (end of Day 5). Vapor monitoring wells screened in both the shallow and deep zones showed vacuum response throughout the deep soil constant rate testing. VM-1B, which is the closest radial distance to SVE-1B at 15 feet, showed a vacuum response of 6.08 to 6.69 inches of water. VM-5B, which is the furthest in radial distance to SVE-1B at 50 feet, showed a vacuum response of 2.06 to 3.10 inches of water (on average approximately 5 percent of applied vacuum). Shallow extraction and vapor monitoring wells also showed vacuum response during the deep soil constant rate testing ranging from 2.72 to 5.59 inches of water (excluding VM-1A). All recorded vacuum influence readings for the deep soil constant rate test were significantly higher than 1 percent of average applied wellhead vacuum (0.52 inches of water) (Figure 5).

Constant Rate Test Soil Vapor Laboratory Analytical Data

Initial, midpoint (two) and final soil vapor samples for laboratory analysis were collected at hours 1.5, 32.75, 56.3 and 82, respectively, during the constant rate test from the wellhead, system influent and effluent sample locations, and the corresponding data is presented in Table 3.

As previously mentioned, benzene and ethylbenzene are the principal COCs detected in soil vapor.

For samples collected at SVE-1B, benzene was detected at an initial concentration of 7,900 ppmv with lower midpoint and final concentrations ranging from 4,800 ppmv (final) to 7,500 ppmv. The post-dilution system influent benzene concentrations ranged from 33 (initial) to 4,100 ppmv with effluent concentrations less than or equal to 81 ppmv. Ethylbenzene concentrations ranged from 1,900 ppmv (final) to 5,900 ppmv for samples collected at SVE-1B. The post-dilution system influent ethylbenzene concentrations ranged from 82 (initial) to 3,400 ppmv with effluent concentrations less than or equal to 310 ppmv. Note that the initial benzene and ethylbenzene system influent VOC concentrations collected on Day 1 of the deep soil gas constant rate test (April 9) were likely an error because these concentrations were unusually low and the field Horiba reading for the system influent showed a concentration of approximately 2,200 ppmv, similar to concentrations observed on the other days of the constant rate test. As a result, these initial system sampling results were not used in the analysis. Overall, benzene and ethylbenzene concentrations declined throughout the constant rate testing. TPH-g was also detected in all samples collected during constant rate testing at concentrations from 15,000 to 17,000 ppmv at SVE-1B and from 8,500 to 8,900 ppmv at the system influent (post-dilution). TPH-g concentrations were reduced to a range of 110 to 570 ppmv at the system effluent.

The effluent benzene and ethylbenzene analytical concentrations are higher than the effluent VOC concentrations recorded in the field during the constant rate testing. Effluent VOC concentrations recorded in the field with the Horiba did not exceed 3 ppmv whereas effluent analytical concentrations ranged from 17 to 81 ppmv for benzene and 39 to 310 ppmv for ethylbenzene. The likely reason for the elevated effluent concentration is that the flow rates and total hydrocarbon throughput for the deep soil pilot test (12 to 13 pounds per hour) were higher than the oxidizer capacity with a 400,000 BTU per hour rating. However, by Day 4 of the constant rate test, the influent and effluent concentrations decreased and the destruction efficiency increased, indicating that the conditions were within an appropriate range for the pilot test oxidizer by Day 4. Another possibility is that because the same sample pump was used to collect both system influent and effluent laboratory samples, the effluent analytical concentrations could have been affected. This was not observed during the shallow soil pilot testing possibly due to the significantly lower system influent concentrations.

Regarding the analytical results for other VOCs in soil vapor, PCE concentrations ranged from 16 ppmv (J-flag estimate) to non-detect at SVE-1B and all system influent concentrations were non-detect during constant rate testing. TCE concentrations were non-detect at SVE-1B and system influent concentrations ranged from 9.3 ppmv (J-flag estimate) to non-detect during constant rate testing. Based on a review of the chromatograms for the SVE-1B influent, other hydrocarbons are present in the vapor sample at less than 10 percent of the sample with heptane and methanol making up the biggest fraction. Heptane and methanol are not COCs for the site.

Based on the fixed gas analyses for vapor samples collected at SVE-1B during constant rate testing, lower oxygen concentrations (3.04 to 8.4 percent) and higher carbon dioxide concentrations (13.8 to 15.9 percent) imply aerobic biodegradation is occurring in deep soil but is limited by supply of available oxygen, confirming the results of the baseline samples. Methane concentrations of 82 ppmv to 270 ppmv detected at SVE-1B indicate that some anaerobic (methanogenic) biodegradation is also occurring in deep soil.

Dioxin/Furan Sampling

Results for the additional effluent sampling conducted by AKI during the constant rate testing to detect the potential production of dioxin and furan compounds in soil vapor combusted within the thermal oxidizer are summarized in Table 12. Ambient air sampling results are summarized in Table 13. Attachment 3 includes AKI's testing report with the comprehensive analytical results.

During the shallow outdoor soil constant rate test at SVE-1A, three 4-hour SVE emission sampling runs were performed daily from April 4-6, 2018. The emission rates for total polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo-furans (PCDFs) during these runs ranged from 2.04E-11 to 2.56E-10 pounds per hour, for an average rate of 1.09E-10 pounds per hour. This corresponds to a total PCDDs/PCDFs concentration range for these runs of 0.0588 to 0.73 nanograms per dry standard cubic meter (ng/dscm).

The two 24-hour background ambient air samples collected in sequence from April 4 - 6, 2018 during the shallow outdoor soil constant rate test had detections of 8.59E-04 and 6.91E-05 ng/dscm. The corresponding SVE emission concentrations exceeded these background detections.

During the deep soil constant rate test at SVE-1B, three 4-hour SVE emission sampling runs were performed daily from April 11 – 13, 2018. The emission rates for total PCDDs and PCDFs during these runs ranged from 6.24E-12 to 1.74E-11 pounds per hour, for an average rate of 9.99E-12 pounds per hour. This corresponds to a total PCDDs/PCDFs concentration range for these runs of 0.0128 to 0.0359 ng/dscm.

The four 24-hour background ambient air samples collected in sequence from April 9 - 13, 2018 during the deep soil constant rate test had detections from 1.43E-04 to 1.56E-03 ng/m³. The corresponding SVE emission concentrations exceeded these background detections. Also, note that the PCDD/PCDF concentration was higher in the shallow soil test than the deep test, though there were no detections of chlorinated compounds in the shallow test,

SVE PILOT TEST DATA EVALUATION

Flow Rate vs Vacuum

The relationship between applied wellhead vacuums versus soil vapor flowrates was evaluated by plotting data graphically, and determining the slope and correlation coefficient (i.e., goodness-of-fit) for that slope. Plots of vapor extraction rates versus applied wellhead vacuums for SVE-1A and SVE-1B are presented in Figures 6 and 7, respectively. The stepped-rate flow characteristics for both SVE wells exhibited increasing flows as wellhead vacuums increased, as expected.

Significantly higher measured flowrates were achieved in the deep soil zone (67-138 scfm) with lower applied vacuums (26-65 inches of water) during the deep soil step test in comparison to the shallow zone step test results (3-13 scfm; 48-238 inches of water). However, it should be noted that the high wellhead flowrates measured by the VelociCalc during the deep soil pilot test were likely overestimated by approximately 75 percent based on a mass balance with benzene and ethylbenzene concentrations (Attachment 6). Hence, the deep zone flow rates likely ranged between 40 and 79 scfm, which is still significantly higher than the shallow zone flow rates. These results are consistent with our understanding of the site lithology that the deep zone contains layers of more permeable soils that are expected to readily support SVE and provide a relatively large radius of influence. Examples of layers of high permeability sand can be found in the 28-32 feet bgs and 38-42 feet bgs layers (see Attachment 7). There is also a permeable shell hash layer at 46 feet bgs but the SVE wells are not screened in that interval so this permeable layer may not be contributing as much to the higher flow rates observed in the deep zone. In contrast, the shallow zone contains very low permeability soils with a relatively small radius of influence; however, SVE is considered feasible in this zone.

Radius of Vacuum Influence

Attachment 8 includes pressure-based ROI assessments for each SVE well using the last set of operational and vacuum data collected for each day of constant rate testing (April 3-6; April 9-13, 2018) as well as the last set of data collected for the stepped-rate tests. One estimate of the ROI was obtained by projecting the trend line from each data set to the radial distance where subsurface pressure is predicted to be 0.5 inches water.

Soil porosity data determined from previous physical property testing of shallow and deep soils at Property 23 and SA-6, respectively, was used in the assessments (AECOM 2017a; b). VM-1A data was excluded from the shallow zone assessment due to showing minimal (anomalous) vacuum response.

Figures 8 and 9 are representative ROI plots for shallow outdoor soil and deep soil during constant rate testing, respectively, while Attachment 8 includes all assessments. Observation well data are plotted for each SVE test well constant rate flow/pressure, and a best-fit trend line is applied to the data. Based on the best fit trend line and minimum vacuum criterion, the ROI for the shallow zone is in the range of 13 to 17 feet, and 15 feet is selected as a reasonable estimate. Similarly, the deep zone vacuum-based ROI is estimated to be approximately 100 feet. However, the presence of a minimum vacuum does not ensure remediation in an adequate timeframe. Further discussion of the pore gas velocity approach to selecting radius of influence is presented below.

Soil Permeability and Pore Gas Velocity

Permeability is a function of soil grain size, soil porosity, soil uniformity and soil moisture content. Therefore, determination of the soil air permeability properties is a useful parameter for the design and assessment of future full-scale SVE well networks. Soil air permeability properties of subsurface soils may impact decisions regarding well spacing, achievable flow rates, achievable mass removal rates, and SVE well construction.

Attachment 8 includes estimates for soil permeability and pore gas velocity using the same datasets as for the ROI assessments. An average wellhead flowrate of 69 scfm based on the mass balance presented in Attachment 6 was used for these calculations instead of the higher VelociCalc-measured flowrates so as not to overestimate the soil permeability and pore gas velocity values. The K_{air} estimates are approximately 0.2 to 0.3 Darcy for the shallow zone, and approximately 7 Darcy for the deep zone. These values are generally higher than the laboratory testing results (Attachment 9) (AECOM 2017a;b). It is possible that the soil core analyzed in the lab did not accurately represent the channeling/fracturing or macropore structures of subsurface soils.

Pore gas velocity is the rate of movement of soil vapors towards an extraction well connected to an SVE system. Pore gas velocity decreases with increasing distance from the extraction well. Average pore gas velocity is an additional design criterion in determining number and spacing of extraction wells for SVE. Using the soil permeability values discussed earlier, pore gas velocity can be estimated for a given extraction rate. It is desirable to have a pore gas velocity throughout the treatment zone of at least 0.01 centimeters (cm) per second (30 feet per day) (USACE 2002). Identifying a ROI based on this criterion can avoid the inaccuracy of a purely vacuum-based ROI where pore gas velocities sometimes are not adequate for remediation in a reasonable timeframe.

Figures 10 and 11 are representative pore gas velocity graphs for shallow outdoor soil and deep soil during constant rate testing, respectively, while Attachment 8 includes all assessments. Note that pore gas velocity graph for the deep zone used the revised flow rates (rather than the VelociCalc flowrate readings).

For shallow ROI assessments performed by projecting the trend line from each data set to the radial distance where subsurface pressure is predicted to be 0.5 inches water, the corresponding pore gas velocities are approximately equal to 0.01 cm per second. Therefore, the use of a ROI of 15 feet for the shallow zone to determine well spacing will be appropriate for implementing SVE to the extent practicable. However, for the deep ROI evaluation, the radial distance where pore gas velocity is equal to 0.01 cm per second is in the range of 30 to 65 feet away from each extraction well compared to the 100-foot ROI based on the vacuum criterion. Therefore, for the deep wells a more conservative ROI of 50 feet would be more appropriate. Further discussion of well spacing is presented later in discussion of the preliminary design approach.

VOC Mass Removal Rates

In general, soil gas concentrations of VOCs measured at the system influent increased over time during the shallow outdoor soil pilot test (Figure 12) and decreased over time during the deep soil pilot test (Figure 13). System influent concentrations were significantly higher from the deep soil zone with readings ranging from 1,543 to 3,190 ppmv (Table 10) compared to shallow soil zone system influent readings from 129 to 458 ppmv (Table 6). This is because the flow rates from the shallow extraction well SVE-1A were very low and a significant amount of dilution air was required for proper operation of the blower, which significantly reduced the system influent concentrations.

High concentrations of benzene and ethylbenzene were observed in laboratory analysis samples collected from each SVE well. Benzene was detected in all soil vapor samples collected from SVE-1A and SVE-1B at concentrations ranging from 3,700 to 7,800 ppmv and 4,800 to 8,900 ppmv, respectively. Ethylbenzene was detected in all soil vapor samples collected from SVE-1A and SVE-1B at concentrations ranging from 930 to 3,200 ppmv and 1,900 to 5,900 ppmv, respectively. Detection limits of VOCs can be elevated when high concentration volatile organics (e.g., benzene) are present in the sample, requiring dilution for accurate quantitation and instrument protection. If dilution is required, the detection limit of all compounds is elevated by the dilution factor, regardless of their presence or absence.

Chlorinated VOCs were all non-detect in soil vapor samples collected at SVE-1A and SVE-1B, with the exception of one SVE-1B sample where PCE was detected at a concentration of 16 ppmv (J-flag estimate).

For the shallow vapor extraction zone, the average concentrations for benzene and ethylbenzene detected at the system influent during the constant rate testing of 657 and 358 ppmv, respectively, were used to calculate mass removal rates with the average system flowrate of 100.7 scfm during constant rate testing. The average mass removal rates for benzene and ethylbenzene during the constant rate testing were 0.82 and 0.61 pounds per hour, respectively.

For deep soil, the average concentrations for benzene and ethylbenzene detected at the system influent during the constant rate testing of 3,533 and 2,633 ppmv, respectively, were used to calculate mass removal rates with the average system flowrate of 116.7 scfm during constant rate testing. The average mass removal rates for benzene and ethylbenzene during the constant rate testing were 5.10 and 5.16 pounds per hour, respectively.

Attachment 10 includes calculation details for the mass removal rates presented above as well as graphs of mass removal rates over time during shallow outdoor and deep soil constant rate testing. Note that the mass removal rates were estimated with the system influent flow rates and concentrations and were therefore not affected by the VelociCalc field reading of flow rates.

Oxygen concentrations were low in all soil vapor samples collected from SVE-1A and SVE-1B wellheads during constant rate testing, ranging from 3.86 to 5.63 percent by volume for SVE-1A and 3.04 to 8.4 percent by volume for SVE-1B. Carbon dioxide concentrations were elevated in all soil vapor samples, ranging from 8.16 to 12.4 percent for SVE-1A and from 13.8 to 15.9 percent for SVE-1B. Note that carbon dioxide concentrations are generally inversely proportional to oxygen concentrations in soil gas. Graphs of oxygen and carbon dioxide analytical concentrations measured during constant rate testing are included in Attachment 10. Oxygen and carbon dioxide concentrations detected in laboratory analyses soil vapor samples are consistent with field measurements using the Landtec monitoring device. Methane concentrations ranged from 250 to 300 ppmv at SVE-1A and 82 to 270 ppmv at SVE-1B.

Dioxin/Furan and Other Emission Results Evaluation

Dioxin/furan and toxic air contaminant (TAC) emissions from the thermal oxidizer operated during the pilot test and potential emissions from full-scale SVE design were applied to the SCAQMD risk screening tool for demonstrating compliance with Rule 1401 entitled New Source Review for Toxic Air Contaminants in order to show consistency with the SCAQMD rules and regulations. Rule 1401 was originally adopted in 1990 and modified since to accommodate changing risk values from the California Office of Environmental Health Hazard Assessment (OEHHA) and policies of the SCAQMD. This rule is a prescriptive rule to demonstrate that new sources do not pose a cancer, chronic or acute human risk to the community (SCAQMD 2017).

Rule 1401 procedures were followed based on the nearest residential receptor distance of approximately 400 meters and nearest commercial receptor distance of approximately 50 meters from the potential location of the full-scale SVE system with thermal oxidation controls (assumed to be along the southern property boundary south of the maintenance building, Attachment 11) relative to the nearest complete and representative meteorological dataset from Hawthorne Municipal Airport, located inland approximately 5 miles from the site.

SCAQMD has developed an Excel-based Rule 1401 screening risk tool to address the first three tiers of the Rule 1401 procedures (SCAQMD 2017). Tiers are designed to be used in order of increasing complexity such that if compliance cannot be demonstrated using one tier the dataset is applied to a higher tier providing a more refined estimate of risk. If compliance can be shown with a lower tier, higher tiered analyses are not required.

Dioxin and furan emissions applied for the risk evaluation were the congener-specific mass emissions presented in Attachment 3, Appendix A. TACs included in the risk assessment were the VOCs detected in the effluent of the thermal oxidizer during the shallow outdoor and deep soil pilot tests (i.e., benzene, ethylbenzene) (Table 3). Emission rates needed as inputs for the tiered evaluation were calculated based on full-scale SVE system flow rates, assumed to be 500 scfm, and these inputs are summarized in Attachment 11. The tiered evaluation was conducted based on residential receptors 400 meters away and commercial receptors 50 meters away. Two scenarios were evaluated with two cases of emission rates for each scenario as outlined below:

Scenario 1 – Dioxin/Furan emissions only

 Case 1 – Blended flow rate assuming 150 scfm from shallow-screened wells and 350 scfm from deep-screened wells and corresponding worst-case effluent concentrations from the SVE dioxin/furan emission sampling runs performed during the shallow and deep soil pilot tests. Case 2 – Assumed total flow rate of 500 scfm multiplied by the worst-case dioxin/furan effluent concentration from the pilot test (i.e., SVE emission sampling run 2 during shallow pilot testing) for a more conservative worst-case estimate of dioxin/furan emission rates from the thermal oxidizer.

Scenario 2 - Dioxin/Furan and TAC emissions

Case 1 –

Dioxin/Furan emissions: Scenario 1, Case 1

TAC emissions: Blended flow rate assuming 150 scfm from shallow wells and 350 scfm from deep wells with worst-case effluent TAC concentrations for shallow soil (i.e., detected effluent data on April 5, 2018 during shallow constant rate testing [see Table 3]) and representative effluent TAC concentrations for deep soil (i.e., detected effluent data on April 13, 2018 during Day 4 of deep constant rate testing [see Table 3]). Effluent TAC concentrations collected on Day 4 of the deep soil constant rate testing are more representative for a thermal oxidizer with an almost 99 percent VOC destruction efficiency (further discussion of this below).

Case 2 –

Dioxin/Furan emissions: Scenario 1, Case 1

TAC emissions: Assumed total flow rate of 500 scfm multiplied by a benzene concentration of 25 ppmv and ethylbenzene concentration of 50 ppmv for TAC emission rates with the objective of identifying a higher concentration limit that would still meet the SCAQMD limits.

The table below presents a summary of the Tier 2 evaluation for Scenario 1 (dioxin/furan emissions alone) for the 500 scfm thermal oxidizer. The Tier 2 evaluation was conducted as the Tier 1 threshold was exceeded in both cases. The Tier 2 results show that the potential exposure risks for the residential and commercial receptors are below SCAQMD limits, even with the worst-case emissions data. Based on the dioxin-furan emissions alone, the oxidizer would be in compliance with Rule 1401 requirements. The Rule 1401 screening risk tool spreadsheets are included in Attachment 11, which present more details for each case.

	HRA Results Residential receptor 400 m Commercial receptor 50 m					
	Tier 2					
Scenario 1. Dioxin/Furans	Cancer	Cancer	Cancer	Acute Chronic		8 hour
only HRA ¹	Residential ²	Worker ²	Burden			Chronic
SCAQMD Limit:	1.0E-06	1.0E-06	0.5	1.0	1.0	1.0
Case 1	2.33E-08	5.81E-09	N/A	0.00	0.00	0.00
Case 2	5.89E-08	1.51E-08	N/A	0.00	0.00	0.00

^[1] See Attachment 11 for detailed Rule 1401 risk tool spreadsheet.

[2] Per SCAQMD, a thermal oxidizer is considered Best Available Control Technology for Toxics (T-BACT) for VOCs and TACs which raises the health risk assessment (HRA) allowable limit from 1.0E-06 to 10.0E-06. However, as a conservative measure a limit of 1.0E-06 (no T-BACT) is used in this evaluation.

The table below presents a summary of the Tier 3 evaluation results for Scenario 2 (Case 1 and 2 described above), which includes dioxin/furan and TACs emissions for the proposed 500 scfm thermal oxidizer for the residential and commercial receptors. Tier 3 evaluation results are presented for the two cases because the Tier 1 and Tier 2 criteria were exceeded.

Case 1 shows that the Tier 3 evaluation results using pilot test effluent data with the blended flow rate of the shallow and deep wells as described previously do not exceed the SCAQMD limits. It should be noted that effluent data for deep soil collected on Day 4 of deep soil constant rate testing (April 13, 2018) was used rather than the worst-case data as it would be more representative of a normally operating thermal oxidizer with a destruction efficiency of approximately 99 percent. As discussed below, the destruction efficiency was lower on the previous days of the deep soil testing because the hydrocarbon throughput was higher than the relatively small pilot test thermal oxidizer could treat. A full-scale thermal oxidizer would be designed to handle the higher hydrocarbon throughputs and still attain a minimum of 99 percent destruction efficiency.

Case 2 shows that for higher benzene (25 ppmv) and ethylbenzene (50 ppmv) effluent concentrations, the Tier 3 results are below the SCAQMD limits. Thus, both cases meet the SCAQMD requirements.

	HRA Results Residential receptor 400 m Commercial receptor 50 m					
Scenario 2. Dioxin/Furans and TACs HRA ¹	Cancer Cancer Cancer Acute Chronic Chronic					
SCAQMD Limit:	1.0E-06	1.0E-06	0.5	1.0	1.0	1.0
Case 1	5.37E-07	2.46E-07	N/A	0.07	0.06	0.06
Case 2	9.51E-07	4.37E-07	N/A	0.12	0.10	0.10

^[1] See Attachment 11 for detailed Rule 1401 risk tool spreadsheets.

A separate SCAQMD requirement that is applicable to thermal oxidizer implementation at the Site is related to the potential production of hydrogen chloride vapors from the combustion of chlorinated VOCs present in the influent (i.e., PCE, TCE). Based on the shallow outdoor and deep soil pilot testing laboratory sampling results, PCE was below detection limits in all 17 influent samples and all wellhead samples except for one sample collected during constant rate testing at SVE-1B (16 ppmv, J-flagged data), as discussed earlier. TCE was below detection limits in all wellhead samples and 15 out of 17 influent samples except in two cases where TCE was present at 9 and 4 ppmv (J-flagged data) during constant rate testing at SVE-1B. The limited detections of PCE and TCE were only from the deep zone wells. Based on the relatively low to non-detect concentrations of PCE and TCE observed during the pilot testing, as well as the ability to limit the number of operating SVE wells and control dilution air during the initial startup period, a thermal oxidizer can be operated so as to not exceed the 1 pound per day limit of the SCAQMD Regulation XIII Rule 1303. PCE and TCE concentrations, if detected in future SVE operations, are expected to decline rapidly after the initial weeks of operation.

Effectiveness of Thermal Oxidizer for Vapor Treatment

The table below shows the total VOC influent and effluent analytical concentrations and corresponding destruction efficiencies of the thermal oxidizer used in the pilot test for shallow outdoor and deep soil constant rate testing. The results show that the destruction efficiency was high (>99 percent) during shallow testing (with lower analytical concentrations) but lower during the deep testing (with higher analytical concentrations).

Total VOCs (Benzene+Ethylbenzene)								
Sample Collected (elapsed time)	Influent (ppmv) Effluent (ppmv)		Control Efficiency (%)					
Shallow Outdoor Soil Constant Rate Test								
Hour 1.4	413	2.1	99.50					
Hour 39.4	1,650	4.5	99.79					
Hour 66.4 (end)	980	2.5	99.75					
Deep Soil Constant Rate Test								
Hour 32.75	7,100	391	94.49					
Hour 56.3	7,500	194	97.41					
Hour 82 (end)	3,900	58	98.51					

The deep soil pilot test control efficiencies are lower (i.e. effluent concentrations are elevated) likely due to the higher than expected hydrocarbon mass throughput through the pilot test oxidizer. This pilot test oxidizer was relatively small with a burner capacity of 400,000 BTU per hour, and the hydrocarbon mass loading with the deep test likely exceeded the range of concentrations where the oxidizer can deliver a >99 percent destruction efficiency.

^[2] Per SCAQMD, a thermal oxidizer is considered T-BACT for VOCs and TACs which raises the HRA allowable limit from 1.0E-06 to 10.0E-06. However, as a conservative measure a limit of 1.0E-06 (no TBACT) is used in this evaluation.

The reduced destruction efficiency during deep testing was not evident during the field testing as the field instrumentation did not show elevated concentrations. The elevated effluent concentrations were not known until all the laboratory results came back two weeks after the test was complete. If the elevated effluent concentration condition was known during the field testing, modifications such as reducing the applied vacuum to reduce VOC influent concentrations and/or increasing the oxidizer temperature (e.g. 1,600 °F) could have been implemented to reduce effluent concentrations and increase destruction efficiency. In addition, it is possible that the use of the same sample pump to collect both the influent and effluent samples for lab analysis could have affected the effluent sample during deep testing. However, note that destruction efficiency during the deep test increased by the fourth day of the constant rate testing to 98.5 percent likely due to decreasing influent concentrations bringing the hydrocarbon mass loading closer to the optimal range for the size of the pilot test oxidizer.

PRELIMINARY CONCEPTUAL SVE DESIGN

This section presents a preliminary conceptual plan for the SVE system at Property 23/SA-6 based on the pilot testing results that will be further detailed in future RD submittals.

Shallow Soil Zone

SVE is considered effective in shallow soils but requires closely spaced extraction wells based on an ROI of approximately 15 feet (at 0.5 inches of water) and low air permeability of 2x10⁻⁹ cm² (0.2 to 0.3 Darcy). Figure 14 proposes a full-scale SVE system design for remediation of shallow outdoor soil with 15 extraction wells spaced approximately 22 feet apart to treat the proposed targeted area adjacent to the east side of the building. The lithology in the shallow zone is relatively uniform with a high percentage of silt/clay and no significant sandy zone. Hence, the recommended well screen interval is the same as that used during the pilot test, namely, 7 to 15 feet bgs.

In response to USEPA comments on the *Shallow Soil Sampling Results for Property 23 Technical Memorandum*, AECOM proposed to install four additional soil borings to confirm the extent of the proposed shallow SVE implementation areas – northeast and east. The shallow outdoor soil SVE areas may be modified if these additional soil borings show exceedances of cleanup levels. Shallow SVE wells will be spaced similarly (22 feet apart) in the northeast area and to the east area once delineation is complete.

Deep Soil Zone

SVE is expected to be effective in the deep zone with relatively high air permeability (approximately 7 Darcy) and radius of vacuum influence (100 feet at 0.5 inches of water) as well as mass removal rates that are significantly higher than the shallow zone. However, there are low permeability layers (see Attachment 9 showing permeability of some layers <0.01 Darcy) within the deep zone that will face some inherent limitations of SVE in remediation of low permeability silt/clay layers. A review of the lithology in the deep vadose zone at SA-6 indicates that the high vapor flow rates are likely occurring through the known permeable sandy layers between 28 – 32 feet bgs and 38 – 42 feet bgs. Based on the physical properties testing conducted in previous investigations, the 28 to 32 feet bgs layer is likely the most significant contributor to the deep SVE flow with a high horizontal and vertical permeability of 8.3 Darcy and 10.6 Darcy for the 29-foot sample based on soil physical properties testing (AECOM 2017b). A representative cross-section for SA-6 and corresponding boring logs installed during pre-design investigations for Property 23 shallow soil and SA-6 deep soil are included as Attachment 7. In addition, there are known permeable layers such as the shell hash layer around 46 feet bgs that is below the screened interval of extraction well SVE-1B and, because it is a continuous layer that is present across SA-6, this could be contributing to the air flow as well. Other permeable cemented gravel and cemented sand layers are reported in boring logs at various depths like 21 feet bgs, 24 feet bgs and 37 feet bgs though these may not be continuous across SA-6.

Figure 15 proposes a full-scale SVE system design for remediation of deep soil with four proposed extraction well locations spaced approximately 60 feet apart with each location incorporating two screened intervals (SVE-1B/C, SVE-2B/C, SVE-3B/C and SVE-4B/C). This design allows for a zone of high pore gas velocity with a radius of 50 feet around each well to remediate the targeted area. It should be noted that despite the large radius of vacuum influence (100 feet for 0.5 inches of water vacuum), the proposed SVE well spacing was reduced and number of SVE wells increased as a conservative measure to ensure that all of the soil layers, including lower permeability soil layers, are addressed by SVE to the extent practicable. Furthermore, dividing the deep vadose zone (15 to 46 feet bgs) into two screened intervals (B screen of 19 to 31 feet bgs and C screen of 35 to 43 feet bgs) helps mitigate the risk of any one highly permeable flow pathway capturing a majority of the deep soil vapor flow. In this proposed plan, the existing extraction well SVE-1B will be replaced by dual-screened wells SVE-1B/C.

AECOM noted in response to USEPA comments on the *Deep Soil Sampling Results for Source Area 6 Technical Memorandum* that the only area where the identified SVE area is not effectively constrained is in the vicinity of soil boring SBL0601. Therefore, AECOM recommended one additional deep soil boring located to the north east of SBL0601 (presented on Figure 15) to confirm the extent of the target SVE area.

Vapor Extraction and Treatment System

Figure 16 shows a typical process and instrumentation diagram for a vapor extraction and treatment system. Preliminary design components for the vapor extraction and treatment system that will be connected by piping to the proposed shallow and deep SVE well designs discussed above include:

- Positive Displacement blower
- Maximum vacuum, 12-inch Hg (160 in WC)
- Flow rate, 500 scfm
- Vapor treatment: thermal oxidizer
- Fuel: Natural gas or propane

Additional evaluation of the sizing, type of thermal oxidizer and location of blower and treatment equipment on the property will be conducted during the next remedial design phase. In order to meet the requirements of the SCAQMD for a 500 scfm thermal oxidizer, the benzene and ethylbenzene influent concentrations and effluent emissions will need to be controlled to meet the SCAQMD limits. Similarly, the PCE and TCE concentrations in the SVE influent will need to be monitored during startup to confirm that the SCAQMD requirement of less than 1 pound per day of chlorine (from PCE, TCE) in the influent is met. These requirements will be met by balancing the number and type of extraction wells (shallow, deep) along with the use of dilution air, and the selection of an appropriately-sized thermal oxidizer with a 99 percent or greater VOC destruction efficiency at the operational flow rates. Thermal destruction efficiencies vary by oxidizer design and operational parameters such as residence time and temperature. Based on initial review, a direct-fired thermal oxidizer design would be the preferred option for this SVE remediation.

Based on the decreasing VOC concentrations observed during the 5 days of the deep soil pilot test, high SVE influent concentrations are expected to only last for the initial weeks (start-up period) of full-scale treatment. The SVE operational approach will be to only connect one deep well at a time to the blower with weekly sampling for laboratory analytical testing incorporated to document compliance with emission limits based on the Tier 3 evaluation.

Further details of the shallow outdoor soil SVE remedy for Property 23 and deep soil SVE remedy for SA-6 design, implementation and operation will be presented in the subsequent 30%, 95% and 100% Remedial Design Reports.

REFERENCES

- AECOM, 2018. Remedial Design Work Plan for the Soil and NAPL Operable Unit, Del Amo Superfund Site, Los Angeles, California. Revised January 16.
 - 2017a. Technical Memorandum, Shallow Soil Sampling Results for Property 23, Predesign Investigation, Soil and NAPL Operable Unit, Del Amo Superfund Site. September 8.
 - 2017b. Technical Memorandum, Deep Soil Sampling Results for Source Area 6, Pre-design Investigation, Soil and NAPL Operable Unit, Del Amo Superfund Site. September 8.
- SCAQMD, 2017. Risk Assessment Procedures for Rules 1401, 1401.1 and 212, Version 8.1, South Coast Air Quality Management District, http://www.aqmd.gov/home/permits/risk-assessment. September 1.
- US Army Corps of Engineers (USACE), 2002. Soil Vapor Extraction and Bioventing Engineering and Design, Engineer Manual, US Army Corps of Engineers. June.
- USEPA, 2013. Record of Decision, Del Amo Facility 7 Superfund Site, Soil and NAPL Operable Unit, Los Angeles, California. September 2013 revision.

FIGURES

- Figure 1 Site Location Map
- Figure 2 Property 23/SA-6 SVE Remediation Areas
- Figure 3 SVE Pilot Test Well Locations and Proposed Extent of SVE Treatment
- Figure 4 Representative Vacuum Influence during Shallow Outdoor Soil Constant Rate Testing
- Figure 5 Representative Vacuum Influence during Deep Outdoor Soil Constant Rate Testing
- Figure 6 Shallow Step Test SVE-1A; Flow Rate versus Wellhead Vacuum
- Figure 7 Deep Step Test SVE-1B; Flow Rate versus Wellhead Vacuum
- Figure 8 Representative Shallow Zone ROI Test Run #4: SVE-1A; end of day 2 constant rate test
- Figure 9 Representative Deep Zone ROI Test Run #10: SVE-1B; end of day 3 constant rate test
- Figure 10 Soil Gas Pore Velocity versus Radial Distance from SVE-1A Test Run #4: end of day 2 constant rate test
- Figure 11 Soil Gas Pore Velocity versus Radial Distance from SVE-1B Test Run #10: end of day 3 constant rate test
- Figure 12 Soil Vapor Concentrations and Mass Removal Rates (Shallow Zone Constant Rate Testing)
- Figure 13 Soil Vapor Concentrations and Mass Removal Rates (Deep Zone Constant Rate Testing)
- Figure 14 Proposed Layout for Shallow SVE Wells
- Figure 15 Proposed Layout for Deep SVE Wells
- Figure 16 SVE System Process & Instrumentation Diagram

Source: AirPhotoUSA dated February 2006

FIGURE 1

SITE LOCATION MAP

SVE Pilot Test Report Soil and NAPL Operable Unit - OU1 Del Amo Superfund Site

Shallow soil vapor extraction (SVE)

Shallow and deep SVE

Current building footprint

Property and number (corresponds with Exposure Area of Potential Concern (EAPC) identified in the Baseline Risk Assessment)

7351-034-070 Assessor's parcel number

FIGURE 2

PROPERTY 23/SA-6 SVE REMEDIATION AREAS

SVE Pilot Test Report Soil and NAPL Operable Unit – OU1 Del Amo Superfund Site

405

- Deep soil extraction test well (connected to equipment)
- Deep soil monitoring well
- O Proposed Additional Deep Soil Boring

SVE Pilot Test Temporary Remediation Compound
ROD-identified potential shallow soil SVE area

Extent of SVE based on 2017 deep soil data and 2017 UVOST data

Assessor's parcel boundaries

Figure 3

SVE PILOT TEST WELL LOCATIONS AND PROPOSED EXTENT OF SVE TREATMENT

Soil Vapor Extraction Pilot Test Report
Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)
Del Amo Superfund Site

- Shallow soil extraction test well (connected to equipment)
- Shallow soil monitoring well
- ROD-identified potential deep soil SVE area Assessor's parcel boundaries

Note: in wc = vacuum readings in inches of water. Labels include Well ID, Distance to SVE-1A, and Vacuum influence reading.

Imagery Source: Esri World Imagery, Port of Long Beach 12/16/2017, 0.07 m resolution.

REPRESENTATIVE VACUUM INFLUENCE **DURING SHALLOW OUTDOOR SOIL CONSTANT RATE TESTING**

Soil Vapor Extraction Pilot Test Report Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1) Del Amo Superfund Site

Del Amo Site
213

- Deep soil extraction test well (connected to equipment)
 - Deep soil monitoring well
- ROD-identified potential deep soil SVE area
 Assessor's parcel boundaries

Note: in wc = vacuum readings in inches of water. Labels include Well ID, Distance to SVE-1B, and Vacuum influence reading.

Imagery Source: Esri World Imagery, Port of Long Beach 12/16/2017, 0.07 m resolution.

REPRESENTATIVE VACUUM INFLUENCE DURING DEEP SOIL CONSTANT RATE TESTING

Soil Vapor Extraction Pilot Test Report
Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)
Del Amo Superfund Site

FIGURE 7
Deep Step Test SVE-1B; Flow Rate versus Wellhead Vacuum
SVE Pilot Test Report
Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

Note: High wellhead flowrates measured by the VelociCalc during the deep soil pilot test were likely overestimated. Based on a mass balance with benzene and ethylbenzene concentrations (Attachment 6), the deep zone flow rates likely ranged between 40 and 79 scfm. However, the trend as presented in this figure likely remains the same.

FIGURE 8
Representative Shallow Zone ROI - Test Run #4: SVE-1A; end of day 2 constant rate test
Soil Vapor Extraction Pilot Test Report
Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

FIGURE 9
Representative Deep Zone ROI - Test Run #10: SVE-1B; end of day 3 constant rate test
Soil Vapor Extraction Pilot Test Report
Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

FIGURE 11
Soil Gas Pore Velocity versus Radial Distance from SVE-1B - Test Run #10: end of day 3 constant rate test
Soil Vapor Extraction Pilot Test Report
Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

Assessor's parcel boundaries

AECOM Note: SVE wells will be spaced similarly (22 feet apart) in the northeast area once delineation is complete.

TG1 Well field vacuum gauge TG1 Well field temperature gauge FS1 Well field flow sensor DP1 Well field differential pressure gauge VG2 Dilution vacuum gauge TG2 Dilution temperature gauge

FS2 Dilution flow sensor

DP3 Influent differential pressure gauge
SP3 Effluent sample port

Influent flow sensor

FS3

Influent temperature gauge

TG4 Effluent temperature gauge (combustion chamber only)

SVE SYSTEM PROCESS & INSTRUMENTATION DIAGRAM

SVE Pilot Test Report Soil and NAPL Operable Unit - OU1 Del Amo Superfund Site

AECOM

TABLES

- Table 1 SVE Pilot Testing Well Construction Details
- Table 2 Baseline Field Vacuum Measurements
- Table 3 VOC and Fixed Gas Soil Vapor Analytical Results Shallow and Deep Testing
- Table 4 Shallow Zone Step Test Wellhead and System Readings
- Table 5 Shallow Zone Step Test Vacuum Influence
- Table 6 Shallow Zone Constant Rate Testing System Readings
- Table 7 Shallow Zone Constant Rate Vacuum Influence
- Table 8 Deep Zone Step Testing System Readings
- Table 9 Deep Zone Step Test Vacuum Influence
- Table 10 Deep Zone Constant Rate Testing System Readings
- Table 11 Deep Zone Constant Rate Vacuum Influence
- Table 12 Dioxin/Furan SVE Emissions Sampling Results
- Table 13 Dioxin/Furan Background/Ambient Air Sampling Results

TABLE 1 SVE PILOT TEST WELL CONSTRUCTION DETAILS Soil Vapor Extraction Pilot Test Report Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

Well ID (Soil Boring ID)	Туре	Zone	Date Installed	Total Depth (feet bgs)	Diameter of Casing (inches)*	Top of Screen (feet bgs)	Bottom of Screen (feet bgs)	Sand Filter Pack (feet bgs)	Approximate Distance from Extraction Well (feet)
SVE-1A (VWL0011)	Extraction	Shallow	5/24/2017	16	2	7	15	6 - 16	From SVE-1A:
VM-1A (VWL0012)	Vapor monitoring	Shallow	5/25/2017	16	2	7	15	6 - 16	7
VM-2A (VWL0013)	Vapor monitoring	Shallow	5/25/2017	16	2	7	15	6 - 16	10
VM-3A (VWL0014)	Vapor monitoring	Shallow	5/25/2017	16	2	7	15	6 - 16	15
VM-4A (VWL0015)	Vapor monitoring	Shallow	5/24/2017	16	2	7	15	6 - 16	20
VM-5A (VWL0016)	Vapor monitoring	Shallow	5/24/2017	16	2	7	15	6 - 16	30
SVE-1B (VWL0017)	Extraction	Deep	5/24/2017	43	2	20	42	18.5 - 43	From SVE-1B:
VM-1B (VWL0018)	Vapor monitoring	Deep	5/25/2017	43	2	20	42	18.5 - 43	15
VM-2B (VWL0019)	Vapor monitoring	Deep	5/25/2017	43	2	20	42	18.5 - 43	22
VM-3B (VWL0020)	Vapor monitoring	Deep	5/25/2017	43	2	19	41	18.5 - 43	27
VM-4B (VWL0021)	Vapor monitoring	Deep	5/24/2017	43	2	20	42	18.5 - 43	38
VM-5B (VWL0016)	Vapor monitoring	Deep	5/24/2017	43	2	20	42	18.5 - 43	50

Notes:

bgs = below ground surface

*Well casing is 2" Blank Schedule 40 PVC

Screen is 0.020 inch slotted 2 inch Schedule 40 PVC

TABLE 2 BASELINE FIELD VACUUM MEASUREMENTS Soil Vapor Extraction Pilot Test Report Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

Well ID	Zone	Date Measured	Vacuum (in wc)					
Prior to start of pilot testing								
SVE-1A	Shallow	4/2/18 10:35	0.000					
VM-1A	Shallow	4/2/18 11:05	0.000					
VM-2A	Shallow	4/2/18 11:25	0.000					
VM-3A	Shallow	4/2/18 10:45	0.000					
VM-4A	Shallow	4/2/18 10:55	0.000					
VM-5A	Shallow	4/2/18 11:15	0.000					
SVE-1B	Deep	4/2/18 10:28	0.000					
VM-1B	Deep	4/2/18 9:45	0.100					
VM-2B	Deep	4/2/18 9:55	0.080					
VM-3B	Deep	4/2/18 10:20	0.000					
VM-4B	Deep	4/2/18 10:15	0.065					
VM-5B	Deep	4/2/18 10:05	0.080					
Post shallow testing; Prior to start of deep testing*								
SVE-1B	Deep	4/9/18 7:00	0.065					
VM-1B	Deep	4/9/18 8:05	0.075					
VM-2B	Deep	4/9/18 8:03	0.080					
VM-3B	Deep	4/9/18 8:12	0.070					
VM-4B	Deep	4/9/18 8:10	0.085					
VM-5B	Deep	4/9/18 8:08	0.075					

Notes:

in wc = inches of water column

^{*} Readings collected after equilibrium period

TABLE 3 VOC AND FIXED GAS SOIL VAPOR ANALYTICAL RESULTS – Shallow and Deep Testing Soil Vapor Extraction Pilot Test Report Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

Study	Sample Location	Sample ID	Sample Date	Time	Benzene	Ethylbenzene	Toluene	Acetone	Carbon Disulfide	Dichlorodifluo romethane	4- Ethyltoluene	o-Xylene	p/m-Xylene	Styrene	Tetrachloro ethene	Trichloroeth ene	Methane	Carbon Dioxide	Nitrogen	Oxygen (+ Argon)	TPH (as Gasoline)
					ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	%v	%v	%v	ppmv
Analytica		1/0004054	04/00/40	4005	0.000	4.700	70.1	40.1	44	EPA TO-		7.0	1 47	0.0	0.4	0.5	SCAQMD 25.1M	7.40	ASTM D-1946		EPA TO-3M
Baseline - Shallow	SVE-1A		04/02/18	1035	6,800	1,700	78 J	40 J	<14	<3.0	<7.9	<7.8	<17	<3.2	<3.4	<3.5	290	7.48	89.1	3.47	13,000
Baseline - Deep	SVE-1B	VSS01350	04/02/18	1028	7,600	1,900	92 J	51 J	<14	<3.0	<7.9	<7.8	<17	<3.2	<3.4	<3.5	360	15.5	81.9	2.62	12,000
Shallow Zone	SVE-1A	VSS01355	04/02/18	1255	5,400	1,700	67 J	34 J	<11	<2.4	<6.4	<6.3	<13	<2.5	<2.7	<2.8	270	5.52	87.6	6.91	9,100
Shallow Step Test; Step 1	Influent	VSS01353	04/02/18	1301	120	1,700	0.90 J	0.42 J	<0.089	<0.019	<0.4	<0.050	<0.11	<0.020	<0.022	<0.022	9	0.220 J	78.9	20.9	170
	SVE-1A	VSS01352 VSS01357	04/02/18	1339	7,100	2,700	100 J	34 J	<0.069	<3.0	<7.9	<7.8	<0.11	<3.2	<3.4	<3.5	310	6.52	89.1	4.33	13,000
Shallow Step Test; Step 2	Influent	VSS01357	04/02/18	1353	81	9	1.3	0.22 J	<0.028	0.015 J	<0.016	<0.016	<0.033	0.0080 J	<0.0067	<0.0069	10	0.204 J	78.8	21	260
	SVE-1A	VSS01360	04/02/18	1450	7,800	3,200	110 J	36 J	<17	<3.7	<9.9	<9.8	<21	<4.0	<4.2	<4.3	320	6.77	89.1	4.17	14,000
Shallow Step Test; Step 3	Influent	VSS01353	04/02/18	1450	380	3,200	3.2 J	<0.72	<0.70	<0.15	<0.40	<0.39	<0.83	<0.16	<0.17	<0.17	20	0.434 J	79.2	20.3	630
	SVE-1A								<0.70	<0.15	<0.40	<0.39	<0.03	<0.10	<0.17	<0.17	20	0.434 J	19.2	20.3	030
Shallow Step Test; Step 4	Influent	SVE-1A san VSS01358	04/02/18	ected as high 1606	580	m could not be ou	5.9	<0.23	<0.22	<0.048	<0.13	<0.13	<0.27	0.092 J	<0.054	<0.056	24	0.559	79.3	20.1	1,000
	SVE-1A	VSS01356 VSS01359	04/02/18	1707	3,700	930	25	<0.23	0.036 J	0.046 0.015 J	0.13	0.17	0.5	0.092 3	<0.054	<0.056	300	7.17	88.3	4.54	12,000
Shallow Step Test; End	Influent	VSS01359 VSS01356	04/02/18	1707	710	300	10 J	<1.1	<1.1	<0.24	<0.64	<0.63	<1.3	<0.25	<0.0067	<0.0069	29	0.747	79.5	19.7	1,400
	SVE- 1A	VSS01356	04/02/18	916	4,200	970	62	12 J	<2.8	1.5 J	<1.6	<1.6	<3.3	0.25 0.94 J	<0.27	<0.28	300	8.16	88	3.86	15,000
Shallow Constant Rate Test: Initial Hour 1.4	Influent	VSS01361	04/03/18	915	330	83	4.6	<0.11	<0.11	<0.024	<0.064	<0.063	<0.13	0.94 J 0.11 J	<0.027	<0.03	19	0.506	79.1	20.4	890
Shallow Constant Nate Test, Illitial Flour 1.4	Effluent	VSS01363	04/03/18	918	0.8	1.3	0.029	0.021 J	<0.011	<0.0024	0.00098 J	0.00098 J	0.0024 J	0.113 0.0023 J	<0.027	<0.0028		0.500	79.1	20.4	12
	SVE- 1A	VSS01365	04/05/18	1201	7,600	1,900	87 J	<23	<22	<4.8	<13	<13	<27	<5.1	<5.4	<5.6	260	11	83.4	5.63	13,000
Shallow Constant Rate Test; Midpoint Hour 39.4	Influent	VSS01366	04/05/18	1200	980	670	20 J	16 J	<2.8	<0.60	<1.6	<1.6	<3.3	0.97 J	<0.67	<0.69	26	1.19	79	19.8	1,700
Shallow Constant Nate Test, Mildpoint Hour 39.4	Effluent	VSS01367	04/05/18	1205	1.3	2.2	0.033 J	0.042 J	<0.0070	<0.0015	<0.0040	<0.0039	<0.0083	<0.0016	<0.0017	<0.0017		1.13		19.0	7
	SVE-1A	VSS01367	04/06/18	1455	7,600	3,000	110 J	<23	<22	<4.8	<13	<13	<27	<5.1	<5.4	<5.6	250	12.4	82.7	4.93	19,000
Shallow Constant Rate Test; Final Hour 66.4	Influent	VSS01369	04/06/18	1500	660	320	13 J	31 J	<2.8	<0.60	<1.6	<1.6	<3.3	<0.64	<0.67	<0.69	23	1.18	78.9	19.9	1,600
Shallow Constant Nate Test, Final Hour 60.4	Effluent	VSS01309	04/06/18	1505	0.9	1.6	0.027 J	0.0059 J	<0.0056	<0.0012	<0.0032	<0.0031	<0.0067	<0.0013	<0.0013	<0.0014		1.10	70.9	19.9	8
Deep Zone	Lindon	10001070	04/00/10	1000	0.3	1.0	0.027 0	0.00000	VO.0000	Q.0012	V0.0002	<u> </u>	10.0007	VO.0010	VO.0010	V0.0014		<u> </u>	ļ		
•	SVE-1B	VSS01372	04/09/18	833	8,700	2,800	74 J	<36	<35	<7.4	<20	<20	<42	<8.0	<8.4	<8.7	290	16.3	81.2	2.42	17,000
Deep Step Test; Step 1	Influent	VSS01371	04/09/18	835	3,600	1,100	39 J	21 J	<11	<2.4	<6.4	<6.3	<13	<2.5	<2.7	<2.8	120	6.44	79.5	14.1	5,700
Description Test Office O	SVE-1B	VSS01374	04/09/18	1005	8,900	3,000	82 J	<46	<44	<9.5	<25	<25	<53	<10	<11	<11	290	16.1	81.4	2.55	19,000
Deep Step Test; Step 2	Influent	VSS01373	04/09/18	1005	3,100	870	49	1.3 J	<0.22	<0.048	0.37 J	0.20 J	0.38 J	0.16 J	< 0.054	<0.056	130	7.29	79.6	13.1	9,400
Davis Otas Tant Otas O	SVE-1B	VSS01376	04/09/18	1220	7,700	2,200	65 J	48 J	<44	<9.5	<25	<25	<53	<10	<11	<11	280	15.9	81.5	2.53	18,000
Deep Step Test; Step 3	Influent	VSS01375	04/09/18	1225	5,700	2,700	56 J	<29	<28	<6.0	<16	<16	<33	<6.4	<6.7	<6.9	200	9.86	80.2	9.95	12,000
D 0: T 10: 1	SVE-1B	VSS01378	04/09/18	1317	6,900	2,700	60 J	<46	<44	<9.5	<25	<25	<53	<10	<11	<11	350	15.8	81.6	2.61	19,000
Deep Step Test; Step 4	Influent	VSS01377	04/09/18	1315	5,100	2,600	55 J	30 J	<22	<4.8	<13	<13	<27	<5.1	<5.4	<5.6	170	8.66	79.9	11.4	11,000
Dana Chan Tash Fad	SVE-1B	VSS01380	04/09/18	1420	8,300	3,000	70 J	<46	<44	<9.5	<25	<25	<53	<10	<11	<11	330	16	81.4	2.61	18,000
Deep Step Test; End	Influent	VSS01379	04/09/18	1415	4,600	2,100	44 J	40 J	<22	<4.8	<13	<13	<27	<5.1	<5.4	<5.6	130	8.34	79.8	11.8	11,000
	SVE-1B	VSS01381	04/09/18	1615	7,900	2,700	63 J	<46	<44	<9.5	<25	<25	<53	<10	<11	<11	250	15.9	81.1	3.04	17,000
Deep Constant Rate Test; Initial Hour 1.5	Influent**	VSS01383	04/09/18	1625	33	82	1.0 J	0.53 J	<0.17	<0.037	<0.099	<0.098	<0.21	<0.040	<0.042	<0.043					170
	Effluent	VSS01382	04/09/18	1620	17	39	0.53 J	0.35 J	<0.11	<0.024	< 0.064	< 0.063	<0.13	<0.025	<0.027	<0.028	0.82 J	<0.139	78.5	21.4	110
	SVE-1B	VSS01384	04/11/18	1028	7,500	4,800	85 J	<29	<28	<6.0	<16	<16	<33	<6.4	<6.7	<6.9	270	14.9	78.8	6.29	16,000
Deep Constant Rate Test; Midpoint Hour 32.75	Influent	VSS01385	04/11/18	1025	3,900	3,200	50 J	14 J	<14	<3.0	<7.9	<7.8	<17	<3.2	<3.4	9.3 J	130	7.48	78.6	14	8,900
·	Effluent	VSS01386	04/11/18	1030	81*	310*	2.4 J	<1.1	<1.1	<0.24	<0.64	< 0.63	<1.3	<0.25	<0.27	<0.28					570
	SVE-1B	VSS01387	04/12/18	1000	7,200	5,900	87 J	<29	<28	<6.0	<16	<16	<33	<6.4	<6.7	<6.9	140	14.4	78	7.55	15,000
Deep Constant Rate Test; Midpoint Hour 56.3	Influent	VSS01388	04/12/18	1000	4,100	3,400	54 J	18 J	<14	<3.0	<7.9	<7.8	<17	<3.2	<3.4	4.0 J	76	7.62	78.2	14.2	8,500
·	Effluent	VSS01389	04/12/18	1005	64*	130*	1.7 J	<0.46	<0.44	< 0.095	<0.25	< 0.25	< 0.53	<0.10	<0.11	0.11 J					540
	SVE-1B	VSS01390	04/13/18	1145	4,800	1,900	43 J	29 J	<28	<6.0	<16	<16	<33	<6.4	16 J	<6.9	82	13.8	77.8	8.4	15,000
Deep Constant Rate Test; Final Hour 82	Influent	VSS01392	04/13/18	1156	2,600	1,300	25 J	20 J	<14	<3.0	<7.9	<7.8	<17	<3.2	<3.4	<3.5	45	7.09	78.1	14.8	8,900
	Effluent	VSS01391	04/13/18	1151	19	39	0.50 J	0.36 J	<0.11	<0.024	< 0.064	< 0.063	<0.13	<0.025	0.029 J	<0.028					220
		•			•	•							•						•		

ppmv = parts per million by volume

%v = percent volume

TPH = total petroleum hydrocarbons

< = not detected above the method detection limit

- -- = sample not collected per *RD Work Plan Sampling and Analytical Plan* (AECOM 2018)

 J = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.

 Only detected compounds are presented. For a complete list of compounds that are analyzed for by EPA TO-15M, please refer to Attachment 4.
- *Elevated due to higher throughput of hydrocarbons for thermal oxidation during deep soil testing and influence from influent concentrations during lab sample collection.

 **Initial deep constant rate test system influent vapor sample collected on 4/9 was anomalous as it is not consistent with the SVE-1B well head vapor sample.

TABLE 4
SHALLOW ZONE STEP TEST – WELLHEAD AND SYSTEM READINGS
Soil Vapor Extraction Pilot Test Report
Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

															System Dilution			Sys	stem Influent Da	ata			System Effluent
Date	Time	Elapsed Time (hour)	Temp (°F)	Flow Rate (scfm)	Vacuum	Applied Vacuum (in. wc)	PID VOC Readings (ppmv)	FID (ppmv) w methane	FID (ppmv) w/o methane				RH (%)	Lab Sample Collected	Percent Open (%)	Temp (°F)	Flow Rate (scfm)	Applied Vacuum (in. Hg)	Horiba VOC Readings (ppmv)	CO (%)	CO ₂ (%)	Lab Sample Collected	Temp (°F)
Step 1			Average	3.4	4.1	56.1																	
4/2/2018	12:56	0		3.8	3.5	47.6	>15000	FO	FO				38.4	VSS01355	80	101	64	23.5	5	0	0.24	VSS01352	1503
4/2/2018	13:30	0.57		2.96	4.75	64.6	>15000	FO	FO				28.9		80	101	64.9	23	46	0	0.18		1506
Step 2			Average	5.9	6.0	81.6																	
4/2/2018	13:47	0		6.67	6.5	88.4	>15000	FO	FO				26.1	VSS01357	80	98	66.2	22	63	0	0.28	VSS01360	1517
4/2/2018	14:09	0.37		4.9	6.0	81.6	>15000	FO	FO				30.3		80	98	81.4	22	78	0	0.26		1521
4/2/2018	14:40	0.88		6.25	5.5	74.8	>15000	FO	FO				34.6		80	98	82.5	22	82	0	0.28		1530
Step 3			Average	7.4	12.0	163.1																	
4/2/2018	14:50	0		6.81	12.0	163.1	>15000	FO	FO				33.1	VSS01353	80	98	101	21.5	171	0	0.7	VSS01354	1531
4/2/2018	15:18	0.47	83	7.63	12.0	163.1	>15000	FO	FO	2.2	0	4.4	27.4		80	98	102.5	21.5	220	0	0.6		1554
4/2/2018	15:50	1	81	7.72	12.0	163.1	>15000	FO	FO	2.5	0.2	4.4	25.4		80	98	104.1	21.5	240	0	0.63		1564
Step 4			Average	9.8	17.2	234.3																	
4/2/2018	16:05	0	78.8	8.17	17.0	231.1							18.4		80	98	118	21.3	292	0	0.72	VSS01358	1577
4/2/2018	16:30	0.42	71.2	13.2	17.5	237.9	•		nigh system vacu x; Tedlar bag cou				20.8										
4/2/2018	16:57	0.87	68.3	7.99	17.2	233.8			, , , and in any ood				23.6	VSS01359	80	99	122.1	21.2	402	0	1.06	VSS01356	1593

RH: Relative Humidity
-- = readings inadvertently missed
°F = degrees Fahrenheit
scfm = standard cubic feet per minute
in. Hg = inches Mercury

in. wc = inches water column

ppmv = parts per million by volume FO = flame out due to insufficient oxygen

TABLE 5
SHALLOW ZONE STEP TEST VACUUM INFLUENCE
Soil Vapor Extraction Pilot Test Report
Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

		Average Well	Date Mea	ourod.		Vacı	uum (in wo	:)	
Step No.	SVE-1A Wellhead Vacuum (in wc)	Flow Rate	Date Mea	sureu	VM-1A*	VM-2A	VM-3A	VM-4A	VM-5A
	vacaam (m mo)	(scfm)	Distance fro	om SVE-1A	7'	10'	15'	20'	30'
			4/2/2018	12:54	0.00	0.13	0.00	0.00	0.00
1	56	3.4	4/2/2018	13:09	0.00	0.13	0.00	0.00	0.00
'	50	3.4	4/2/2018	13:24	0.00	0.13	0.00	0.00	0.00
			4/2/2018	13:39	0.00	0.10	0.00	0.00	0.06
			4/2/2018	13:54	0.00	0.18	0.00	0.00	0.00
2	82	5.9	4/2/2018	14:09	0.00	0.19	0.00	0.02	0.00
	02	5.9	4/2/2018	14:24	0.02	0.20	0.07	0.06	0.03
			4/2/2018	14:39	0.00	0.16	0.07	0.03	0.00
			4/2/2018	14:55	0.02	0.50	0.14	0.12	0.09
			4/2/2018	15:10	0.02	0.58	0.22	0.18	0.14
3	163	7.4	4/2/2018	15:25	0.00	0.50	0.17	0.12	0.10
			4/2/2018	15:40	0.03	0.54	0.18	0.14	0.11
			4/2/2018	15:55	0.02	0.54	0.16	0.13	0.10
			4/2/2018	16:10	0.01	0.78	0.32	0.23	0.18
4	234	9.8	4/2/2018	16:25	0.03	0.80	0.36	0.28	0.21
4	234	9.0	4/2/2018	16:40	0.06	0.94	0.44	0.34	0.34
			4/2/2018	16:55	0.04	0.94	0.42	0.32	0.31

in wc = inches of water column scfm = standard cubic feet per minute

^{*}anomalous vacuum response in VM-1A

TABLE 6
SHALLOW ZONE CONSTANT RATE TESTING SYSTEM READINGS
Soil Vapor Extraction Pilot Test Report
Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

					'' '' O ₀ GF										System Dilution Data			Sy	stem Influent Da	ata				System Efflu	ent Da	ta
Data	Time	Elapsed	Temp	Flow		• • •				O ₂	CH₄	CO ₂	RH	Lab	Danas and Omes and (0/1)	Temp	Flow	Applied	Horiba VOC	СО	CO2	Lab Sample	Temp	Horiba VOC	CO ₂	Lab
Date	Interval (hour)	Time (hour)	(°F)	Rate (scfm)	(in. Hg)	(in. wc)	(ppmv)	(ppmv) w methane	(ppmv) w/o methane	(%)	(%)	(%)	(%)	Sample Collected	Percent Open (%)	(°F)	Rate (scfm)	Vacuum (in. Hg)	Readings (ppmv)	(%)	(%)	Collected	(°F)	Readings (ppmv)	(%)	Sample Collected
Average		,,	71.0	10.9	12	164.8	>15000	FO	FO	3.0	1.0	9.7	34			102	100.7	21	372	0.0	1.3		1516	2	4.3	
4/3/18 7:50	0	0	60.6	9.47	12	163.1	>15000	FO	FO	2.3	0	4.7	43.2	2	80	98	72.1	20	129	0	0.66		1449	0		
4/3/18 9:16	1.43	1.43	75.1	6.9	11.5	156.3	>15000	FO	FO	3.2	0	5.1	28.9	VSS01361	80	100	84	20	269	0	0.7	VSS01363	1512	6	5.06	VSS01362
4/3/18 10:50	1.57	3.00	71.2	11.2	12	163.1	>15000	FO	FO	3.1	0	6.9	29.7	,	80	102	106.8	21	255	0	0.74		1531	2	4.14	
4/3/18 12:30	1.67	4.67	80.7	10.2	13.5	183.5	>15000	FO	FO	2.9	0	6.3	32.4		80	102	104.5	21	307	0	0.71		1527	5	4.04	
4/3/18 14:00	1.50	6.17	76.4	10.1	12	163.1	>15000	FO	FO	2.6	0.1	6.7	26.4		80	102	103.8	21	310	0	0.8		1531	6	4.12	
4/3/18 15:30	1.50	7.67	78.3	13.3	11.5	156.3	>15000	FO	FO	2.9	0	7.2	24.7	,	80	100	104.2	21	307	0	0.92		1532	7	4.16	
4/3/18 16:55	1.42	9.08	66.6	9.4	11	149.5	>15000	FO	FO	2.9	0.1	7	29.3	3	80	100	104.3	21	310	0	0.89		1532	5	4.14	
4/4/18 7:00	14.08	23.17	60.2	16.75	13	176.7	>15000	FO	FO	3.5	0.2	9.7	48		80	103	93.9	21	352	0	1.24		1565	4	4.3	
4/4/18 8:00	1.00	24.17	59.5	12.62	12	163.1	>15000	FO	FO	2.9	0.1	10	45		80	101	93.7	21	398	0	1.42		1474	2	4.16	
4/4/18 9:30	1.50	25.67	62.7	18.5	13	176.7	>15000	FO	FO	3	8.0	10	45.5	5	80	101	104.2	21	400	0	1.4		1463	3	4.08	
4/4/18 11:00	1.50	27.17	75	10.95	11.5	156.3	>15000	FO	FO	3.2	8.0	10	28.8	3	80	101	104.1	21	375	0	1.34		1460	4	4.2	
4/4/18 12:30	1.50	28.67	81	8.4	12.5	169.9	>15000	FO	FO	3.1	8.0	10	22.4		80	103	104.4	21	386	0	1.36		1471	3	4.1	
4/4/18 14:00	1.50	30.17	72.9	12.8	13	176.7	>15000	FO	FO	3	1.6	10	30.6	5	80	103	104.6	21	407	0	1.38		1474	5	4.12	
4/4/18 15:30	1.50	31.67	71.5	15.6	12	163.1	>15000	FO	FO	3.1	1.2	10	32.1		80	102	103.9	21	403	0	1.4		1476	3	4.18	
4/4/18 17:00	1.50	33.17	65.3	11.4	11.5	156.3	>15000	FO	FO	2.6	0.9	11	58.4		80	102	104.1	21	387	0	1.41		1472	3	4.2	
4/4/18 19:00	2.00	35.17	SVE un	it shutdo	own due to	high temp	of generator;	restarted at 745 o	on 4/5/18 after co																	
4/5/18 8:00	0.25	35.42	61.4	12.47	11.5	156.3	>15000	FO	FO	3.2	0.7	11	47.1		80	100	98.9	21	321	0	1.32		1474	0	4.54	
4/5/18 9:30	1.50	36.92	62.1	9.84	11	149.5	>15000	FO	FO	2.8	1.7	11	46.5	5	80	101	99.1	21	365	0	1.46		1559	0	4.56	
4/5/18 11:00	1.50	38.42	67.9	12.45	13	176.7	>15000	FO	FO	3	8.0	11	35		80	101	99.4	21	412	0	1.6		1588	0	4.68	
4/5/18 12:00	1.00	39.42												VSS01365								VSS01366				VSS01367
4/5/18 12:30	0.50	39.92	71.5	10.19	13	176.7	>15000	FO	FO	3.2	1.5	11	30.7	,	80	102	100.2	21	433	0	1.64		1602	0	4.68	
4/5/18 14:00	1.50	41.42	80.7	8.27	12.5	169.9	>15000	FO	FO	2.9	0.5	11	23.2		80	102	100.4	21	458	0	1.46		1487	0	4.24	
4/5/18 15:30	1.50	42.92	78	9.13	12.5	169.9	>15000	FO	FO	2.9	0.5	11	24.3	3	80	102	100.1	21	410	0	1.45		1468	0	4.12	
4/5/18 17:00	1.50	44.42	66	8.15	11	149.5	>15000	FO	FO	2.7	1	11	39.4		80	100	100.6	21	398	0	1.5		1530	0	4.34	
4/6/18 7:00	14.00	58.42	56.6	10.24	12	163.1	>15000	FO	FO	2.6	0.7	12	49.7	,	80	100	103.9	21	420	0	1.64		1529	1	4.42	
4/6/18 8:00	1.00	59.42	63.2	10.1	13	176.7	>15000	FO	FO	3.2		11	38.1		80	102	104.1	21	458	0	1.78		1536	0	4.54	
4/6/18 9:30	1.50	60.92	77.9	9.52	11.5	156.3	>15000	FO	FO	3.5		11	26		80	103	104.4	21	423	0	1.54		1537	0	4.38	
4/6/18 11:00	1.50	62.42	80.5	9.91	12	163.1	>15000	FO	FO	2.7	2.7	12	23.7	'	80	104	104.2	21	427	0	1.52		1539	0	4.38	
4/6/18 12:30	1.50	63.92	78.8	10.13	12.5	169.9	>15000	FO	FO	3.1	3.1	11	24.4		80	110	104.6	21	433	0	1.56		1542	0	4.32	
4/6/18 14:00	1.50	65.42	77.5	8.73	12	163.1	>15000	FO	FO	2.9	2.9	11	25.2	2	80	110	104.3	21	412	0	1.54		1544	0	4.31	
4/6/18 15:00	1.00	66.42	79.9	9.58	12	163.1	>15000	FO	FO	3.2	3.2	11	22.8	VSS01368	80	110	104.4	21	421	0	1.52	VSS01369	1547	0	4.29	VSS01370

RH: Relative Humidity

°F = degrees Fahrenheit
scfm = standard cubic feet per minute
in. Hg = inches Mercury
ppmv = parts per million by volume
FO = flame out due to insufficient oxygen

TABLE 7
SHALLOW ZONE CONSTANT RATE VACUUM INFLUENCE
Soil Vapor Extraction Pilot Test Report
Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

Date Measured	Time Interval	Elapsed Time	Applied Vacuum (in wc)		Vacuum I	nfluence (in wc)	
	(hours)	(hours)	SVE-1A	VM-1A	VM-2A	VM-3A	VM-4A	VM-5A
			Distance from SVE-1A	7'	10'	15'	20'	30'
4/3/18 7:00	0.00	0.00	163	0.00	0.19	0.17	0.14	0.20
4/3/18 11:21	3.52	3.52	163	0.00	0.75	0.41	0.29	0.28
4/3/18 16:00	4.65	8.17	150	0.17	0.75	0.36	0.26	0.26
4/4/18 7:10	15.17	23.33	163	0.00	1.00	0.56	0.44	0.44
4/4/18 16:45	9.58	32.92	156	0.31	0.83	0.42	0.30	0.26
Unit shutdown for 12	.75 hours from 4/4	1900 to 4/5 0745						
4/5/18 7:55	2.42	35.33	156	0.00	0.86	0.45	0.35	0.35
4/5/18 11:58	4.05	39.38	177	0.42	0.95	0.49	0.37	0.34
4/5/18 16:50	4.87	44.25	150	0.34	0.77	0.36	0.26	0.20
4/6/18 7:00	14.17	58.42	163	0.05	1.01	0.57	0.42	0.41
4/6/18 14:45	7.75	66.17	163	0.11	0.76	0.33	0.23	0.18

in wc = inches of water column

*anomalous vacuum response in VM-1A

TABLE 8 DEEP ZONE STEP TESTING SYSTEM READINGS Soil Vapor Extraction Pilot Test Report Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

						E	Extraction We	ell Field Data (SV	/E-1B)						System Dilution Data			System I	nfluent Data				System Effluent Data
Date	Time	Elapsed Time (hour)	Temp (°F)	Differential Pressure (In. WC) ¹	Flow Rate* (scfm)	Applied Vacuum (in. wc)	PID VOC Readings (ppmv)	FID (ppmv) w methane	FID (ppmv) w/o methane	O ₂ (%)	CH₄ (%)	CO ₂ (%)	RH (%)	Lab Sample Collected	Percent Open (%)	Temp (°F)	Flow Rate (scfm)	Applied Vacuum (in. Hg)	Horiba VOC Readings (ppmv)	CO (%)	CO ₂ (%)	Lab Sample Collected	Temp (°F)
Step 1			Average	0.9	67.6	26																	1
4/9/2018	825	0	75.8	0.9	68.7		>15000	FO	FO	0.3	0.2	15.7	33.5	VSS01372	60	100	81.2	14	1390	0	1.58	VSS01371	1629
4/9/2018	920	0.9	74.5	0.9	67.2		>15000	FO	FO	2.9	0.7	14.2	36		60	110	81.4	14	1788	0	1.51		1520
4/9/2018	950	1.4	75.5	0.9	66.8	26	>15001	FO	FO	2.5	2.5	13.5	35.4		60	120	81.6	14	1907	0	1.47		1492
Step 2			Average	2.3	104	35																	
4/9/2018	1005	0	80.2	2.25	102		>15000	FO	FO	0.4	1.8	15.2	31.3	VSS01374	60	120	101.3	11	2120	0	1.26	VSS01373	1549
4/9/2018	1035	0.5	80.5	2.3	101	35	>15000	FO	FO	0.5	3.1	14.9	30.9		60	120	101.2	11	2350	0	1.22		1614
4/9/2018	1105	1	92.6	2.3	110		>15000	FO	FO	0.5	4	14.7	10.8		60	120	102.1	11	2480	0	1.22		1525
Step 3			Average	2.4	110	44																	
4/9/2018	1220	0	98.8	2.4	109	43	>15000	FO	FO	0.7	5	14.4	11.3	VSS01376	60	120	100.5	11	2470	0	1.22	VSS01375	1576
4/9/2018	1245	0.4	96.1	2.4	111	44	>15000	FO	FO	0.6	5.8	14.3	9.4		60	130	100.9	11	2540	0	1.22		1472
Step 4			Average	3.6	132	57							•								•		
4/9/2018	1315	0	100.7	3.8	138	65	>15000	FO	FO	0.1	6.9	14.2	3.3	VSS01378	60	130	129.2	6	2500	0	1.32	VSS01377	1599
4/9/2018	1320	0.1				55																	
4/9/2018	1345	0.5	99.1	3.5	131	54	>15000	FO	FO	0.1	3.8	14.6	9.5		60	130	130.1	6	2370	0	1.32		1515
4/9/2018	1415	1	92.6	3.4	126	55	>15000	FO	FO	0.6	3.3	14.3	25	VSS01380	60	130	130.4	6	2250	0	1.34	VSS01379	1540

1) Flow rate will be calculated using differential pressure

*High wellhead flowrates measured by the VelociCalc during the deep soil pilot test were likely overestimated by approximately 75 percent based on a mass balance with benzene and ethylbenzene concentrations (Attachment 6).

RH: Relative Humidity

°F = degrees Fahrenheit scfm = standard cubic feet per minute in. Hg = inches Mercury

-- = readings inadvertently missed

ppmv = parts per million by volume FO = flame out due to insufficient oxygen

TABLE 9 DEEP ZONE STEP TEST VACUUM INFLUENCE

Soil Vapor Extraction Pilot Test Report Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

		Average Well	Date Mea	ourod		Vacı	ıum (in wo	;)	
Step No.	SVE-1B Wellhead Vacuum (in wc)	Flow Rate	Date Mea	surea	VM-1B	VM-2B	VM-3B	VM-4B	VM-5B
	rasaam (m ws)	(scfm)	Distance fro	om SVE-1B	15'	22'	27'	38'	50'
			4/9/2018	8:35	3.27	2.50	2.26	1.70	1.32
			4/9/2018	9:15	3.24	2.50	2.21	1.67	1.30
1	26	68	4/9/2018	9:36	3.52	2.81	2.39	1.90	1.54
			4/9/2018	9:46	3.56	2.84	2.43	1.94	1.57
			4/9/2018	10:00	3.58	2.87	2.46	1.97	1.59
			4/9/2018	10:15	5.17	4.08	3.56	2.78	2.21
2	35	104	4/9/2018	10:30	5.35	4.26	3.65	2.92	2.35
	35	104	4/9/2018	10:45	5.39	4.32	3.69	2.98	2.42
			4/9/2018	11:00	5.33	4.31	3.65	2.98	2.41
			4/9/2018	12:20	4.73	5.39	3.28	2.45	1.89
3	44	110	4/9/2018	12:35	5.21	4.15	3.57	2.82	2.25
3	44	110	4/9/2018	12:50	5.30	4.22	3.64	2.91	2.35
			4/9/2018	13:05	5.30	4.24	3.64	2.89	2.32
			4/9/2018	13:20	6.29	5.03	4.26	3.34	2.66
4	57	132	4/9/2018	13:35	6.22	4.94	4.26	3.35	2.66
4	37	132	4/9/2018	13:50	6.29	5.01	4.33	3.43	2.76
			4/9/2018	14:15	6.35	5.08	4.34	3.48	2.81

Notes:

in wc = inches of water column

*High wellhead flowrates measured by the VelociCalc during the deep soil pilot test were likely overestimated by approximately 75 percent based on a mass balance with benzene and ethylbenzene concentrations (Attachment 6).

TABLE 10
DEEP ZONE CONSTANT RATE TESTING SYSTEM READINGS
Soil Vapor Extraction Pilot Test Report
Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

							Extraction	n Well Field Da	ta (SVE-1B)					System Dilution Data				System Influen	t Data				S	ystem Effluent	t Data
	Time Interval	Elapsed Time	Temp (°F)	Differential Pressure	Flow Rate*	Applied Vacuum	PID VOC Readings	FID (ppmv)	FID (ppmv)	1 - 1	CH₄ (%)		Lab Sample Collected	Percent Open (%)	Temp (°F)	Flow Rate	Applied Vacuum	Horiba VOC Readings	O ₂ (%)	CH₄ (%)	CO ₂ (%)	Lab Sample Collected	Temp (°F)	Horiba VOC Readings	Lab Sample Collected
	(hour)	(hour)	77.7	(In. WC) ¹ 3.4	(scfm) 128	(in. wc) 53	(ppmv) >15000	w methane FO	w/o methane FO	4.7	4.5	13.5 27.3			122	(scfm) 116.7	(in. Hg) 5	(ppmv) 2,000		3.4	7.0		1552	(ppmv) 0	
4/9/18 14:45	0	Average 0	89.9	3.4	124	55 55	>15000	FO	FO	+		11.7 25.1		60	130	102.1	6	2,230	_	2.9	7.0		1466	1	
4/9/18 16:15	1.5	1.5	91.1	3.4	125	55	>15000	FO	FO			14.1 18.1	VSS01381	60	130	102.1	6	2,230	19.9		8.5	VSS01382	1542	1 1	VSS01383
4/9/18 17:25	1.17	2.7	83.9	3.4	125	55	>15000	FO	FO			14.6 23.8	V3301361	60	130	102.4	6	2,190		2.0	6.2	V3301362	1532	1	V3301363
4/9/18 17:25	2.58			shutdown due i	1		>13000	FO	FO	1.2	3.5	14.0 23.0		00	130	102.3	U	2,140	12.3	2.0	0.2		1552	1	
	11.00			restarted	o nigri ten	преташте																			
4/10/18 7:30	0.50	5.8	63.9	restarted	113	56	>15000	FO	FO	2.1	13	14.9 63.4		60	120	129.4	6	1,945	11.0	1.1	7.9		1471	0	
4/10/18 9:20	1.83	7.6	74.8		130	55	>15000	FO	FO			14.6 42.9		60	130	138.6	6	2,280		2.7	7.8		1574	0	
4/10/18 10:50	1.50	9.1	85.6		155	55	>15000	FO	FO			14.7 20.9		60	138	128.3	6	2,310		3.6	7.5		1604	0	
4/10/18 11:50	1.00	10.1	89.5		161	55	>15000	FO	FO			14.7 20.9		60	138	129.2	6	2,230		4.9	7.5		1611	0	
4/10/18 13:00	1.17	11.3		tched from 3-nl				e to fluctuating			0.7	14.5 20.0		00	130	123.2	0	2,230	10.0	7.5	7.5		1011	<u> </u>	
4/10/18 13:10	0.17	11.4	OTHE OW	torica morn o pr	lade to sin	52	>15000	FO	FO																
4/10/18 13:20	0.17	11.6	95.4		158	52	>15000	FO	FO	2.3	4 8	14.1 16.5		60	140	115.4	6	2,280	10.2	3.5	7.9		1534	3	
4/10/18 14:50	0.11	11.0	00.1		100	02	7 10000	. 0	. 0	2.0	1.0	1111 10.0			120	101.5	8	3,190	10.2	0.0	7.0		1512	0	
4/10/18 15:07	1.78	13.4	84.5		138	54	>15000	FO	FO	2.8	6.1	14 22.2		60	120	116.9	5	2,440	19.9	2.2	8.5		1744	0	
4/10/18 16:20	1.22	14.6	83.3		140	52	>15000	FO	FO			14.7 17.6		60	120	117.3	5	2,140		3.2	6.5		1495	0	
4/10/18 17:30	1.17	15.8	85.5		135	52	>15000	FO	FO			13.7 15.9		60	120	118.2	5	2,160	11.1		7.5		1522	0	
4/11/18 7:25	13.92	29.7	62.5		108	52	>15000	FO	FO			14.6 67.3		60	120	116.1	5	1,779	_	2.1	7.0		1590	0	
4/11/18 9:00	1.58	31.3	70.6		117	52	>15000	FO	FO		5	14 50.4		60	120	115.4	5	2,010		5.2	7.3		1590	0	
4/11/18 10:30	1.50	32.75	75.7		130	52	>15000	FO	FO		9.2		VSS01384	60	120	116.2	5	2,060		5.6	7.0	VSS01385	1517	0	VSS01386
4/11/18 12:00	1.50	34.3	79.3		135	52	>15000	FO	FO		6.8	+ + + + + + + + + + + + + + + + + + + +		60	120	116.1	5	2,020		4.8	6.6		1589	0	
4/11/18 13:00	1.00	35.3				52	>15000	FO	FO			13.9		60	120	116.3	5	2,010		5.3	6.6		1475	0	
4/11/18 14:30	1.50	36.8	83.9		137	52	>15000	FO	FO			13.8 21.7		60	120	116.4	5	2,070		5.8	6.6		1584	0	
4/11/18 16:00	1.50	38.3	76.8		127	52	>15000	FO	FO			13.7 44.2		60	120	116.3	5	1,934	13.2		6.3		1590	0	
4/11/18 17:15	1.25	39.5	76.6		122	52	>15000	FO	FO	7.2	5.4	13.2 40.8		60	120	116.0	5	1,902	21.2		8.2		1586	0	
4/12/18 7:10	13.92	53.42	60.0		107	52	>15000	FO	FO	6.1	0.6	13.6 60.8		60	110	116.5	5	1,658	13.7	0.9	6.6		1579	0	
4/12/18 8:30	1.33	54.75	67.5		107	52	>15000	FO	FO	6.0	2.1	13.4 32.7		60	120	116.4	5	1,766	13.5	2.5	6.5		1574	0	
4/12/18 10:00	1.50	56.3	80.5		121	52	>15000	FO	FO	5.5	5.0	13.7 11.1	VSS01387	60	120	116.1	5	1,779		3.8	6.8	VSS01388	1572	0	VSS01389
4/12/18 11:30	1.50	57.75	77.8		125	52	>15000	FO	FO	6.2	6.2	13.0 15.9		60	120	116.6	5	1,798	13.6	5.5	6.3		1574	0	
4/12/18 13:00	1.50	59.25	83.4		128	52	>15000	FO	FO	6.2	11.5	12.7 17.7		60	120	117.0	5	1,785	13.4	9.1	6.2		1544	0	
4/12/18 14:30	1.50	60.8	80.6		125	52	>15000	FO	FO	6.7	7.6	12.4 19.8		60	120	116.2	5	1,808	13.3	3.2	6.5		1593	0	
4/12/18 16:00	1.50	62.25	82.1		130	52	>15000	FO	FO	6.3	1.8	13.1 18.2		60	120	116.1	5	1,859	12.3	4.5	7.6		1451	0	
4/12/18 17:30	1.50	63.75	82.0		132	52	>15000	FO	FO	7.4	1.5	12.2 17.0		60	120	116.2	5	1,851	12.5	2.5	7.5		1506	0	
4/13/18 7:00	13.50	77.25	52.4		101	52	>15000	FO	FO	7.4	1.0	12.7 30.7		60	110	116.4	5	1,543	14.9	0.9	5.8		1531	0	
4/13/18 8:00	1.00	78.25	64.2		106	52	>15000	FO	FO	7.2	5.0	12.5 21.6		60	110	116.4	5	1,676	13.9	1.8	6.4		1531	0	
4/13/18 9:00	1.00	79.25	67.0		119	52	>15000	FO	FO	7.1	1.8	12.7 16.7		60	110	118.2	5	1,688	13.8	2.9	6.4		1542	0	
4/13/18 10:00	1.00	80.25	77.4		132	52	>15000	FO	FO	6.4	3.2	13.0 7.5		60	120	118.1	5	1,798	13.5	3.0	6.2		1541	0	
4/13/18 11:00	1.00	81.25	79.3		134	52	>15000	FO	FO	6.9	4.1	12.6 5.7		60	120	118.2	5	1,832	14.5	2.5	5.6		1545	0	
4/13/18 11:45	0.75	82.00											VSS01390									VSS01392			VSS01391
4/13/18 12:00	0.25	82.25	80.8		140	52	>15000	FO	FO	6.8	3.7	12.6 5.6		60	120	118.1	5	1,845	13.8	1.2	6.3		1545	0	

*High wellhead flowrates measured by the VelociCalc during the deep soil pilot test were likely overestimated. Based on a mass balance with benzene and ethylbenzene concentrations (Attachment 6), the deep zone flow rates likely ranged between 40 and 79 scfm.

RH: Relative Humidity

°F = degrees Fahrenheit

scfm = standard cubic feet per minute

in. Hg = inches Mercury

ppmv = parts per million by volume

FO = flame out due to insufficient oxygen

¹⁾ Flow rate will be calculated using differential pressure

TABLE 11 DEEP ZONE CONSTANT RATE VACUUM INFLUENCE Soil Vapor Extraction Pilot Test Report Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

Date Measured	Time Interval	Elapsed Time	Applied Vacuum (in wc)					Vac	uum (in wo	;)					Notes
	(hours)	(hours)	SVE-1B	VM-1A	VM-2A	VM-3A	VM-4A	VM-5A	SVE-1A	VM-1B	VM-2B	VM-3B	VM-4B	VM-5B	
			Distance from SVE-1B	19'	32'	36'	19'	43'	24'	15'	22'	27'	38'	50'	
4/9/18 14:45	0.00	0.00	54					-		6.42	5.15	4.42	3.58	2.91	
4/9/18 16:15	1.50	1.50	54							6.40	5.11	4.37	3.52	2.85	
4/9/18 17:30	1.25	2.75	55			-		-		6.52	5.21	4.46	3.56	2.97	
Unit shutdown for 11	hours from 2000 o	n 4/9 to 700 on 4/	10												
4/10/18 7:55	3.42	6.17	55			-		1		6.65	5.32	4.55	3.72	3.02	
4/10/18 11:00	3.08	9.25	55	0.00	3.92	3.87	5.59	3.50	4.50	6.69	5.36	4.58	3.78	3.10	
4/10/18 17:00	6.00	15.25	52					1		6.23	5.00	4.24	3.47	2.81	
4/11/18 6:45	13.75	29.00	52					-				4.31			
4/11/18 8:40	1.92	30.92	52							6.35	5.12		3.60	2.96	
4/11/18 14:30	5.83	36.75	52	0.00	3.41	3.38	5.04	2.97	3.98	6.08	4.85	4.10	3.32	2.66	
4/11/18 16:30	2.00	38.75	52							6.12	4.89	4.15	3.35	2.71	
4/12/18 6:45	14.25	53.00	52					-				4.29			
4/12/18 7:45	1.00	54.00	52							6.35	5.08		3.59	2.94	
4/12/18 10:10	2.42	56.42	52							6.29	5.05		3.60	2.92	manometer readings
4/12/18 10:10	0.00	56.42	52					-		6.20	5.00		3.60	2.90	magnehelic readings
4/12/18 17:00	6.83	63.25	52	4.06	3.30	3.06	5.09	3.01		6.12	5.00	4.16	3.37	2.73	
4/13/18 7:00	14.00	77.25	52							6.18	4.97	4.22	3.42	2.81	Vacuum measurement collected at MW- 21 approximately 200 feet from SVE- 1B; 1.17 in wc
4/13/18 11:40	4.67	81.92	52	4.18	3.16	3.21	5.10	2.76	2.72	6.10	4.81	4.02	3.74	2.06	

Notes:

in wc = inches of water column

-- = data not collected

TABLE 12
DIOXIN/FURAN SVE EMISSIONS SAMPLING RESULTS
Soil Vapor Extraction Pilot Test Report
Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

Shallo	w Outdoor	Soil Pilot T	est (SVE-1	A)	
Parameter	Unit	Run 1	Run 2	Run 3	Average
Run Duration	hr	4	4	4	
End Date	m/d/yr	4/4/18	4/5/18	4/6/18	
End Time	hr:min	12:10	12:41	11:29	
Total PCDDs/PCDFs	ng/dscm	0.138	0.73	0.0588	0.309
Total FCDDs/FCDFs	lbs/hr	5.15E-11	2.56E-10	2.04E-11	1.09E-10
Flow Rate	dscfm	100	93.7	92.8	95.5

D	eep Soil F	Pilot Test (S	VE-1B)		
Parameter	Unit	Run 1	Run 2	Run 3	Average
Run Duration	hr	4	4	4	
End Date	m/d/yr	4/11/18	4/12/18	4/13/18	
End Time	hr:min	10:02	11:34	11:36	
Total PCDDs/PCDFs	ng/dscm	0.0359	0.013	0.0128	0.0206
Total FCDDs/FCDFs	lbs/hr	1.74E-11	6.34E-12	6.24E-12	9.99E-12
Flow Rate	dscfm	129	152	151	144

PCDDs - Polychlorinated dibenzo-P-dioxins

PCDFs - Polychlorinated dibenzofurans

ng/dscm - nanograms per dry standard cubic meter

TABLE 13 DIOXIN/FURAN BACKGROUND/AMBIENT AIR SAMPLING RESULTS Soil Vapor Extraction Pilot Test Report Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

Parameter	Unit	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7
Run Duration	hr	24	24	24	24	24	24
End Date	m/d/yr	4/5/18	4/6/18	4/10/18	4/11/18	4/12/18	4/13/18
End Time	hr:min	11:35	11:45	10:25	10:35	10:40	10:45
Total PCDDs/PCDFs	ng/m3	8.59E-04	6.91E-05	1.43E-04	1.56E-03*	1.02E-03	1.10E-03

Notes

PCDDs - Polychlorinated dibenzodioxins

PCDFs - Polychlorinated dibenzofurans

ng/m3 - nanograms per cubic meter

*Concentration may be biased high (see explanation in Section 6 of AKI's Report, Attachment 3)

Run 1 deemed invalid by AKI, so not included in results.

ATTACHMENTS

ATTACHMENT 1 Well Construction Diagrams

DEPTH	CASING				WELL CONSTRUC	וע אטוו.	AUKAM				
			Location ID VW I	L0011	(WELLED: SVE - 1A)	Date Ground Leve	5/24/20 al Elevation	17			
			Geologist Z.S	HORE	C.ECKERT	Top of Casir	ng Elevation				
· ·					SUMMARY		CONSTRUCTION	ON TI	ME LC	G	_
	GROUT		Total Depth	16.01	BGS		TASK	DATE	TIME	DATE	TI
			Pilot Barehole Diame	71/4	1)	Drilling					
			Reamed Diameter	N/A				5/24	0800	5/24	08
			Casing Stick-Up Heig	ght		Casing		Slav	ė.	-1.1	
0			Drilling Co/Driller	eiling	BRANDON MAPLE			774	08 50	Spy	08
			1019			Filter Pack		3/24	0855	5/24	9
			Bit(s) 7" 0	D COP	250 SONIC EBAPREL	Well	VITE SEAL	<u> </u>	8700		09
			Dulling Fluid	J/A		FZUSH Completion	MOUNT BOX	5/21	1045	5/24	110
DENT	TONITE		WEI	LL DESIGN	& SPECIFICATIONS		СОМ	MENTS	5		
			0 7 6 0	7 15 16 6	STRING(S) 2" BLANK SCH, 40 PV 2" SLOTTED O. DEO" SH. 40 #2/12 MONTEREY SAI BENTOUTE CHIPS	PU PLEX	SOID BAGS	SANT	さいて	E	
6.0		And the second s	Protective Casing	N/A					32.01		
1.0			Casing 2"	5cH. 40	PVC						
			Screen 0.02	0°5605			LOCATION	N DIAC	GRAM		
	SAND		Filter Pack CEN	MONTER	PIS LUSTEE' SAND ENVIROPLUGT	COXE	EAST EMP PARKING L. 13 12 VANLOOII	LOUT 6	· 20		1
1		7	Grout	um Ctli	P5		19 19 1	5			•

mples/102-036A	CASING	WELL CONSTRUCTION	ON DIAGRAM
T\Ladd\BoringLogSamples\102-036A		Location ID VWL-0012 (WEN ID: VM-1A Easting Northing	Date 5/25/2017 Ground Level Elevation Top of Casing Elevation
		P.SHORE C. ECKERT BORING SUMMARY	CONSTRUCTION TIME LOG
-	GROUT	Total Depth 16.01 BGS	TASK DATE TIME DATE TIME
		Pilot Borehole Diameter 71/4"	Drilling 5/25 1320 5/25 1330
•		Reamed Diameter ~/ A	
0		Casing Stick-Up Height Drilling Ca/Driller	Casing \$\frac{1}{2}\$ 1330 5\frac{1}{2}\$ 1335
		GREED DRILLING / BRANDON MAPLE RIG FRASTE XLMAX 250 SONIC Bit(s) 7'OD COPEBNATE	Filter Pack Placement 5/25/335 5/25/340 BENTONIESEAL 5/25/340 5/25/345
		Drilling Fluid N/A	Well FLUSH MONT BOX S/ZS 500 5/Z5 520 Completion 3/Z5 520
		WELL DESIGN & SPECIFICATIONS	Completion S/25/520
BEN	TONITE	DEPTH STRING(S) O 7 2"BLANK SCH.46 PVL 7 15 2"SIDTHED DORGS SCH 40 PKC 6 16 #2/12 MONTEREY SAND O 6 BENTONITE SEAL	5x5016 BACK SAND 2x5016 BACK BENTONITE
6.0		Protective Casing W/A	
7.0		Casing 2" SCHEDLE 40 PVC	
	SAND =	Scieen 0.020" SLOTTED Z"SUH. 40 PVC	EASTELL PLOYER PARK NG LAT
		Filter Pack CEMEX 'LAPIS LUSTRE' # 2/12 MONTEREY SAND Bentonite WYDBEN GUNROPLYER	COXE BIDG 13 VALOCIZ 11 18 17
15.0		Grout N/A	14 14 15

umples/102-036A	CASING	WELL CONSTRUCTION	ON DIAGRAM
T\Ladd\BoringLogSamples\102-036A		Location ID VWLOOIS (WELL ID: VM-2A) Easting Northing Geologist P. SHORE C. ECKERT	Date 5/25/2017 Ground Level Elevation Top of Casing Elevation
		BORING SUMMARY	CONSTRUCTION TIME LOG
-	-GROUT	Total Depth	TASK DATE TIME DATE TIME
		Pilot Borehole Diameter 714"	Drilling 5/25 1435 5/25 1445
		Reamed Diameter ~ / A	
0		Osing Stick-Up Height Drilling Co/Driller Security To an analysis of the security of the sec	Casing 5/25 1445 5/25 1450
		GREG DRILLING PRANDON MAPLE RIG FRASTE XLMAX 250 SONIC BII(s) 7" OD COREPARREL	Filter Pack Placement 5/25 1450 5/25 1455 BENTONITE SEAL 5/25 1455 5/25 1500
		Dulling Fluid	Well FLICH MONT ROX 5/25 500 5/25 520 (Completion 5/25 520)
		WELL DESIGN & SPECIFICATIONS	Completion S/25 520
\$.0 7.0	TONITE When the property of t	6 16 #2/12 MONTEREY SAND O 6 BENTONTE SEAL Protective Casing N/A	SXSOID RAGIS BENTONITE
	SAND	Casing 2 2"SCHEDULE 40 PVC Screen 0.020" SLO FFED 2"SCH. 40 PVC Filter Pack CEMEX 'LAPIS LUSTRE' #2/12 MONTEREY SAND Bentonite WYO-BEN ENVIROPLY GAMEDIUM CHIPS	LOCATION DIAGRAM LOCATION DIAGRAM 16.21 EAST EMPLOYER VWLODI3 PARK.NBLOT 12 11 18 17 14 19 15
15.0		Grout N/A	

HT43D	CASING	WELL CONSTRUCTION	ON DIAGRAM
TXLadd\BoringLogSamples\102-036A		Location ID WELLTD: VM-3A) Easting Northing Geologist	Dote 5/25/2017 Ground Level Elevation Top of Casing Elevation
		Geologist P. SHORE / C. ECKERT BORING SUMMARY	CONSTRUCTION TIME LOG
	GROUT	Total Depth 16.0' BGS	TASK DATE TIME DATE TIME
		Pilot Borehole Diameter 714"	Drilling 5/25 1350 5/25 1355
		Reamed Diameter W/Ab	
-		Casing Stick-Up Height Drilling Ca/Driller	Casing 5/25 1355 5/25 1400
		Drilling Co/Driller GREGG DRILLING / BRANDON MARTE Rig FRASTE XLMAX 250 SONIL Bit(s) 7"OD CONEBARREL	Filter Pack Placement 5/25 1400 5/25 1405 BENTONITES SAL 5/25 1405 5/25 1410
		Bir(s) 7"OD CONERNEDEL	Well SA S728 1415
		Drilling Fluid ~ / \lambda	FLISH MANT BOX 5/25 1430 Completion 5/25 1430
DEN	TONITE	WELL DESIGN & SPECIFICATIONS	COMMENTS
DLI		DEPTH STRING(S) O 7 2"SULLO PVC BLANK 7 15 2"SLOFFED D.OZO" SULLO PVC 6 16 #2/IZMONTERELY SAND O 6 BENTONIE SEAL	5 x SO 1 b BAGS BENTONITE
6.0	The second secon	Protective Casing N/A	
		Casing 2" SCHEPULE 40 PVC	LOCATION DIAGRAM
		Screen 0.020" SLOTTED Z" SCHI. 40 PVC	
	SAND	Filter Pack CEMEX LAPIS LUSTRE" #2/12 MONTEREY SAM	COXE 13 12 17 N
		Bentonite WYO-BEN ENVIRUPLUCE MEDIUM CHIPS	WLOOILY IS
15.0		Grout N A	

HT430	CASING			WELL CONSTRUCTION	ON DIAGRAM				
T\Ladd\BoringLogSamples\102-036A		Location ID VWL Easting Geologist	0015	(WELL ID: VM-4A Northing	Date 5/24/2017 Ground Level Elevation Top of Casing Elevation	ł			
		72.SH		ECKERT	-	1			
			BORING	SUMMARY	CONSTRUCTION	ON TIA	VE TO	G	
+	GROUT	Total Depth			TASK	DATE	TIME	DATE	TIME
		Pilot Borehole Diam	eter 71/k	(1)	Drilling	5/24	1600	5/24	1615
		Reamed Diameter	eter 71h	4					
		Casing Stick-Up Hei	ght — O		Casing	5/24	IKIS	5/24	1470
0		Drilling Co/Driller CRECE DR Rig	21LING	BRANDON MAPLE					1520
		FRASTE	XL MA	x 250 SONIC	Filter Pack Placement	Spy	620	5/24	1625
		Bit(s)	00 (0	x 250 SONIC REBARREL	BENTONITE SEAL Well	5/24	1622	5/24	1630
		6 300 FL - 1	N/A		FLISH MOWT BOX Completion	shy	1430	\$724 ebu	HOU
				& SPECIFICATIONS		MENTS		74	FACE
BENT	TONITE		PTH	STRING(S)					
		0	7	2" RLANC SOH. 40 PVC	5×5016 BAGS S				
		7	15	2 SLOTTED OLDEO" SUI. 40 PYC #2/12 MONTEREY SAND		BENT	DIVIT	E	
		0	6	BENTONITE SEAL					
			`						
6.0		Protective Casing					<u> </u>		
7.0		1 Internae cannin	-N/A	-					
		Casing 2115	CHEDIE	= 40 PVC					_
		Srigan A +	s" SLOTTE	<u> </u>	LOCATIO	N DIAG	RAM		
			4.40 PI				7		
	SAND =	1		PIS LUSTRE'	EAST EN PARKIN	APLOJE	€ ⋶		ß
		#2/	12 MONTE	erey Sand	COVETA PARKIN	6 LC	> 1		N
		1	O-BEN DIUM C	ENVIROPLUG	11	Line			
15.0		Grout		חור 2	La colt	9 -001	5		
16.0		N	/A		2 1			1/4	

nples/102-036A	CASING	WELL CONSTRUCTION	ON DIAGRAM
TVLadd\BoringLogSamples\102-036A		Location ID VWL 0016 (WALED: VM-5A) Easting Northing	Date S/24/2017 Ground Level Elevation
17.		Geologist P. SHORE C. ECKERT	Top of Casing Elevation
		BORING SUMMARY	CONSTRUCTION TIME LOG
	GROUT	Total Depth 16.0' BGS	TASK DATE TIME DATE TIME
		Pilot Borehole Diameter	Drilling 5/24 1150 5/24 1200
		Reamed Diameter ~ ~ ~ ~ ~ ~ ~	
		Cosing Stick-Up Height Drilling Ca/Driller	Casing 5/14 1200 5/24 1705
0		GRAGE DELLING READON MAPLE	Filter Pack Placement
		FRASTE XLMAX 250 SONIC Bit(s) 7" OD COREBARREL	Filter Pack Placement
		Drilling Fluid N/A	Fust Man BOX 5/24 1630 5/24 1700 Completion 5/24/1700
		WELL DESIGN & SPECIFICATIONS	COMMENTS
DEN	TONITE	DEPTH STRING(S) O 7 2" BLANK 5"" 40 PVC. 7 15 2"STOTTEP O.DZC" 5" 40 PVC. 6 16 #2/12 MONTER EY 5 APT. O 6 BENJONTE SEAL	ZX SO IBBAGS BENTONITE
6.0		Protective Casing	
7.0		N/A	
		Casing 2" SCHEDUE 40 PVC	
:		Scien 0.020" SLOTTED 2" 564.40 PVC	LOCATION DIAGRAM
	SAND =	Filter Pack CEMEX 'LAPIS LUSTOF' #2/12 MONTERFY SAND	MOOIS N
		Bentonite EMO-BEN ENVIROPWE	ENST ENPLOYEE PHEK: NG LOT
15.0		Grout N (A	

umples/102-036A	DEPTH	CASIN	(G	WELL CONSTRUCTION	ON DIAGRAM		~		
T\Ladd\BoringLogSamples\102-036A				Location ID VWLOOT (WOLID: SYE-1B) Easting Realing	Date 5/24/2017 Ground Level Elevation Top of Casing Elevation				
				Geologist P.SHOOE / C.ECKERT					
				BORING SUMMARY	CONSTRUCTION	N TIN	VE FO	G	
		GRÓUT		Total Depth 43.0' BGS	TASK	DATE	TIME	DATE	TIME
				Pilot Borehole Diameter 7 1/4"	Drilling	5/24	0915	5/21	1000
				Reamed Diameter					
				Casing Stick-Up Height	Casing	-1	505	a 1	
+	ð			Drilling Co/Driller GREGG DRILLING / BRANDON MAPLE	Cusing	S/ZH I	1003	5/14	1010
				Drilling Co/Driller GREEGE DELLING / BRANDON MAPLE Rig FRASTE XLMAX 250 SONIC Bit(s) 7"OD COREBARAGE		5/24			
				7"OD COREBARREL	BENTONITE SEAL Well				
				Drilling Fluid	Completion BOX	5/24	1045	5/24	1100
				WELL DESIGN & SPECIFICATIONS	COMA	AENTS	500		
 	18 2	TONITE		DEPTH STRING(S) 0 20 2' BLANK SCH 40 PVC 20 42 2"SLOTTEN 0.020" SCH 40 PVC 18.5 43 #2/12 MONTEACY SAND 0 18.5 BENTONITE CHIPS Protective Casing				NE .	
•	20.0			N/A					
	:			Casing 2" SCHEDUE 40 PVC					
	:			Screen 0.020 STOTTED	LOCATION	I DIAG	IRAM		
ı		SAND		2" SCH. 40 PVC					
				Filter Pack CEMEX 'LAPIS LUSTRE' #2/12 MONTEREY SAND	EAST EMAL PARKING LO	04EE			1N
				Bentonite WYO-BEN ENVIROPLUG MEDIUM CHIPS	11 18	F VWL00	17		\'
	43.0			Grout ~/4	14 19 15			<u> </u>	

mples/102-036A	CASING	WELL CONSTRUCTION	ON DIAGRAM
NLadd\BoringLogSamples\102-036A		Location ID VWLOOLS (WELLID: VM-1B) Easting Northing	Date 5/25/2017 Ground Level Elevation
7		Geologist P. SHORE C. ECKERT	Top of Casing Elevation
		BORING SUMMARY	CONSTRUCTION TIME LOG
	ĠŔĠŰŤ	Total Depth 43.0' BGS	TASK DATE TIME DATE TIME
•		Pilot Borehole Diameter 714"	Drilling 5/25 1055 5/25 1150
		Reamed Diameter ~/~	
		Casing Stick-Up Height	Casing \$/25 (150 \$/25) 155
-		Drilling Co/Driller GREES DRILLING/ BRANDON MAPLE Rin	
		Bit(s) 7" OD COREBARREL	Filter Pack Placement 5/25 1155 5/25 1205 BENTONITE STAL 5/15 1205 5/25 1215
		7" OD COREBARREL	Well
		Dulling Fluid WA	FLUCH LOVU T BOX 5/25 500 5/25 520 Completion 5/25 520
DEN	ITONITE	WELL DESIGN & SPECIFICATIONS	COMMENTS
DEN	ITONITE	DEPTH STRING(S) O 20 2"BLANK SCHUO PVL	INVENIL RACE SALE
		0 20 2 BLANK SCHUO PVL 20 42 Z°SIDNED O.020'SCHUO PVL 18.5 43 #2/12 MENTEREY FAND 0 18.5 BENTONITE SEAL	6 x SOIL BAGS SAND
18.5			
20.6		Protective Casing	
20.0		Casing Z"SCHEDULE 40 PVC	
		Screen 0.020 SLOTTED	LOCATION DIAGRAM
	SAND =	2"501.40 PVC	TEAST EMPLOYEE
	JANU =	Filter Pack CEMEX 'LAPIS WSTRE'	PARKINGLOT . 20
		#2/12 MONTEREY SAND	COXE 13 12 .17
		Bentonite WYO-BEN ENVIROPLUG MEDIUM CHIPS	14 19 15
		MEDIUM CHIPS	
42.0		Grout N/A	

DEPTH CASING	WELL CONSTRUCTION	ON DIAGRAM
	Location ID VML 0019 (WEWID' VM-2B) Easting Northing	Date S/25/2017 Ground Level Elevation
	Geologist C. ECKERT	Top of Casing Elevation
	BORING SUMMARY	CONSTRUCTION TIME LOG
GROUT	Total Depth 43.0' BGS	TASK DATE TIME DATE TIME
	Pilot Borehole Diameter 714"	Drilling 5725 0730 5/25 0815
	Reamed Diameter	
	Casing Stick-Up Height	Casing 5/25 0815 5/25 082
0 ///	Drilling Ca/Driller GREEN DEWNE	
	FRASTE XLMAX 250 SONIC Bit(s) 7" OD COREBARREL	Filter Pack Placement 5/25 0820 5/25 0888 BENTANITE SEAL 5/25 0880 5/25 088
	Drilling Fluid	Well FLUX MANNET BOX 5 25 1410 5 25 143 Completion 5/25 143
	₩ELL DESIGN & SPECIFICATIONS	Completion 5/25 143
BENTONITE Compared to the c	Protective Casing N/A D 19 BENTONITE CHIPS	9.5x Sold BAGS SAND 6 x Sold BAGS BONTONITE
SAND	Screen 0.0201 SLOTTED 2" SCHEDUZE YO PVC Z" SCH. 40 PVC Filter Pack CEMEX 'LAPIS LUSTRE' # 2/12 MONTEREY SAND Bentonite WYO-BEN ENVIROPLY G MEDIUM CHIPS	LOCATION DIAGRAM EAST EMPLOYEE PARK NG LOT N W W W W W W W W W W W W
42.0	Grout	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DEPTH	CASING	WELL CONSTRUCTION	ON DIAGRAM
DEPTH H		Location ID VWL 0020 (WELLDO: VM-3B) Easting Northing	Date 5/25/2017 Ground Level Elevation
		Geologist R. SHORE C.ECKERT	Top of Casing Elevation
		BORING SUMMARY	CONSTRUCTION TIME LOG
	ớróut,	Total Depth 43.0' BGS	TASK DATE TIME DATE TIME
		Pilot Borehole Diameter	Drilling \$/25 OFTD 5/25 0950
		Reamed Diameter ~ (A	
*		Casing Stick-Up Height Drilling Ca/Driller States Dawn No Brancon Mate	Casing 725 8750 5/25 8755
		RIG FRASTE XLMAX 256 SONIL BIT(S) 7 OD COREBARDEL	Filter Pack Placement 5/25 0955 5/25 1010 BENTOISITESEA 5/25 1010 5/25 1025
		I Drilling Fluid	Well FUSH MOUNT BX 5/25 1440 5/25 1500 Completion 5/25 1500
		WELL DESIGN & SPECIFICATIONS	Completion ' 5/25 500
BENT		DEPTH STRING(S)	10 X SO I BRAGT SAND 6 X SO I BRAGT BENTONITE
			BGS BUTWHILE TEIPPING OVE DELL
18.0		Protective Casing N/A Casing	PIPE THE WELL WAS PULLED UP ~ I FOOT CONFIRMED W/PM THAT NEW SCREEN FROM 19-41 BGF WAS ACCEPTABLE.
		2" SCHETDULE 40 PVC	SET WELL () 'BGS. LOCATION DIAGRAM
		Z"SCH. 40 PVC	
	SAND	Filter Pack CEMEX LAPIS LUSTRE' #2/12 MONTEREY SAND Bentonite WMO-BEN ENVIROPLUTE	COLE WILDOZO EAST EMPLOYEE PARK NO LOT
41.0		Grout N/A	

nples/102-036A	CASING		WELL CONSTRUCTION	ON DIAGRAM	
TVLadd/BoringLogSamples/102-036A			Location 10 VWL 002 (WALID: VM-4B) Easting Northing Geologist	Date 5/24/2017 Ground Level Elevation Top of Casing Elevation	
			P.SHORE C. ECKERT BORING SUMMARY	CONSTRUCTION	ON TIME LOC
	CROUT		Tatal Death	CONSTRUCTION	JA TIME LOG
			43.0° B65	TASK	DATE TIME DATE TIME
			Pilot Borehole Diameter 71/4"	Drilling	5/24 1300 5/24 1315
			Reamed Diameter		
			Casing Stick-Up Height Drilling Ca/Driller	Casing	1315 Shu Shu137.
0			GALLO DRILLING BRANDON MAPLE		,
			FRASTE XLMAX 250 SONIC	Filter Pack Placement	5/24 1320 7/24 1325
			GATES DRILLING BRANDON MAPLE RIG FRASTE XLMAX 250 SONIC Bit(s) 7" OD COREPAREEL	BENTONITE SEAL Well	5/24 1375 5/24 1350
ļ			Drilling Fluid N/A	FLUTH MOUNT BOX	5/24 1/30 5/24 1700 5/2-1 1700
			WELL DESIGN & SPECIFICATIONS		MENTS
BEN	TONITE		DEPTH STRING(S) O 20 2"BLANK ScH 40 PVC 20 42 2"SLOTTEP 0.020"5CH 40 PVC 18.5 43 #2/12 MONTEREY SAND O 18.5 BENTONITE CHIPS	10 x 50 16 Bags 5	SAND SENTONITE
18.5 200			Protective Cosing N/A Casing 2't Sculpture and the Pull		
			2 sherote 40 IVC	LOCATION	N DIAGRAM
	CANID =	5 °	Screen 0.020 SLOTTED SCH. 40 PVC		
	SAND =		Filter Pack CEMEX 'LAPIS LUSTRE' #2/12 MONTERBY SAND	WLOOZZ BUDG PMC	0021 / N
			Bentonite WYO-BEN ENVIROPLUGE MEDIUM CHIPS	1 11	FURDIFE
43.6			Grout N/A		

The add/Boring LogSamples/102-036A	CASING	WELL CONSTRUCTI	ON DIAGRAM
d/BoringLogSa		Location ID VWL 0022 (WEILID: VM-5B) Easting Northing	Date 5/24/2017 Ground Level Elevation
TVLaid		Geologist P.SHORE C.ECKERT	Top of Casing Elevation
		BORING SUMMARY	CONSTRUCTION TIME LOG
	GROUT	Total Depth 43.0' BGS	TASK DATE TIME DATE TIME
		Pilot Barehole Diameter 71/4"	Drilling 5/21/350 5/21/14/0
		Reamed Diameter	
0		Casing Stick-Up Height Drilling Co/Driller	Casing 5/24 1445 24 1450</td
		GREGO DRILLING BLANDON MAPLE RIG FRASTE XLZSO MAX SONIC Bit(s) 7" OD COREBAPPEL Dilling third	Filter Pack Placement 5/24 1450 5/24 1500 BENTONITE SEAL 5/24 1500 5/21 1510
		Bit(s) 7" OD COREBAPPEL	Well II' I
		Drilling Fluid ~/~	EUSH MANT BOX 5/21 1830 5/21 1700 Completion 5/21 1700
DEN	TONITE	WELL DESIGN & SPECIFICATIONS	COMMENTS
		DEPTH STRING(S) 0 20 2" BLANK SCHUOPVC 20 42 2" SLOTTED 0.020" SCHUOPVC 18.5 43 #2/12 MONTEREY SAND 0 18.5 BENTONITE CHIPS	6 × 5016 BAGS BENTONITE LOX SOLD BAGS SAND
20.0		Protective Casing N/A Casing Z" BLANK SCHETNIE 40 PVC	
		Screen 0.020 SLOTTED	LOCATION DIAGRAM
	SAND	Filter Pack CEMEX 'LAPIS LUSTRE' #7/17 MONTEREY SAND	COXE WILDOZZ WILDOZZ WILDOZZ NO N
		#2/12 MONTEREY SAND Bentonite WYO'BEN ENVIROPLUGO MEDIUM CHIPS	COKE PULCOIS IN EAST ENPLOYEE PARKING LOT
43.0		Grout N / A	

ATTACHMENT 2 CalClean Unit SCAQMD Permit

Soil and Groundwater Contamination Extraction and Treatment Services

TECHNICAL SPECIFICATIONS

TYPCIAL OXIDIZER

	System Information
Description	Thermal/Catalytic Oxidizer
Manufacturer	Soleco
Model No.	500
Cham	ber & Stack Specification
Chamber Length	9 feet
Chamber Dimensions	30" outside / 20" inside
Chamber Internal Lining	Ceramic Fiber
Chamber Retention Time	1.1 seconds
Throat Velocity	40 feet / second
Stack Exit Velocity	30 feet / second
Stack Discharge Height	13 + feet
Stack Dimensions	18" Round
Destruction Efficiency	99% +
la I	Influent and Effluent
Maximum VOC Influent "Thermal"	30,000 PPMV
Normal VOC Effluent "Thermal"	< 50 PPMV ROC
Maximum VOC Influent "Catalytic"	3000 PPMV
Normal VOC Effluent "Catalytic"	< 50 PPMV ROC
	Burner Specification
Manufacturer/Model	Eclipse / ThermAir
Burner Rating (Factory Rated)	400,000 BTU/hour (maximum)
Operating Temperature "Thermal"	1,400° to 1,800°
Operating Temperature "Catalytic"	600° to 1,150°
Combustion Air Blower	Burner Fan
Combustion Air Blower Flow	Up to 88 CFM
	Blower Specification
Manufacturer/Model	Dekker / Vmax System VMX-0453K
Blower Type	Single Stage Liquid Ring pump
Volumetric Flow (Factory Rated)	410 CFM maximum
Vacuum	Up to 28" Mercury
Motor Type	25 hp / TEFC / 230 Volt / 3 phase
	Catalyst Specification
Manufacturer/Model	Sud-Chemie / EnviCat 2310 ,MS 300C
Catalyst Type	Platinum Coated Metal Monolithic
Catalyst Size	18" OD x 3.5" Height
Catalyst Volume	.55 FT ³
Destruction Efficiency	99% +
	Utility Specification
Supplemental Fuel	Natural Gas or Propane
Fuel Pressure	5 psi
Fuel Volume	160 CFH (at 400,000 BTU)
Electrical Requirements Option-1	230 Volt / 1 Phase / 125 Amp
Electrical Requirements Option-2	230 Volt / 3 Phase / 100 Amp

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 East Copley Drive, Diamond Bar, CA 91765

PERMIT TO CONSTRUCT/OPERATE

page 1 Permit No. F24496 A/N 366359

ID 121407

This faltiel permit must be represent ANNIVALLY unless the equipment is unwest, so a little tilling the mantal research fee (fine till it) is suit received by the appropriate com-

LEGAL OWNER

OR OPERATOR:

CALCLEAN INC

3002 DOW AVE SUITE 142

TUSTIN, CA 92780

Equipment Location: VARIOUS LOCATIONS IN SCAQMD

Equipment Description:

SOIL VAPOR EXTRACTION AND TREATMENT SYSTEM CONSISTING OF:

- VAPOR EXTRACTION WELLS. 1.
- 2. WATER SEPARATOR.
- EXTRACTION BLOWER, 500 SCFM MAXIMUM FLOW RATE. 3.
- CATALYTIC/THERMAL OXIDIZER UNIT, SOLLECO, MODEL 500, SERIAL NO. M1047, CONSISTING 4. OF:
 - (A) CATALYTIC OXIDIZER, PLATINUM CATALYST ON STAINLESS STEEL MONOLITH TYPE, ELECTRICALLY HEATED, 80 KW, OR DIRECT GAS-FIRED, 1,500,000 BTU PER HOUR, WITH NATURAL GAS OR LPG AS SUPPLEMENTAL FUEL, AN INTEGRAL HEAT EXCHANGER, A COMBUSTION BLOWER WITH A MAXIMUM FLOW RATE OF 125 SCFM, AND AN AUTOMATIC TEMPERATURE CONTROL SYSTEM.
 - THERMAL OXIDIZER, DIRECT GAS-FIRED ONLY, WITH AN AUTOMATIC TEMPERATURE **(B)** CONTROL SYSTEM.

Conditions:

- 1) OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW.
- THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING 2) CONDITION AT ALL TIMES.
- CURRENT CONTACT PERSON NAME, COMPANY, AND PHONE NUMBER SHALL BE DISPLAYED IN 3) A PERMANENT AND CONSPICUOUS POSITION.

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 East Copley Drive, Diamond Bar, CA 91765

PERMIT TO CONSTRUCT/OPERATE

page 2 Permit No. F24496 A/N 366359

CONTINUATION OF PERMIT TO CONSTRUCTIONS ATE

Commence of the Commence of th

- 4) UPON COMPLETION ANY VAPOR EXTRACTION WELLS AND DUCTS SHALL BE CAPPED TO PREVENT VAPORS FROM VENTING TO THE ATMOSPHERE. VAPORS SHALL NOT BE EXTRACTED FROM THE SOIL UNLESS THEY ARE VENTED TO THE VAPOR CONTROL SYSTEM.
- 5) AN IDENTIFICATION TAG OR NAME PLATE SHALL BE DISPLAYED ON THE EQUIPMENT TO SHOW MANUFACTURER MODEL NO. AND SERIAL NO. THE TAG(S) OR PLATE(S) SHALL BE ISSUED BY THE MANUFACTURER AND SHALL BE ADHERED TO THE EQUIPMENT IN A PERMANENT AND CONSPICUOUS POSITION.
- A FLOW INDICATOR SHALL BE INSTALLED AND MAINTAINED AT ALL INLET STREAMS TO THE VAPOR CONTROL SYSTEM TO INDICATE THE TOTAL AIR FLOW RATE IN CUBIC FEET PER MINUTE (CFM). THE TOTAL FLOW RATE SHALL NOT EXCEED 625 CFM. IN CASE A PRESSURE SENSOR DEVICE IS USED IN PLACE OF THE FLOW INDICATOR, A CONVERSION CHART SHALL BE AVAILABLE TO INDICATE THE CORRESPONDENT FLOW RATE, IN CFM, TO THE PRESSURE READING.
- 7) UPON THE FIFTH DAY AFTER PLACEMENT OF THIS EQUIPMENT INTO OPERATION AT A NEW SITE, THE DISTRICT SHALL BE NOTIFIED VIA PHONE AT 1-877-810-6995 OF THE EXACT NATURE OF THE PROJECT AS FOLLOWS:
 - (A) THE PERMIT NUMBER OF THE PORTABLE EQUIPMENT.
 - (B) THE NAME AND PHONE NUMBER OF A CONTACT PERSON.
 - (C) THE LOCATION WHERE THE PORTABLE EQUIPMENT WILL BE OPERATED.
 - (D) THE ESTIMATED TIME THE PORTABLE EQUIPMENT WILL BE LOCATED AT THE SITE.
 - (E) DESCRIPTION OF THE PROJECT.
 - (F) IF LESS THAN 1/4 MILE, THE DISTANCE TO THE NEAREST SENSITIVE RECEPTOR, DEFINED AS: LONG-TERM HEALTH CARE FACILITIES, REHABILITATION CENTERS, CONVALESCENT CENTERS, RETIREMENT HOMES, RESIDENCES, SCHOOLS, PLAYGROUNDS, CHILD CARE CENTERS, AND ATHLETIC FACILITIES.

IN CASE OF A VENT TEST, THE DISTRICT SHALL BE NOTIFIED 24 HOURS PRIOR TO THE OPERATING OF THE EQUIPMENT.

- 8) THIS EQUIPMENT SHALL NOT BE OPERATED MORE THAN TWELVE CONSECUTIVE MONTHS AT ANY ONE FACILITY WITHIN THE SCAQMD.
- 9) VOLATILE ORGANIC COMPOUND (VOC) CONCENTRATION SHALL BE MEASURED AT THE OUTLET OF THE VAPOR CONTROL SYSTEM SHALL BE MEASURED PARTS PER MILLION BY VOLUME (PPMV) AT LEAST ONCE EVERY 7 OPERATING DAYS BY USING A FLAME IONIZATION DETECTOR OR A DISTRICT APPROVED ORGANIC VAPOR ANALYZER CALIBRATED IN PARTS PER MILLION BY VOLUME (PPMV) AS HEXANE (IF ANOTHER CALIBRATING AGENT WAS USED. IT SHALL BE CORRELATED TO AND EXPRESSED AS HEXANE).
- 10) THIS EQUIPMENT SHALL NOT BE OPERATED WITHIN 1000 FEET FROM AN OUTSIDE BOUNDARY OF ANY SCHOOL.
- 11) VOC CONCENTRATION AT THE OUTLET OF THE OXIDIZER SHALL NOT EXCEED 50 PPMV AS HEXANE.

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 East Copley Drive, Diamond Bar, CA 91765

PERMIT TO CONSTRUCT/OPERATE

page 3 Permit No. F24496 A/N 366359

CONTINUE THOS OF SERVICE TO COMPUNICATE SERVICE

- 12) A TEMPERATURE MEASUREMENT AND RECORDING DEVICE WITH AN ACCURACY OF PLUS OR MINUS 20 DEGREES FAHRENHEIT SHALL BE INSTALLED AND MAINTAINED AT THE OUTLET OF THE COMBUSTION CHAMBER OF THE THERMAL OXIDIZER.
- 13) WHENEVER THE THERMAL OXIDIZER IS IN OPERATION THE TEMPERATURE AT THE OUTLET OF THE COMBUSTION CHAMBER OF THE THERMAL OXIDIZER (AS SHOWN ON THE INSTRUMENT DESCRIBED UNDER CONDITION NO. 11) SHALL NOT BE LESS THAN 1400 DEGREES FAHRENHEIT.
- 14) EQUIPMENT SHUTDOWN INTERLOCKS SHALL BE PROVIDED FOR LOW OXIDATION TEMPERATURE (CONDITION NO. 12).
- 15) TEMPERATURE MEASUREMENT AND RECORDING DEVICE WITH AN ACCURACY OF PLUS OR MINUS 20 DEGREES FAHRENHEIT SHALL BE INSTALLED AND MAINTAINED AT THE INLET OF THE FIRST STAGE CATALYTIC BED.
- 16) WHENEVER THE CATALYTIC OXIDIZER IS IN OPERATION, THE TEMPERATURE AT THE INLET OF THE FIRST STAGE OF THE CATALYTIC BED (AS SHOWN ON THE INSTRUMENT DESCRIBED UNDER CONDITION NO. 14) SHALL NOT BE LESS THAN 600 DEGREES FAHRENHEIT.
- 17) EQUIPMENT SHUTDOWN INTERLOCKS SHALL BE PROVIDED FOR LOW OXIDATION TEMPERATURE (CONDITION NO. 15).
- 18) THIS EQUIPMENT SHALL ONLY BE USED TO EXTRACT AND TREAT NON-CHLORINATED PETROLEUM HYDROCARBON VAPORS. THIS SHALL BE DEMONSTRATED BY AN ONSITE SOIL CHARACTERIZATION ANALYSIS REPORT OR GRAB SAMPLE ANALYSIS.
- 19) RECORDS SHALL BE MAINTAINED TO PROVE COMPLIANCE WITH CONDITIONS 6, 7, 8, 9, 10, 12, 15, AND 17. THE RECORDS SHALL BE KEPT FOR AT LEAST TWO YEARS AND MADE AVAILABLE TO THE DISTRICT PERSONNEL UPON REQUEST.

NOTICE

IN ACCORDANCE WITH RULE 206, THIS PERMIT TO OPERATE OR COPY SHALL BE POSTED ON OR WITHIN 8 METERS OF THE EQUIPMENT.

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT 21865 East Copley Drive, Diamond Bar, CA 91765

PERMIT TO CONSTRUCT/OPERATE

page 4 Permit No. F24496 A/N 366359

CONTRIBUTION OF PERSON TO CONSTRUCT HOUSEAN.

THIS PERMIT DOES NOT AUTHORIZE THE EMISSION OF AIR CONTAMINANTS IN EXCESS OF THOSE ALLOWED BY DIVISION 26 OF THE HEALTH AND SAFETY CODE OF THE STATE OF CALIFORNIA OR THE RULES OF THE AIR QUALITY MANAGEMENT DISTRICT. THIS PERMIT CANNOT BE CONSIDERED AS PERMISSION TO VIOLATE EXISTING LAWS, ORDINANCES, REGULATIONS OR STATUTES OF OTHER GOVERNMENT AGENCIES.

EXECUTIVE OFFICER

Devis on Beiley

By Dorris M. Bailey/wc01 2/23/2000

ATTACHMENT 3 AKI Engineering Test Report

ENGINEERING TEST REPORT

COCA-COLA DISTRIBUTION, PROPERTY 23 PILOT SVE USING PORTABLE THERMAL OXIDIZER (PTO)

Source Location:

Coca-Cola Distribution, Property 23 19875 Pacific Gateway Dr. Torrance, California 90502

Test Date: April 4-6 & 11-13, 2018 Issue Date: July 11, 2018

Prepared for:

AECOM 130 Robin Hill Road Santa Barbara, California 93117

Prepared by:

AirKinetics, Inc. 1308 S. Allec Street Anaheim, California 92805 (714) 254-1945 Fax: (714) 956-2350 AKI No.: 14875

ENGINEERING TEST REPORT

COCA-COLA DISTRIBUTION, PROPERTY 23 PILOT SVE USING PORTABLE THERMAL OXIDIZER (PTO)

Test Date: April 4-6 & 11-13, 2018

Issue Date: July 11, 2018

Prepared for: AECOM 130 Robin Hill Road

Santa Barbara, California 93117

Prepared by: AirKinetics, Inc. AKI No.: 14875

Prepared By:

Jason Mai

Report Writer

Reviewed By:

Tony Wong

President

AirKinetics, Inc. operated in conformance with the requirements set forth in ASTM D7036-04 and AirKinetics' Quality Manual during this test project.

Certified By:

Tony Wong

President

TABLE OF CONTENTS

1.0	CULANA DAZ	<u>Page</u>
1.0	SUMMARY 1.1 Source Information	
	1.1 Source Information	
	1.2 Testing Firm information	
	1.4 Subcontractors	
2.0	TEST RESULTS AND DATA PRESENTATION	5
3.0	INTRODUCTION	7
4.0	SOURCE PROCESS AND EQUIPMENT DESCRIPTION	8
	4.1 Process Description	
	4.2 Location Description	
	4.3 Process Operation	8
5.0	SAMPLING AND ANALYTICAL PROCEDURES	9
6.0	TEST CRITIQUE	10
API	PENDICES	
	A. DIOXINS/ FURANS (PTO STACK)	
	1.0 Results Tabulation and Calculations	11
	2.0 Field Data	25
	3.0 Analytical Data	37
	4.0 Equipment Calibrations	65
	B. DIOXINS/FURANS (BACKGROUND)	
	1.0 Results Tabulation and Calculations	71
	2.0 Field Data	
	3.0 Analytical Data	
	C. SAMPLING METHOD DESCRIPTION AND SCHEMATICS	119
	D. AETB AND QI CERTIFICATIONS	127
	E. DIOXINS/FURANS RAW ANALYTICAL DATA (CD-ROM)	

Pilot SVE Using Portable Thermal Oxidizer (PTO)

Test Date: April 4-6 & 11-13, 2018

1.0 SUMMARY

1.1 Source Information

Plant Name and Address: Coca-Cola Distribution, Property 23

19875 Pacific Gateway Dr. Torrance, California 90502

Source Tested: Pilot SVE Using Portable Thermal Oxidizer (PTO)

Plant Contact: Margaret Pittman

805-692-0681

margaret.pittman@aecom.com

1.2 Testing Firm Information

Firm Name and Address: AirKinetics, Inc.

1308 S. Allec Street

Anaheim, California 92805

Firm Contact: Neal Conroy

714-254-1945 ext. 210

conroyn@airkineticsinc.com

Test Personnel: Morgan Nguyen, Project Supervisor

Randy Vorick, Team Leader Catarino Ocegueda, Team Leader

1.3 Test Information

Test Requested By: AECOM

Firm Contact: Pittman Margaret

805-692-0681

margaret.pittman@aecom.com

Test Objective: To measure dioxins/furans emissions from PTO stack and

levels in ambient background

Test Date: April 4-6 & 11-13, 2018

Test Methods: EPA 1 Traverse Points

EPA 2 Velocity
Portable Analyzer O₂ and CO₂
EPA 4 Moisture Content
EPA TO-9 Dioxins/Furans
CARB 428 Dioxins/Furans

AKI No.: 14875 Page 3 of 131

Engineering Test Report Coca-Cola Distribution, Property 23 Pilot SVE Using Portable Thermal Oxidizer (PTO) Test Date: April 4-6 & 11-13, 2018

AKi Akineties, Inc.

1.4 Subcontractors:

Laboratory Name: Vista Analytical CARB Method 428 and EPA Method TO-19 916-673-1520

Test Date: April 4-6 & 11-13, 2018

2.0 TEST RESULTS AND DATA PRESENTATION

The test program results are summarized in Tables 2-1 through 2-3. All data pertaining to the tests are included in the appendices to this report. Dioxins/Furans (PTO Stack) results tabulation and calculations, field data, analytical data, and equipment calibration are presented in Appendix A. Dioxins/Furans (Background) is presented in Appendix B. The sampling method descriptions and schematic is presented in Appendix C. AETB and QI Certifications are presented in Appendix D. Dioxins/Furans raw analytical data located in CD-ROM is presented in Appendix E.

TABLE 2-1
PTO STACK SVE1A TEST RESULTS

PARAMETER	UNIT	RUN 1	RUN 2	RUN 3	AVERAGE
Run Duration	hr	4	4	4	
End Date	m/d/yr	4/4/18	4/5/18	4/6/18	
End Time	hr:min	12:10	12:41	11:29	
Total PCDDs/PCDFs	ng/dscm	0.138	0.730	0.0588	0.309
	lbs/ hr	5.15E-11	2.56E-10	2.04E-11	1.09E-10
Flow Rate	dscfm	100	93.7	92.8	95.5

TABLE 2-2
PTO STACK SVE1B TEST RESULTS

PARAMETER	UNIT	RUN 1	RUN 2	RUN 3	AVERAGE
Run Duration	hr	4	4	4	
End Date	m/d/yr	4/11/18	4/12/18	4/13/18	
End Time	hr:min	10:02	11:34	11:36	
Total PCDDs/PCDFs	ng/dscm	0.0359	0.0130	0.0128	0.0206
	lbs/ hr	1.74E-11	6.34E-12	6.24E-12	9.99E-12
Flow Rate	dscfm	129	152	151	144

AKI No.: 14875 Page 5 of 131

Test Date: April 4-6 & 11-13, 2018

TABLE 2-3
BACKGROUND TEST RESULTS

PARAMETER	UNIT	RUN 2	RUN 3	RUN 4	RUN 5	RUN 6	RUN 7
Run Duration	hr	24	24	24	24	24	24
End Date	m/d/yr	4/5/18	4/6/18	4/10/18	4/11/18	4/12/18	4/13/18
End Time	hr:min	11:35	11:45	10:25	10:35	10:40	10:45
Total PCDDs/PCDFs	ng/m ³	8.59E-04	6.91E-05	1.43E-04	1.56E-03*	1.02E-03	1.10E-03

^{*} Concentration may be biased high (see the explanation in Section 6.0, Test Critique).

AKI No.: 14875 Page 6 of 131

AKi AKi

3.0 INTRODUCTION

On April 4-6 & 11-13, 2018, AirKinetics, Inc. conducted a test program for AECOM in Torrance, California. The test objective was to measure dioxins/furans emissions from PTO stack and levels in ambient background. Testing was conducted on a Pilot SVE Using Portable Thermal Oxidizer (PTO).

Pilot SVE Using Portable Thermal C Test Date: April 4-6 & 11-13, 2018

4.0 SOURCE PROCESS AND EQUIPMENT DESCRIPTION

4.1 Process Description

Two pilot tests (one at shallow soil; referred as 1A and the other at deep soil; referred as 1B) were performed on the soil-vapor (SVE) extraction system at the Coca-Cola Distribution Center in Torrance, California (Property 23) using a portable thermal oxidizer for remediation.

4.2 Location Description

A summary of the test location information is presented in Table 4-1. Sampling location schematics are presented in Appendix A.2.0.

TABLE 4-1
TEST LOCATION INFORMATION

		Cross	Downstrea	m Disturbance	Upstrea	m Disturbance
Location	Dimensions (inches)	Sectional Area (in ²)	Inches	Equivalent Diameter	Inches	Equivalent Diameter
PTO Exhaust	9.88 ID	76.6	24	2.43	12	1.22

4.3 Process Operation

The process was operated normally.

AKI No.: 14875 Page 8 of 131

Test Date: April 4-6 & 11-13, 2018

5.0 SAMPLING AND ANALYTICAL PROCEDURES

A list of the sampling and analytical procedures employed during this test program is presented in Table 5-1. Sampling method descriptions and schematics are presented in Appendix C.

TABLE 5-1
SAMPLING AND ANALYTICAL PROCEDURES

Parameter	Test Method
Traverse Points	EPA 1
Velocity	EPA 2
O ₂ and CO ₂	Portable Testo Analyzer
Moisture	EPA 4
Dioxins/Furans	EPA TO-9 and CARB 428

AKI No.: 14875 Page 9 of 131

6.0 TEST CRITIQUE

The Run 1 ambient background test was invalidated due to use of a filter of insufficient diameter.

The extraction glassware containing sample "A-MT09-5" developed a crack early in the extraction process at the subcontracted laboratory and a significant amount of the extract was lost. The sample was transferred to new glassware and the extraction was re-started. The pre-spike recoveries are high for this sample, indicating that extract was lost prior to a thorough extraction of the PUF; the reported concentrations of the analyses may be biased high.

No other anomalies occurred during this test program.

AKI No.: 14875 Page 10 of 131

APPENDIX A

DIOXINS/FURANS (PTO STACK)

1.0 Results Tabulation and Calculations

AKI No.: 14875 Page 11 of 131

Intentionally Left Blank

AKI No.: 14875 Page 12 of 131

ISOKINETIC SAMPLING TRAIN RESULTS - METHOD: CARB 428

Client Name	AECOM	Operator	MN RV
Plant Name	COCA-COLA	Project #	14875
Sampling Location	STACK SVE1A	Standard Temperature, °F	68

USE IN AVERAGE OF RUN SET?	1 or 0 =>	1 1	1	1	SET
Run Number	T T	S-1A-M428-1	S-1A-M428-2	S-1A-M428-3	AVERAGE
Run Date	_	04/04/18	04/05/18	04/06/18	
Run Start Time	hh:mm	802	835	725	· ·
Run Stop Time	hh:mm	1210	1241	1129	
Meter Calibration Factor	Ÿ	1.0000	1.0000	1.0000	
Pitot Tube Coefficient	C _p	0.84	0.84	0.84	
Actual Nozzie Diameter	in	0.751	0.746	0.751	
Sample Volume	ft ³	139.528	131.301	130.662	133.83
Total Sampling Time	min	240	240	240	240.00
Average Meter Temperature	°F	69.5	70.1	73.1	70.89
Average Stack Temperature	°F	989.2	1094.5	1100.8	1061.49
Barometric Pressure	in Hg	29.9	29.9	29.9	29.90
Stack/Duct Static Pressure	in H₂O	-0.02	-0.02	-0.02	-0.02
Absolute Stack/Duct Pressure	in Hg	29.9	29.9	29.9	29.90
Average Delta H	in H₂O	0.90	1.06	0.97	0.98
Absolute Meter Pressure	in Hg	30.0	30.0	30.0	29.97
Avg Differential Pressure (Delta P)	in H ₂ O	0.010	0.009	0.009	0.01
Total Water Volume Collected	mL	189.8	185.4	190.8	188.67
Volume of Water vapor @ STP	SCF	8.934	8.727	8.981	8.88
Volume Metered @ STP	DSCF	139.293	130.984	129.587	133.29
Calculated Stack Moisture	% H ₂ 0	6.0	6.2	6.5	6.25
Saturated Stack Moisture	% H ₂ 0	100.0	100.0	100.0	100.00
Reported Stack Moisture Content	% H ₂ 0	6.0	6.2	6.5	6.25
Carbon Dioxide Percentage	% CO₂	4.45	4.3	4.3	4.32
Oxygen Percentage	% O ₂	14.3	14.4	14.3	14.32
Carbon Monoxide Percentage	%.CO	0.0	0.0	0.0	0.00
Nitrogen Percentage	% N ₂	81.2	81.4	81.5	81.36
Dry Mole Fraction	decimal	0.940	0.938	0.935	0.94
Dry Gas Molecular Weight	lb/lb-mole	29.28	29.23	29.25	29.26
Wet Stack Gas Molecular Weight	lb/lb-mole	28.60	_28.55	28.52	28.56
Flue Gas Density	lb/ft ³	0.0742	0.0741	0.0740	0.07
Calculated Fuel Factor	F _o _	1.48	1.53	1.56	1.52
F-Factor	DSCF/MM	9595	9595	9595	9595.00
Heat Input Rate	MMBtu/hr	0	0	0	0.19
Percent Excess Air	% EA	201.0	202.1	196.6	199.88
Stack Cross-Sectional Area	in ²	76.6	76.6	76.6	76.60
Stack Cross-Sectional Area	ft ²	0.53	0.53	0.53	0.53
Percent of Isokinetic Rate	% ISO	100.6	102.1	100.6	101.08
	ir Flow Rat			0.00	0.00
Average Stack Gas Velocity	ft/sec	9.14	9.23	9.20	9.19
Dry Standard Stack Flow/Minute	DSCFM	100	93.7	92.8	95.47
Wet Standard Stack Flow/Minute	WSCFM	106	100	99	101.84

ISOKINETIC SAMPLING TRAIN RESULTS - METHOD: CARB 428

ANALYTICAL DATA		S-1	A-M428-1	S-1	A-M428-2	S-1	A-M428-3	Conversion
Compound	Unit	Pre	Amt	Pre	Amt	Pre	Amt	Factor
1 2,3,7,8-TCDD	pg	j: ,< ,	1.69		3.75	×	1.71	1E+12
2 Total TCDD	pg		10.1		65.9		9.14	1E+12
3 1,2,3,7,8-PeCDD	pg	<	2.69	.	12.7	(d) (1) (d)	2.86	1E+12
4 Total PeCDD	og	^	16.8		66.9	, , ,	8.87	1E+12
5 1,2,3,4,7,8-HxCDD	pg		4.71		6.59		3.25	1E+12
6 1,2,3,6,7,8-HxCDD		(6) To 1	5.50		100	a //- 🏖	3 12	1E+12
7 1,2,3,7,8,9-HxCDD	195	٠ ٨	4.19		8.63	* *	3/18	1E+12
8 Total HxCDD	PG		80.1	 \$1,7 ****	98.1		17.6	1E+12
9 1,2,3,4,6,7,8-HpCDD	PG	10 S	43.7		382	erinenings. Sprangrad	134	1E+12
10 Total-HpCDD	23		92.2	er er ere	715	and desired to the	24.8	1E+12
11 OCDD	pg	4	126		754	~	27.2	1E+12
12 2,3,7,8-TCDF	蹲	(*) TT)	8,42	数1、22。 1	52.4	er. Rit	6.95	1E+12
13 Total TCDF	ম্প্ৰ		97/8		1450		74.2	1E+12
14 1,2,3,7,8-PeCDF	19	8	8.27	- 15	692	Garan et 🤏	2:59	1E+12
15 2,3,4,7,8-PeCDF	pg pg		4.73		2.4.	\$	274	1E+12
16 Total PeCDF	بور	ing and the second second	75.4	erio di September	- Val. 5/4		3/6	1E+12
17 1,2,3,4,7,8-HxCDF	PS	<u>.</u> \$	545		46.1	8	160	1E+12
18 1,2,3,6,7,8-HxCDF	P g	<	5 76		52.5	· <	2 44	1E+12
19 2,3,4,6,7,8-HxCDF	ρg	<	1.49	er Agrico de	39.5	K	1.27	1E+12
20 1,2,3,7,8,9-HxCDF	Pg	<	1.69	X	749	₩(1)%	144	1E+12
21 Total HxCDF	pg		21.9	₩ 15 ± 7. 4	3.15	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.95	1E+12
22 1,2,3,4,6,7,8-HpCDF	pg		16.3	575 Turk	80.7	• •	3.30	1E+12
23 1,2,3,4,7,8,9-HpCDF	pg	_ <	1.59		17.3	<	1.73	1E+12
24 Total HpCDF	pg		16.3		127	<	3.30	1E+12
25 OCDF	pg		4.48	`	34.8	<	2.64	1E+12

5/16/2018

Plant Name: COCA-COLA
Sampling Location: STACK SVE1A
Run Number: S-1A-M428-1
Run Date: 04/04/18

Run Date.	04/04/16					
Parameter	Catch Weight		Concentration		Emissio	on Rate
	(pg)	(ng/DSCM)	(12% CO ₂)	(@ 7% O ₂)	(gms/sec)	(lbs/hr)
PCDDs						
2,3,7,8-TCDD	1.69	4.28E-04	1.16E-03	9.05E-04	2.02E-14	1.60E-13
Other TCDD	8.41	2.13E-03	5.75E-03	4.50E-03	1.00E-13	7.97E-13
1,2,3,7,8-PeCDD	2.69	6.82E-04	1.84E-03	1.44E-03	3.21E-14	2.55E-13
Other PeCDD	14.11	3.58E-03	9.65E-03	7.56E-03	1.69E-13	1.34E-12
1,2,3,4,7,8-HxCDD	4.71	1.19E-03	3.22E-03	2.52E-03	5.63E-14	4.47E-13
1,2,3,6,7,8-HxCDD	5.5	1.39E-03	3.76E-03	2.95E-03	6.57E-14	5.22E-13
1,2,3,7,8,9-HxCDD	4.19	1.06E-03	2.86E-03	2.24E-03	5.01E-14	3.97E-13
Other HxCDD	65.7	1.67E-02	4.49E-02	3.52E-02	7.85E-13	6.23E-12
1,2,3,4,6,7,8-HpCDD	43.7	1.11E-02	2.99E-02	2.34E-02	5.22E-13	4.14E-12
Other HpCDD	48.5	1.23E-02	3.32E-02	2.60E-02	5.79E-13	4.60E-12
OCDD	126	3.19E-02	8.61E-02	6.75E-02	1.51E-12	1.19E-11
TOTAL PCDDs	325.20	8.24E-02	2.22E-01	1.74E-01	3.89E-12	3.08E-11
PCDFs						
2,3,7,8-TCDF		2.13E-03	5.76E-03	4.51E-03	1.01E-13	7.98E-13
Other TCDF		2.27E-02	6.11E-02	4.79E-02	1.07E-12	8.48E-12
1,2,3,7,8-PeCDF	8.27	2.10E-03	5.65E-03	4.43E-03	9.88E-14	7.84E-13
2,3,4,7,8-PeCDF	4.73	1.20E-03	3.23E-03	2.53E-03	5.65E-14	4.49E-13
Other PeCDF	62.4	1.58E-02	4.27E-02	3.34E-02	7.46E-13	5.92E-12
1,2,3,4,7,8-HxCDF	5.15	1.31E-03	3.52E-03	2.76E-03	6.15E-14	4.88E-13
1,2,3,6,7,8-HxCDF	5.76	1.46E-03	3.94E-03	3.08E-03	6.88E-14	5.46E-13
2,3,4,6,7,8-HxCDF	1.49	3.78E-04	1.02E-03	7.98E-04	1.78E-14	1.41E-13
1,2,3,7,8,9-HxCDF	1.69	4.28E-04	1.16E-03	9.05E-04	2.02E-14	1.60E-13
Other HxCDF	7.81	1.98E-03	5.34E-03	4.18E-03	9.33E-14	7.41E-13
1,2,3,4,6,7,8-HpCDF	16.3	4.13E-03	1.11E-02	8.73E-03	1.95E-13	1.55E-12
1,2,3,4,7,8,9-HpCDF	1.59	4.03E-04	1.09E-03	8.51E-04	1.90E-14	1.51E-13
Other HpCDF	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ÖCDF		1.14E-03	3.06E-03	2.40E-03	5.35E-14	4.25E-13
TOTAL PCDFs	217.47	5.51E-02	1.49E-01	1.16E-01	2.60E-12	2.06E-11
TOTAL PCDDs and PCDFs	542.67	1.38E-01	3.71E-01	2.91E-01	6.48E-12	5.15E-11

Plant Name: COCA-COLA
Sampling Location: STACK SVE1A
Run Number: S-1A-M428-2
Run Date: 04/05/18

Run Date.	04/05/16					
Parameter	Catch Weight	C	Concentration		Emissio	on Rate
	(pg)	(ng/DSCM)	(12% CO ₂)	(@ 7% O ₂)	(gms/sec)	(lbs/hr)
PCDDs						
2,3,7,8-TCDD	3.75	1.01E-03	2.85E-03	2.15E-03	4.47E-14	3.55E-13
Other TCDD	62.15	1.68E-02	4.72E-02	3.57E-02	7.41E-13	5.88E-12
1,2,3,7,8-PeCDD	12.7	3.42E-03	9.64E-03	7.29E-03	1.51E-13	1.20E-12
Other PeCDD	54.2	1.46E-02	4.12E-02	3.11E-02	6.47E-13	5.13E-12
1,2,3,4,7,8-HxCDD	6.59	1.78E-03	5.00E-03	3.78E-03	7.86E-14	6.24E-13
1,2,3,6,7,8-HxCDD	10	2.70E-03	7.59E-03	5.74E-03	1.19E-13	9.47E-13
1,2,3,7,8,9-HxCDD	8.63	2.33E-03	6.55E-03	4.95E-03	1.03E-13	8.17E-13
Other HxCDD	72.88	1.96E-02	5.53E-02	4.18E-02	8.69E-13	6.90E-12
1,2,3,4,6,7,8-HpCDD	38.2	1.03E-02	2.90E-02	2.19E-02	4.56E-13	3.62E-12
Other HpCDD	33.3	8.98E-03	2.53E-02	1.91E-02	3.97E-13	3.15E-12
OCDD	75.4	2.03E-02	5.73E-02	4.33E-02	8.99E-13	7.14E-12
TOTAL PCDDs	377.80	1.02E-01	2.87E-01	2.17E-01	4.51E-12	3.58E-11
DODE						
PCDFs	00.4	4 005 00	4 7 4 5 00	0.505.00	7 445 40	504540
2,3,7,8-TCDF	62.4	1.68E-02	4.74E-02	3.58E-02	7.44E-13	5.91E-12
Other TCDF	1387.6	3.74E-01	1.05E+00	7.96E-01	1.66E-11	1.31E-10
1,2,3,7,8-PeCDF	69.2	1.87E-02	5.25E-02	3.97E-02	8.25E-13	6.55E-12
2,3,4,7,8-PeCDF	24.4	6.58E-03	1.85E-02	1.40E-02	2.91E-13	2.31E-12
Other PeCDF	480.4	1.30E-01	3.65E-01	2.76E-01	5.73E-12	4.55E-11
1,2,3,4,7,8-HxCDF	46.1	1.24E-02	3.50E-02	2.65E-02	5.50E-13	4.36E-12
1,2,3,6,7,8-HxCDF	52.5	1.42E-02	3.99E-02	3.01E-02	6.26E-13	4.97E-12
2,3,4,6,7,8-HxCDF	39.5	1.06E-02	3.00E-02	2.27E-02	4.71E-13	3.74E-12
1,2,3,7,8,9-HxCDF	7.49	2.02E-03	5.69E-03	4.30E-03	8.93E-14	7.09E-13
Other HxCDF	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,2,3,4,6,7,8-HpCDF	80.7	2.18E-02	6.13E-02	4.63E-02	9.63E-13	7.64E-12
1,2,3,4,7,8,9-HpCDF	17.3	4.66E-03	1.31E-02	9.93E-03	2.06E-13	1.64E-12
Other HpCDF	29	7.82E-03	2.20E-02	1.66E-02	3.46E-13	2.75E-12
OCDF	34.8	9.38E-03	2.64E-02	2.00E-02	4.15E-13	3.29E-12
TOTAL PCDFs	2331.39	6.28E-01	1.77E+00	1.34E+00	2.78E-11	2.21E-10
TOTAL PCDDs and PCDFs	2709.19	7.30E-01	2.06E+00	1.55E+00	3.23E-11	2.56E-10

Plant Name: COCA-COLA
Sampling Location: STACK SVE1A
Run Number: S-1A-M428-3
Run Date: 04/06/18

Parameter	Catch Weight		Concentration		Emissio	on Rate
	(pg)	(ng/DSCM)	(12% CO ₂)	(@ 7% O ₂)	(gms/sec)	(lbs/hr)
PCDDs	(1-9)	(1.9, = 1.1.)	. 2,	, 2,	(9	(100,111)
2,3,7,8-TCDD	1.71	4.66E-04	1.32E-03	9.75E-04	2.04E-14	1.62E-13
Other TCDD		2.02E-03	5.72E-03	4.24E-03	8.87E-14	7.04E-13
1,2,3,7,8-PeCDD		7.79E-04	2.20E-03	1.63E-03	3.41E-14	2.71E-13
Other PeCDD		1.64E-03	4.62E-03	3.43E-03	7.18E-14	5.69E-13
1,2,3,4,7,8-HxCDD		8.86E-04	2.50E-03	1.85E-03	3.88E-14	3.08E-13
1,2,3,6,7,8-HxCDD		8.50E-04	2.40E-03	1.78E-03	3.72E-14	2.96E-13
1,2,3,7,8,9-HxCDD		8.67E-04	2.45E-03	1.81E-03	3.80E-14	3.01E-13
Other HxCDD	8.05	2.19E-03	6.19E-03	4.59E-03	9.61E-14	7.63E-13
1,2,3,4,6,7,8-HpCDD	13.4	3.65E-03	1.03E-02	7.64E-03	1.60E-13	1.27E-12
Other HpCDD	11.4	3.11E-03	8.77E-03	6.50E-03	1.36E-13	1.08E-12
OCDD	27.2	7.41E-03	2.09E-02	1.55E-02	3.25E-13	2.58E-12
TOTAL PCDDs	87.61	2.39E-02	6.74E-02	5.00E-02	1.05E-12	8.30E-12
PCDFs						
2,3,7,8-TCDF		1.89E-03	5.35E-03	3.96E-03	8.30E-14	6.59E-13
Other TCDF		1.83E-02	5.17E-02	3.84E-02	8.03E-13	6.37E-12
1,2,3,7,8-PeCDF		7.06E-04	1.99E-03	1.48E-03	3.09E-14	2.45E-13
2,3,4,7,8-PeCDF		7.47E-04	2.11E-03	1.56E-03	3.27E-14	2.60E-13
Other PeCDF		8.71E-03	2.46E-02	1.82E-02	3.82E-13	3.03E-12
1,2,3,4,7,8-HxCDF		4.36E-04	1.23E-03	9.13E-04	1.91E-14	1.52E-13
1,2,3,6,7,8-HxCDF		6.65E-04	1.88E-03	1.39E-03	2.91E-14	2.31E-13
2,3,4,6,7,8-HxCDF		3.46E-04	9.77E-04	7.24E-04	1.52E-14	1.20E-13
1,2,3,7,8,9-HxCDF		3.92E-04	1.11E-03	8.21E-04	1.72E-14	1.36E-13
Other HxCDF		5.99E-04	1.69E-03	1.25E-03	2.63E-14	2.08E-13
1,2,3,4,6,7,8-HpCDF	3.3	8.99E-04	2.54E-03	1.88E-03	3.94E-14	3.13E-13
1,2,3,4,7,8,9-HpCDF	1.73	4.71E-04	1.33E-03	9.87E-04	2.07E-14	1.64E-13
Other HpCDF		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
OCDF	2.64	7.19E-04	2.03E-03	1.51E-03	3.15E-14	2.50E-13
TOTAL PCDFs	128.12	3.49E-02	9.86E-02	7.31E-02	1.53E-12	1.21E-11
TOTAL FODES	120.12	3.49E-UZ	9.00E-02	1.31E-UZ	1.00E-12	1.216-11
TOTAL PCDDs and PCDFs	215.73	5.88E-02	1.66E-01	1.23E-01	2.58E-12	2.04E-11
	3-Run Average	3.09E-01	8.65E-01	6.56E-01	1.38E-11	1.09E-10

EXAMPLE CALCULATIONS, RUN S-1A-M428-1

```
ABSOLUTE PRESSURE, INCHES OF MERCURY
Ps = Pbar + Pa/13.6
  = 29.90 + -0.02/13.6
  = 29.9
VOLUME OF WATER VAPOR, STANDARD CUBIC FEET
Vwstd = 0.002667 * [(Tstd + 460) / Pstd] * Vic
   = 0.002667 * [(0 + 460) / 29.92 * 189.8
   = 8.934
SAMPLED VOLUME OF SOURCE GAS, DRY STANDARD CUBIC FEET
Vmstd = [(Tstd + 460)/Pstd] * Y * Vm * (Pbar + Delta-H/13.6) / (460 + tm)
   = [(0 + 460)/ 29.92] * 1.0000 * 139.528 * (29.90 + 0.903/13.6) / (460 + 70)
   = 139.293
MOISTURE CONTENT, PERCENT BY VOLUME
%H2O = Vwstd / (Vwstd + Vmstd)
  = 8.934 / (8.934 + 139.293)
  = 6.0
DRY MOLE FRACTION, LB-MOLE/LB-MOLE
Mfd = 1 - \%H2O/100
  = 1 - 6.03/100
  = 0.940
DRY MOLECULAR WEIGHT, LB/LB-MOLE
Md = 44*(\%CO2/100) + 32*(\%O2/100) + 28*{[100-(\%CO2+\%O2)]/100}
  = 44*(4.5/100) + 32*(14.3/100) + 28*{[100-(4.5+14.3)]/100}
WET MOLECULAR WEIGHT, LB/LB-MOLE
Ms = Md*Mfd + 18.0*\%H2O/100
  = 29.28*0.940 + 18.0*6.03/100
  = 28.60
FUEL FACTOR
Fo = (20.9 - \%O2) / \%CO2
  = (20.9 - 14.3) / 4.5
  = 1.479
ISOKINETIC SAMPLING RATE, PERCENT
%I = Pstd/(Tstd + 460) * (100/60) * Vmstd*(ts + 460)/[Ps*vs*Mfd*Theta*(PI*Dia*Dia/576)]
  = 29.92/(0 + 460) * (100/60) * 139.293*(989 + 460)/[29.90*9.14*0.940*240.00*(PI*0.751*0.751/576)]
  = 100.6
VELOCITY, FEET PER SECOND
vs = 85.49 * Cp * SQRT[Delta-p*(460+ts)/Ps/Ms]
  = 85.49 * 0.84 * SQRT[0.0096*(460+989)/29.90/28.60]
  = 9.14
VOLUMETRIC FLOW RATE, ACTUAL CUBIC FEET PER MINUTE
Qaw = (60/144) * vs * A
  = (60/144) * 9.14 * 77
  = 292
VOLUMETRIC FLOW RATE, DRY STANDARD CUBIC FEET PER MINUTE
Qsd = (60/144) * Mfd * vs * A * (Tstd + 460)/(ts + 460) * (Ps/Pstd)
  = (60/144) * 0.940 * 9.14 * 77 * (0 + 460)/(989 + 460) * (29.90/29.92)
  = 100
TOTAL PCDDS CONCENTRATION, NANOGRAMS PER DRY STANDARD CUBIC METER
ng/DSCM = (Catch/Conversion) * 1.000.000.000 / (Vmstd * 0.02832)
  = (325/100000000000) * 1,000,000,000 / (139.293 * 0.02832)
  = 0.082
```

5/16/2018

EXAMPLE CALCULATIONS, RUN S-1A-M428-1

TOTAL PCDDS CONCENTRATION, NANOGRAMS PER DRY STANDARD CUBIC METER @ 12% CO2 ng/DSCM@12%CO2 = ng/DSCM * 12 / %CO2

= 0.082 * 12 / 4.5

= 0.222

TOTAL PCDDS CONCENTRATION, NANOGRAMS PER DRY STANDARD CUBIC METER @ 7% O2 ng/DSCM@7%O2 = ng/DSCM * (20.9-7) / (20.9-%O2)

= 0.082 * (20.9-7) / (20.9-14.32)

= 0.174

TOTAL PCDDS EMISSION RATE, GRAMS PER SECOND

gms/sec = (Catch/Conversion) * Qsd / 60 / Vmstd

- = (325/100000000000) * 100 / 60 / 139.293
- = 0.0000000000389

TOTAL PCDDS EMISSION RATE, POUNDS PER HOUR

lb/hr = 60 * (Catch/Conversion) * Qsd / 453.592 / Vmstd

- = 60 * (0/100000000000) * 100 / 453.592 / 139.293
- = 0.000000000308

5/16/2018

TO Stack 1A 14875 - RUNS 1 3.xl&\iextitide, OratouRativisus Date 03/28/2016

AKI No.: 14875 Page 19 of 131

ISOKINETIC SAMPLING TRAIN RESULTS - METHOD: CARB 428

Client Name	AECOM	Operator	MN CO
Plant Name	COCA-COLA	Project #	14875
Sampling Location	STACK SVE1B	Standard Temperature, °F	68

USE IN AVERAGE OF RUN SET	1 or 0 =>	1	1	1 1	SET
Run Number		S-1B-M428-1	S-1B-M428-2	S-1B-M428-3	AVERAGE
Run Date		04/11/18	04/12/18	04/13/18	
Run Start Time	hh:mm	751	730	730	
Run Stop Time	hh:mm	1002	1134	1136	
Meter Calibration Factor	Υ	1.0000	1.0000	1.0000	
Pitot Tube Coefficient	C _p	0.84	0.84	0.84	
Actual Nozzle Diameter	in	0.751	0.751	0.751	
Sample Volume	ft ³	186.105	213.121	213.545	204.26
Total Sampling Time	min	240	240	240	240.00
Average Meter Temperature	°F	77.6	67.8	73.6	73.00
Average Stack Temperature	°F	1235.7	1335.4	1348.8	1306.64
Barometric Pressure	in Hg	29.9	29.9	29.9	29.90
Stack/Duct Static Pressure	in H ₂ O	-0.25	-0.23	-0.27	-0.25
Absolute Stack/Duct Pressure	in Hg	29.9	29.9	29.9	29.88
Average Delta H	in H₂O	2.15	2.71	2.69	2.52
Absolute Meter Pressure	in Hg	30.1	30.1	30.1	30.09
Avg Differential Pressure (Delta P)	in H ₂ O	0.020	0.028	0.028	0.03
Total Water Volume Collected	mL	270.8	302.5	291.2	288.17
Volume of Water vapor @ STP	SCF	12.747	14.239	13.707	13.56
Volume Metered @ STP	DSCF	183.558	214.398	212.462	203.47
Calculated Stack Moisture	% H₂0	6.5	6.2	6.1	6.26
Saturated Stack Moisture	% H ₂ 0	100.0	100.0	100.0	100.00
Reported Stack Moisture Content	% H ₂ 0	6.5	6.2	6.1	6.26
Carbon Dioxide Percentage	% CO ₂	11.25	11.3	11.0	11.18
Oxygen Percentage	% O ₂	9.3	9.6	9.4	9.45
Carbon Monoxide Percentage	% CO	0.0	0.0	0.0	0.00
Nitrogen Percentage	% N ₂	79.4	79.1	79.6	79.37
Dry Mole Fraction	decimal	0.935	0.938	0.939	0.94
Dry Gas Molecular Weight	lb/lb-mole	30.17	30.19	30.14	30.17
Wet Stack Gas Molecular Weight	lb/lb-mole	29.38	29.43	29.40	29.40
Flue Gas Density	lb/ft ³	0.0763	0.0764	0.0763	0.08
Calculated Fuel Factor	F _o	1.03	1.00	1.04	1.02
F-Factor	DSCF/MM	9595	9595	9595	9595.00
Heat Input Rate	MMBtu/hr	0	1	1	0.49
Percent Excess Air	% EA	80.0	84.8	81.5	82.11
Stack Cross-Sectional Area	in ²	76.6	76.6	76.6	7 <u>6.60</u>
Stack Cross-Sectional Area	ft ²	0.53	0.53	0.53	0.53
Percent of Isokinetic Rate	% ISO	102.3	101.9	101.7	101.93
	Air Flow Rat	e Results			0.00
Average Stack Gas Velocity	ft/sec	13.94	17.26	17.23	16.14
Dry Standard Stack Flow/Minute	DSCFM	129	152	151	143.91
Wet Standard Stack Flow/Minute	WSCFM	138	162	160	153.50

ISOKINETIC SAMPLING TRAIN RESULTS - METHOD: CARB 428

ANALYTICAL DATA		S-1	IB-M428-1	S-1	B-M428-2	S-1	B-M428-3	Conversion
Compound	Unit	Pre	Amt	Pre	Amt	Pre	Amt	Factor
1 2,3,7,8-TCDD	pg	. <	1.70	<	1.04	<	1.28	1E+12
2 Total TCDD	123	. S	1.70	.	1,53	5.	1.28	1E+12
3 1,2,3,7,8-PeCDD	(00	<	2.76	<	1.70	. . <	2,36	1E+12
4 Total PeCDD		≲	2.76	'	1.70	<	2.36	1E+12
5 1,2,3,4,7,8-HxCDD		e S	254		2.18	<i>.</i>	2.89	1E+12
6 1,2,3,6,7,8-HxCDD		× ×	245	* ×	2.09	V	211	1E+12
7 1,2,3,7,8,9-HxCDD		* *	2.6	*	2 13	Ŷ	262	1E+12
8 Total HxCDD	7. 0	ikisa S o	.24.6	i n Barrini	4.81	¥	2.83	1E+12
9 1,2,3,4,6,7,8-HpCDD		Marin e jer Marin Alba	K	ia iii. Oli tee tii	7.51	<	3.00	1E+12
10 Total-HpCDD		6	27.S	egoverna.	14.8	9	7.61	1E+12
11 OCDD		ý. V	23.8	× (15,4		14.5	1E+12
12 2,3,7,8-TCDF		∯rac Hig Ka	390	V	2.29	Ž	195	1E+12
13 Total TCDF			29.0	¥	7.26		12.7	1E+12
14 1,2,3,7,8-PeCDF	alas de la composição d	*	2.70		2.20	ф «	191	1E+12
15 2,3,4,7,8-PeCDF		agrazioni si		>	223	V	198	1E+12
16 Total PeCDF	(Starty Erick Control	Mile Line Stee	- 	general de Mariner de	V Compression	Section And	haire an heim 22	1E+12
17 1,2,3,4,7,8-HxCDF			743	×	1.21		240	1E+12
18 1,2,3,6,7,8-HxCDF	QS	Ť	5.41	۸	1.09	ν,	1.12	1E+12
19 2,3,4,6,7,8-HxCDF	Pg	, 	1,54	. .	1.21	ζ.	1.24	1E+12
20 1,2,3,7,8,9-HxCDF	Py		1.85	990 m 2 4	1:37	- No. 1 - No. 1	1.40	1E+12
21 Total HxCDF	99	***************************************	12.8	* *	2.26		6.51	1E+12
22 1,2,3,4,6,7,8-HpCDF	pg	Mari 199	25.2		6.63	· · <	4:55	1E+12
23 1,2,3,4,7,8,9-HpCDF	pg	<	1.80	۲	1.61	~ <	1.79	1E+12
24 Total HpCDF	pg		25.2	t fact for	6.63	<	4.55	1E+12
25 OCDF	pg		11.6	<	2.81	<	2.85	1E+12

5/16/2018

Plant Name: COCA-COLA
Sampling Location: STACK SVE1B
Run Number: S-1B-M428-1
Run Date: 04/11/18

Doromotor	Cotch Maight		`anaantratic:			n Doto
Parameter	Catch Weight		Concentration		Emissio	
	(pg)	(ng/DSCM)	(12% CO ₂)	(@ 7% O ₂)	(gms/sec)	(lbs/hr)
PCDDs						
2,3,7,8-TCDD		3.27E-04	3.49E-04	3.93E-04	2.00E-14	1.59E-13
Other TCDD		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,2,3,7,8-PeCDD		5.31E-04	5.66E-04	6.37E-04	3.24E-14	2.57E-13
Other PeCDD		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,2,3,4,7,8-HxCDD		4.89E-04	5.21E-04	5.87E-04	2.98E-14	2.37E-13
1,2,3,6,7,8-HxCDD	2.43	4.67E-04	4.99E-04	5.61E-04	2.85E-14	2.27E-13
1,2,3,7,8,9-HxCDD	2.48	4.77E-04	5.09E-04	5.73E-04	2.91E-14	2.31E-13
Other HxCDD	14.15	2.72E-03	2.90E-03	3.27E-03	1.66E-13	1.32E-12
1,2,3,4,6,7,8-HpCDD	13.1	2.52E-03	2.69E-03	3.02E-03	1.54E-13	1.22E-12
Other HpCDD	14.8	2.85E-03	3.04E-03	3.42E-03	1.74E-13	1.38E-12
OCDD	23.8	4.58E-03	4.88E-03	5.50E-03	2.80E-13	2.22E-12
TOTAL PCDDs	77.76	1.50E-02	1.60E-02	1.80E-02	9.14E-13	7.25E-12
PCDFs						
2,3,7,8-TCDF		7.50E-04	8.00E-04	9.01E-04	4.58E-14	3.64E-13
Other TCDF	26	5.00E-03	5.34E-03	6.00E-03	3.05E-13	2.42E-12
1,2,3,7,8-PeCDF	2.72	5.23E-04	5.58E-04	6.28E-04	3.20E-14	2.54E-13
2,3,4,7,8-PeCDF	3.23	6.21E-04	6.63E-04	7.46E-04	3.79E-14	3.01E-13
Other PeCDF	17.85	3.43E-03	3.66E-03	4.12E-03	2.10E-13	1.66E-12
1,2,3,4,7,8-HxCDF	7.43	1.43E-03	1.52E-03	1.72E-03	8.73E-14	6.93E-13
1,2,3,6,7,8-HxCDF	5.41	1.04E-03	1.11E-03	1.25E-03	6.36E-14	5.04E-13
2,3,4,6,7,8-HxCDF	1.64	3.15E-04	3.37E-04	3.79E-04	1.93E-14	1.53E-13
1,2,3,7,8,9-HxCDF	1.85	3.56E-04	3.80E-04	4.27E-04	2.17E-14	1.73E-13
Other HxCDF	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,2,3,4,6,7,8-HpCDF		4.85E-03	5.17E-03	5.82E-03	2.96E-13	2.35E-12
1,2,3,4,7,8,9-HpCDF		3.46E-04	3.69E-04	4.16E-04	2.11E-14	1.68E-13
Other HpCDF		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
OCDF		2.23E-03	2.38E-03	2.68E-03	1.36E-13	1.08E-12
TOTAL PCDFs	108.63	2.09E-02	2.23E-02	2.51E-02	1.28E-12	1.01E-11
TOTAL PCDDs and PCDFs	186.39	3.59E-02	3.82E-02	4.30E-02	2.19E-12	1.74E-11

Plant Name: COCA-COLA
Sampling Location: STACK SVE1B
Run Number: S-1B-M428-2
Run Date: 04/12/18

Doromotor	Cotch Maight		`onoontrotics			n Doto
Parameter	Catch Weight		Concentration		Emissio	
	(pg)	(ng/DSCM)	(12% CO ₂)	(@ 7% O ₂)	(gms/sec)	(lbs/hr)
PCDDs						
2,3,7,8-TCDD		1.71E-04	1.82E-04	2.11E-04	1.23E-14	9.74E-14
Other TCDD		8.07E-05	8.59E-05	9.92E-05	5.78E-15	4.59E-14
1,2,3,7,8-PeCDD		2.80E-04	2.98E-04	3.44E-04	2.01E-14	1.59E-13
Other PeCDD		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,2,3,4,7,8-HxCDD	2.18	3.59E-04	3.82E-04	4.41E-04	2.57E-14	2.04E-13
1,2,3,6,7,8-HxCDD	2.09	3.44E-04	3.67E-04	4.23E-04	2.47E-14	1.96E-13
1,2,3,7,8,9-HxCDD	2.13	3.51E-04	3.74E-04	4.31E-04	2.51E-14	1.99E-13
Other HxCDD	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,2,3,4,6,7,8-HpCDD	7.51	1.24E-03	1.32E-03	1.52E-03	8.86E-14	7.03E-13
Other HpCDD	7.29	1.20E-03	1.28E-03	1.48E-03	8.60E-14	6.82E-13
OCDD	15.4	2.54E-03	2.70E-03	3.12E-03	1.82E-13	1.44E-12
TOTAL PCDDs	39.83	6.56E-03	6.98E-03	8.06E-03	4.70E-13	3.73E-12
PCDFs						
2,3,7,8-TCDF	2.29	3.77E-04	4.02E-04	4.64E-04	2.70E-14	2.14E-13
Other TCDF	4.97	8.19E-04	8.72E-04	1.01E-03	5.86E-14	4.65E-13
1,2,3,7,8-PeCDF	2.29	3.77E-04	4.02E-04	4.64E-04	2.70E-14	2.14E-13
2,3,4,7,8-PeCDF	2.39	3.94E-04	4.19E-04	4.84E-04	2.82E-14	2.24E-13
Other PeCDF	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,2,3,4,7,8-HxCDF	1.21	1.99E-04	2.12E-04	2.45E-04	1.43E-14	1.13E-13
1,2,3,6,7,8-HxCDF		1.80E-04	1.91E-04	2.21E-04	1.29E-14	1.02E-13
2,3,4,6,7,8-HxCDF		1.99E-04	2.12E-04	2.45E-04	1.43E-14	1.13E-13
1,2,3,7,8,9-HxCDF		2.26E-04	2.40E-04	2.77E-04	1.62E-14	1.28E-13
Other HxCDF		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,2,3,4,6,7,8-HpCDF		1.09E-03	1.16E-03	1.34E-03	7.82E-14	6.21E-13
1,2,3,4,7,8,9-HpCDF		2.65E-04	2.82E-04	3.26E-04	1.90E-14	1.51E-13
Other HpCDF		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
OCDF		4.63E-04	4.93E-04	5.69E-04	3.31E-14	2.63E-13
302.		- ·	 ·			
TOTAL PCDFs	27.87	4.59E-03	4.89E-03	5.64E-03	3.29E-13	2.61E-12
	-					- -
TOTAL PCDDs and PCDFs	67.70	1.30E-02	1.39E-02	1.60E-02	7.99E-13	6.34E-12

Plant Name: COCA-COLA
Sampling Location: STACK SVE1B
Run Number: S-1B-M428-3
Run Date: 04/13/18

Run Date:	04/13/18					
Parameter	Catch Weight		Concentration		Emissio	
	(pg)	(ng/DSCM)	(12% CO ₂)	(@ 7% O ₂)	(gms/sec)	(lbs/hr)
PCDDs						
2,3,7,8-TCDD	1.28	2.13E-04	2.32E-04	2.58E-04	1.51E-14	1.20E-13
Other TCDD	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,2,3,7,8-PeCDD	2.36	3.92E-04	4.27E-04	4.75E-04	2.79E-14	2.21E-13
Other PeCDD	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,2,3,4,7,8-HxCDD	2.89	4.80E-04	5.23E-04	5.82E-04	3.41E-14	2.71E-13
1,2,3,6,7,8-HxCDD	2.77	4.60E-04	5.01E-04	5.58E-04	3.27E-14	2.60E-13
1,2,3,7,8,9-HxCDD	2.82	4.69E-04	5.10E-04	5.68E-04	3.33E-14	2.64E-13
Other HxCDD	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,2,3,4,6,7,8-HpCDD	3	4.99E-04	5.43E-04	6.04E-04	3.54E-14	2.81E-13
Other HpCDD	4.64	7.71E-04	8.40E-04	9.35E-04	5.48E-14	4.35E-13
OCDD	14.5	2.41E-03	2.62E-03	2.92E-03	1.71E-13	1.36E-12
TOTAL PCDDs	34.26	5.69E-03	6.20E-03	6.90E-03	4.05E-13	3.21E-12
PCDFs						
2,3,7,8-TCDF		2.74E-04	2.99E-04	3.32E-04	1.95E-14	1.55E-13
Other TCDF	11.05	1.84E-03	2.00E-03	2.23E-03	1.31E-13	1.04E-12
1,2,3,7,8-PeCDF		3.17E-04	3.46E-04	3.85E-04	2.26E-14	1.79E-13
2,3,4,7,8-PeCDF	1.98	3.29E-04	3.58E-04	3.99E-04	2.34E-14	1.86E-13
Other PeCDF	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,2,3,4,7,8-HxCDF		3.82E-04	4.16E-04	4.63E-04	2.72E-14	2.16E-13
1,2,3,6,7,8-HxCDF		1.86E-04	2.03E-04	2.26E-04	1.32E-14	1.05E-13
2,3,4,6,7,8-HxCDF	1.24	2.06E-04	2.24E-04	2.50E-04	1.46E-14	1.16E-13
1,2,3,7,8,9-HxCDF	1.4	2.33E-04	2.53E-04	2.82E-04	1.65E-14	1.31E-13
Other HxCDF	0.45	7.48E-05	8.14E-05	9.06E-05	5.32E-15	4.22E-14
1,2,3,4,6,7,8-HpCDF	4.55	7.56E-04	8.23E-04	9.16E-04	5.38E-14	4.27E-13
1,2,3,4,7,8,9-HpCDF	1.79	2.97E-04	3.24E-04	3.61E-04	2.11E-14	1.68E-13
Other HpCDF	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
OCDF	2.85	4.74E-04	5.16E-04	5.74E-04	3.37E-14	2.67E-13
TOTAL PCDFs	32.29	5.37E-03	5.84E-03	6.50E-03	3.81E-13	3.03E-12
TOTAL PCDDs and PCDFs	66.55	1.28E-02	1.39E-02	1.55E-02	7.86E-13	6.24E-12
	3-Run Average	2.06E-02	2.20E-02	2.49E-02	1.26E-12	9.99E-12
	_					

APPENDIX A

DIOXINS/FURANS (PTO STACK)

2.0 Field Data

AKI No.: 14875 Page 25 of 131

Intentionally Left Blank

AKI No.: 14875 Page 26 of 131

SAMPLING AND VELOCITY TRAVERSE POINT DETERMINATION EPA METHOD 1A

CLIENT: AECOM / Cal Klean PLANT NAME: Coca-Cola Distribution Center CITY, STATE: Torrance, CA SAMPLING LOCATION TO Exhaust TYPE OF TESTING: Particulate NO, OF PORTS AVAILABLE: 2 NO. OF PORTS TO BE USED: 2 PORT INSIDE DIAMETER: 3 inches DISTANCE FROM FAR WALL TO OUTSIDE OF PORT: 12.00 inches NIPPLE LENGTH AND/OR WALL THICKNESS: 2.125 inches DEPTH OF STACK OR DUCT, D: 9.88 inches STACK OR DUCT WIDTH (IF RECTANGULAR), W: #N/A inches EQUIVALENT DIAMETER De = 2*(DEPTH)*(WIDTH)/(DEPTH+WIDTH) =9.88 inches MAKE SURE TO USE METHOD IA STACK/DUCT AREA = 0.53 sq.feet 76.6 sq.inches DISTANCE OF TEST PORT LOCATION: DOWNSTREAM UPSTREAM FROM FLOW FROM FLOW DISTURBANCE DISTURBANCE В A # OF INCHES 24.00 12.00 Sample # OF DIAMETERS 2.43 1.22 MINIMUM NUMBER OF TRAVERSE POINTS: 24 % OF DISTANCE DISTANCE POINT DUCT FROM INSIDE FROM OUTSIDE NO. DEPTH WALL (in.) OF PORT (in.) 2.1 1 0.50 2 5/8 2 В 6.7 0.66 2 3/4 3 11.8 1,17 3 1/4 17.7 1.75 3 7/8 25.0 2.47 4 5/8 6 35.6 3.52 5 5/8 64.4 6.36 8 1/2 8 75.0 7.41 9 1/2 82.3 9 8.13 10 1/4 10 88.2 8.71 10 7/8 11 93,3 9.21 11 3/8 97.9 12 9.38 11 1/2 Flow Direction

DRAWING NOT TO SCALE

AKI No.: 14875 Page 27 of 131

		AECOM COCA-COLA					Run#		S_1/	\-M428-	1		
Client Nam							Project #		14875		Run Sta	irt T	802
Plant Nam	_						Project #				Run En		12/0
lant City,		TORRAN					Tester S		14/4	ana)	<u> </u>	<u>~</u>	1000
est Local		STACK							//	 	THI		
ate of Te	_	4]4]					Checked		/_	//		D & Tare	Actuals
		etic Facto	or Setup		Press			ling Equip	omen <u>t</u>	MB25	NA	I NA	CO2
Н @ 0.75				h <u>85</u>	Pbar	29.9	Meter Co				INA		4.45
leter Cali	bration	Factor_		1.00		0.0231		zzle Diam	eter	0.835			
Pitot Tube	Coeffic	cient		0.84	Abs P	29,9	Nozzie #			30 P-1			O ₂
stimated	Dry Ga	s Meter T	emp	$\mathcal{I}_{\mathcal{O}}$	Tstd, °F	68_		ozzle Diai	meter	0.75			14.32
stimated	Stack *	Temp or N	/12 Avg.	1350	Pstd	29.92	Probe L		3_	30P-1	20.0		0.0
stimated	Delta F	or M2 A	/g.	0.0132	Estin		Liner Ma			GL'		D & Tare	
stimated	Moistu	re Conter	nt	6.0	CO ₂	4.5	Filter Bo		<u> </u>		14x-1	326.2	N ₂
stimated	Dry Mo	lecular W	/eight	29.30	02	14.5	Cold Bo			NA			81.2
stimated	Veloci	y, ft/sec		17.0	co	0.0	Umbilica	IID#		NA		<u></u>	H ₂ 0
(Factor (delta H/	delta P)		98-62	N ₂	81.0	TC ID #s			30P.1			1898
Fauinme	nt & I a	ak Check	Data, OK?		Leak C	hecks	1	2	3	4	5	6	Status
ambient	NA	NA NA	PRE	POST	DGM init			520.420	Γ			50.410	
hermoco	_	, 1	<u> </u>	Y	Vacuum		15	12	10			D. 122	150
Pitots	-10.00		Ÿ	Ÿ	Leak Ra		0007	0.007	0.000			1/6//	ОК
edlar Bag	,		<u></u>	<u> </u>	DGM fin		 ~~/_	520.50	~	<u> </u>		5 20.500	_0.000
Julai Daţ	2		Dev Goo		Desired		 	DGM	DGM			248±9	lmp.
_	Clock	Test	Dry Gas Meter	Velocity	Orifice	Orifice	Pump	Inlet	Outlet	Stack	Probe	Filter	Exit
Point #	Time	Time	Reading	Head	ΔH	ΔΗ	Vac	Temp	Temp	Temp	Temp	Temp	Temp
	_	min	ft ³	in H₂O		in H₂O	in Hg	°F	°F	°F	°F	°F	°F_
	402		461.547	0.0085		0.80	Ч	59	59	985	NA	250	57
- 11	10 -	10.0	456.930	0 0115	1.08	105	L)	60	60	0186	NA_	250	56
) - 10		20.0	463, 200	0.0107	100	1.00	6	67.	67	986	NA	250	53
9		30.0	469.14	0.0100	094	0.94	6	64	64	98,4	NA	253	54_
. 8			475.73	0.0096	1.90	090	5	65	65	984	NA_	250	54
. 7			481.07	al. 01/6	109	rva	5	64	67	986	NA _	3.49	50
- 6		60.0	487, 44	0.0081	0.76	0.76	6_	67	67	92,5	NA	254	49
- 5		70.0		0.0093		0.87	6	68	68	988	NA	253	50
- 4		80.0	498.450			0.81	6	68	68 69	985	NA	253	50 51
- 3					0.80	_ ~ ~ .	6	69		987	NA	254	
- 2			909.31		0.74	0.74	6	69	69	986	NA	252	51_
1				0.0094		0.88		69	69	988	NA NA	253	51
B - 12			520.42	0.009	0.84	084	5	69	69	989	NA NA	254	<u>49</u>
- 11		130.0	526.05	0.0115		1.08	6 3	70	70	990	NA_	254	<u>49</u>
- 10			532.43	0.01	0.94	094	106 1		71	993	NA NA	7.52	48
- 9			538.47	0.014	1.31	1.30	6 W		7/,	994	NA NA	753	49
- 8			545.53			093		71	71	99'5	NA NA	7.52	48
7		170.0	551.41	0.011	<i>€</i> 1.03	1.05		77_	77	999	NA NA	252	49
- 6		180.0	557.68	0.009	0.8.4	0.84		74	74	997	NA NA	252	49
- 5	<u> </u>		663.33			0.83		75	75	996		252	1 50
- 4			568.92	O.0083	10.77	0.77		76_	76	994		7.54	51
- 3					0.78	0.78		77	77_	989	NA NA	753	53
- 2			579.84			0.71		77	77	990	+	7.50	
<u> </u>		230.0			097	092	5_	78	78	988	NA NA	+ -7.30	+ 5 7
- END	1210	240.0	591.150	<u> </u>	<u> </u>	 			 	-	11/	+	+
-	<u> </u>	ļ		ļ	_	 			 	-	+	 	
		<u> </u>		 	 	 	 	 	 	 	 	 	+
		<u> </u>			 	 	-	 	 	 	-	+	+
				1	 	 	 	 	 -	 	+	 	+
	<u> </u>	<u> </u>		⊢ —	1	MAX =:		 	<u> </u>				
	Matri	240.0	0.000	1	T 4.000	_		├	7 ~	929	7		
Average	values	240.0	,000.00	0.010	0.90	ado	_		70	1 034	J		

IOOK	141-1	10 0/	//VIII	10 11	V 1111									1
Client Nan	ne	AECOM				-	Run#		_	\-M428-			C 4 5	
Plant Nam	e	COCA-C	COLA				Project #	‡	14875_		Run Sta		835	1
Plant City,		TORRA	NCE, CA				Personn	el	MAL	RV	Run End	d	1241	
Test Loca		STACK					Tester S	ignature	\ 	4mV	\			
Jate of Te			18				Checked	By		////	M			İ
		etic Fact			Pres	sures	Samo	ling Equi	ment	1/ 🗸	Filter I	D & Tare	Actuals	İ
∆H @ 0.75		enc i ace	oi octub	1-85	Pbar	29.9	Meter C			MB25	NA	NA	CO ₂	l
Meter Cali		Footor						zzle Diam	eter	0.791	6	7	4.26	
			- ~~	1.00		U.U Z 4 #			<u></u>		(%)	. 56	O ₂	l
Pitot Tube			0.99	0.84	Abs P					3QP.2			14.37	
Estimated	Dry Ga	s Meter T	emp	70	Tstd, °F	68				0.792	15			ł
Estimated	Stack T	Temp or I	M2 Avg.	1000	Pstd		Probe L		3	3 A P.	<u>~</u>		CO	ł
Estimated	Delta F	or M2 A	vg.	0.0132	Estin	nates	Liner Ma	<u>terial</u>		GL		D & Tare	0.00	ł
Estimated	Moistu	re Conte	nt	6.0	CO ₂	4.5	Filter Bo	x #		NA	X4D-2	336.0	N ₂	ł
Estimated	Dry Mo	lecular V	Veight	29.30	O ₂	14.5	Cold Bo	x ID#		NA			81.4	
Estimated				10-8	CO	0.0	Umbilica	al ID#		NA			H ₂ 0	ļ
K Factor (116.06	N ₂	81.0	TC ID #s	 }		3 A) P	<u>.</u>		_	
			- Dat- 01/0			Checks	1	2	3	4	5	6	Status	Ī
			Data, OK?				├-'-				<u> </u>	656.75	2 222	1
Tambient	NA_	NA	PRE		DGM ini			656.75					815	1
Thermoco	uples		Υ	Y	Vacuum		15_	12	10_	 -	<u> </u>	M1911	OK OK	1
Pitots			Υ	Υ	Leak Ra		0.004	0.00z	0.000			Moles	0.000	┨
Tedlar Ba	g				DGM fin	al		656.95		<u></u>	l <u> </u>	656 950		4
			Dry Gas		Desired	Actual		DGM	DGM			248±9	lmp.	0
	Clock	Test	Meter	Velocity	Orifice	Orifice	Pump	Inlet	Outlet	Stack	Probe	Filter	Exit	70
Point#	Time	Time	Reading	Head	ΔH	ΔΗ	Vac.	Temp	Temp	Temp	Temp	Temp	Temp	┨
	24 hr	min	ft ³	in H ₂ O	in H₂O_	in H₂O	in Hg_	<u>°F</u>	<u>°F</u>	°F_	°F	°F	°F	ړ. ا
A - 12	835	0.0	591. GZ4	0.0079	0.92	0.92	4	60	60	1093		252	49	156
- 11		10.0	596.67	0,129	1.04	105	5_	63	63	1092	NA	255	45	39
- 10		20.0	602.15'	12.0075		0.87		G5	65	1093	NA _	753	45	- 4
9			607.08	0.0091		105	5	65	65	1095	NA	251	46	3
- 8			612-450	6.0095		1.10	5	66	66	1094	NA	251	47	3/
. 7		50.0	617.94	0.0093		1.10	5	67	67	1094	NA	253	46	3
- 6		60.0	623. 48	0.0113	1.31	1.30	5	68	68	1093	NA	7 5 1	47	_ ५
. 5		70.0	629.59	0.0085	-	0.99	5	69	69	1095	NA	252	47] 4
4		80.0	634. 89	0.0089		1. 05	5	69	69	1093	NA	252	U%]4
. 3	1	90.0		0,0076		0.88	Ч	69	69	1094	NA	751	47] u
- 2	<u> </u>	100.0	645.47	0.0096	114	1.15	5-	70	70	1097	NA	757	48	<u> </u> 4
1						1.10	3	70	70	1094	NA	251	49] 4
B · 12		120.0	651.09 656.75	0.0096		1.10	5_	71	71	1093		254	48]¥/
- 11		130.0			_	1.15	1 2	ラフ	77	1095	 	251	45]%
- 10	-	140.0	662.390			T	5	72	72	MILI	NA	252	45] 4
- 10	 		668 140			1.00	5	73	73	1096	NA	150	47] ₆
- 8	 		(47 370	0.0040			5	73	73	1097	NA	250	47]4
- <u>8</u> - 7	 	170.0	678.970			10-74	5	74	7 <i>U</i>	109 83	NA	252	46]4
	 		684.08	0.014		1 1	5_	74	74	1096	NA NA	253	47	14.
. 6		180.0	690.26	0.0015		0.96	5	74	74	1095		252	47	
- 5	-		695.86	D-0093	0.76		5	74	74	1095	NA NA	252	47	\ ่ฯ
- 4		200.0		0.0084		0.97		74	74	1094	NA NA	251	47	74
. 3	ļ	210.0	706.55				5_			1096	NA NA	250	46	٦,
2	1	220.0		0.0089		1.00	5	75	75		NA NA	257		14
. 1	<u> </u>	230.0	716.49	10-017	1.30	1-30	5	75	75	1097	NA NA	+~ 3 /	 	7
- END	124	240.0	723.125	<u> </u>	<u> </u>	ļ <u> </u>	 	<u> </u>	 	├	INA	 	+	\dashv
_			,	<u> </u>		<u> </u>	ļ	ļ <u> </u>		 	 		 	\dashv
									<u> </u>			 	 	-
										<u> </u>		 		\dashv
-		T				<u> </u>		<u></u> _				 	 	4
		<u> </u>								<u> </u>	<u> </u>	<u> </u>		_
		†	 			MAX =>	5							
	Values	240.0	0.000	0.99	1.06	1,0%			FO_	1095	1			

			/ \IVII										<u> </u>
Client Nar	me	AECON					Run#		S-1	A-M428-			
Plant Nam	ne	COCA-	COLA				Project	#	14875		Run Sta	art	725
Plant City			ANCE, CA				Personi		MN	RN .	Run En	d	1129
₹est Loca			SVE1A					Signature	A	/VII	\sqrt{n}	/	
ate of Te	est	4/61	18				Checke	d By		0	1/1	γ′	
		etic Fac	tor Setup		Pres	sures	Sam	pling Equi	pment		Filter	D & Tare	Actuals
ΔH @ 0.75	SCFM	•		1.85	Pbar	29.9	Meter C	onsole#		MB 25	NA	NA	CO ₂
Meter Cali	ibration	Factor		1,00	Pstatic		ideal No	zzle Diam	eter	0.804			4.25
Pitot Tube	e Coeffi	cient		0.84	Abs P	299	Nozzle i			3QP-1			O ₂
Estimated	Drv Ga	s Meter	Temp	70	Tstd, °F		-	Nozzle Dia	meter	0.751			14.26
Estimated				1100	Pstd	29.92	Probe L		3	3 (2P)		<u> </u>	CO
Estimated				0.0132	-	mates	Liner Ma			ĞĹ	XAD	D & Tare	ල.ල
Estimated				6-0	CO2	4.5	Filter Bo			NA		3303	N ₂
Estimated	Dry Mo	lecular \	Weight	2950	O ₂	14.5	Cold Bo			NA	7.12.2		81-5
Estimated				11 1	co	0.0	Umbilic			NA			H ₂ 0
K Factor (108.04		81.0	TC ID #s				<u> </u>		25
			k Data, OK1				 			3QP-	7	1 0	Status
Equipme Tambient		NA	PRE		DGM ini	Checks	1_1_	2	3	4	5	6 1,00 . 47	Status
		I IAW					 	790.770				MA.	15000-
Thermoco	upies		Y		Vacuum		15	10	(0	 		9	V V .
Pitots			Y	Υ	Leak Ra		0.00	0.007	0.000			416/18	OK
Tedlar Bag	9		<u></u>	<u> </u>	DGM fin		<u>L</u>	790856		<u></u>	<u> </u>	100.950	• • • • • • • • • • • • • • • • • • • •
	<u>. </u>		Dry Gas			Actual		DGM	DGM			248±9	Imp.
Point#	Clock	Test	Meter	Velocity		Orifice	Pump	Inlet	Outlet	Stack	Probe	Filter	Exit
		Time min	Reading	Head	Δ H in H ₂ O	ΔH in H ₂ O	Vac.	Temp	Temp	Temp	Temp	Temp °F	Temp °F
A - 12	24 nr 325		ft ³				in Hg	°F	°F	°F	°F		سيستسيب
A - 12 - 11	761	0.0 10.0	776.312	0.0093	1.00	1.07	3	56	56	1099	NA NA	252 252	534
- 10			731 65	0.0087		0.94	4	58	58	1101	NA NA	251	134
- 10		30.0	736.99	0.0113	1.22	1.20	5	60	60	1104	NA NA		37 45 136
- 8	:	40.0	742.84	0.0096		1.05	5	63	63	०१८	NA NA	252	49
- 7			748.77		0.85	0.85	5	64	64	1103	NA NA	252	
- 6		60.0	,, , , , , , , , , , , , , , , , , , ,	0.0086		0.93		66	67	1104	NA NA	254	46
- 5		70.0		0.0071		0.77	5	67	68		NA NA		46
- 4		80.0	763.76	0.0010	1.06	1.05	U	68	70	1105	NA NA	255	47
- 3			743.68	C. DUM	1 11	0.75	5	70	71	1090		252 252	50
- 2		100.0	775. 60 770 50	n. 0108	1.17	1.10	5	73	73	1102	NA NA	254	50
- 1			785_51	CI CHCADE			4	74	74	11.01	NA	753	51
	929	120.0	790.770	0.000	0.91	091	4	75	75	1102	NA	252	53
- 11	- 6 10-1	130.0		0.0097	0.99	0.99	5	76	76		NA	255	5 Z
- 10				0.000	1.10	1.10	5	76 77	77	1095	NA	253	53
- 9				0.0094		1.02	<u></u>	78	77 78	1099	NA	253	53
- 8		160.0	813.17	0.0079	0.95	0.85	5 5	78	79 79	1102	NA	257	54
- 7		170.0		0.0071	0.73	0.78	y	80	40	1103	NA	251	56
- 6	_		823.28		0-93	12.93	5	81	81	1106	NA	252	3-1
- 5				0.0078	0.84	0.84	5	82	82	1100	NA	250	52
- 4				0.0091		0.98	5	83	87	104	NA	753	53
- 3		210.0		1.0114	1. 23	1.75	5	SU	84	1099	NA	25/	54
- 2			845.73			1.05	5	84	84	1102	NA	257	56
- 1				0.0085		O.AZ	5	86	86	ingu	NA	252	56
	1119				<u> </u>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<i>V W</i>	* 6	1044	NA	<u> </u>	
-	-11 ([7.000									_ _	
													<u> </u>
													
			-										 -
-					, ,		. ,						
-													
-						MAX =>	5						

130,662

AKI No.: 14875 Page 30 of 131

MOI	STURE AND FIELD F	RECOVERY S	SHEET (METH	DD - CARB 420	۶
Box No.:		Date Prepared: _) Assembled by:	V. Mucedoni
Job No	14875		-1A-MP9-1	5-1A-MT09-2 5	4.6.18
	<u>AECOM</u>	Test Date	4.4.18	4.6.15	4.6.18
	Torrance, CA	i	NC	NC	NG
Test Location_	TO-Stade	Analyst			
Reagent	HPLC DI H20	Final Wt., g	652.5	6501	687.2
	100	Tared Wt., g	500.9	500.2	532.t 154.5
· · /		Catch, g	151.6	149.9	
Paggent	XAD Troup	Final Wt., g	337.1	344.7	3414
	7112	Tared Wt., g	326.2	336.0	330.3
Volume (mm)_		Catch, g	10.9	8.7	11.1
		Final Wt., g			
		multiply by 1.1*			
Volume (IIII)	*(KMnO4 density of 1.1 g/ml)		·		
	(Allimo i della j	Catch, g	.	· <u>·</u>	
	Siilica Ge	Final Wt., g	427.3	426.8	425.2
	Silica Ge.	Tared Wt., g	400	400	400
Delegge No.	DT 8	Catch, g	27.3	26.8	25.2
_	 -	TOTAL, g	189.8	185.4	190.8
	1000	IOIAL, g	<u> </u>		
Reading, g (± 0.5)	1000.2				
<u>`</u>		% Silica Gel Spent	80	80	80
		Level Marked (?)	V	V	/
	•		NA	NA	NA
	Filter (if applicable	No./Tare, g			
		No./Tare, g	Light Brown	Light Brown	Light Brown
Filter Appearance	(if applicable)		25717 370-01		
					Clear
Reagent Appearan	ce (if needed)	<u>.</u>	Clear	Clear_	<u></u>
Comments					
					TM
Form D104 - Moistu	ure - Field Sample Recovery QC 01	1218		Reviews)r

AirKinetics, Inc.

AKI No.: 14875 Page 31 of 131

		A E O O M					Run#		S_1F	3-M428-	1			
Client Nan		AECOM					Project i	4	14875	<u> </u>	Run Sta	rt	751	
Plant Nam		COCA-C					Personn		MN C		Run En		1202	
ant City,			NCE, CA						MINIC		2		1	
est Local		STACK					_	ignature	14	YM //	<u> </u>	<u>/</u>		
Date of Te		4/10/18					Checked		<u> </u>	//		D & Tare	Actuals	
		etic Fact	or Setup		Pres			oling Equip	oment	<u> </u>		NA NA	CO ₂	
∆H @ 0.75	SCFM			1.85	Pbar	100	Meter Co			MB25	NA	IVA		
Meter Cali	bration	Factor		1.00	Pstatic	<u>~0.9.</u>	Ideal No	zzle Diam	eter	0.800			11.25	
Pitot Tube	Coeffic	cient		0.84	Abs P	29.9	Nozzle #	£		3QP-1_			O ₂	
Estimated	Dry Ga	e Motor T		70	Tstd, °F	68	Actual N	lozzle Diar	neter	0.751			G.32	
Estimated					Pstd		Probe L		302P-1	3/28-1			CO	
Estimated				O. 0135		nates	Liner Ma		<u> </u>	QTZ		D & Tare	0.0	
Estimated				6.0	CO ₂	4.5	Filter Bo			ΝA	X47-4	327.0	N ₂	
					O ₂	14.5	Cold Bo			NA	,		81.4	
Estimated			veignt	29.3	CO	0.0	Umbilica			NA	 		H ₂ 0	
Estimated				14.3		81.0	TC ID #s			3QP-	<u> </u>			
K Factor (108. 9 4	N ₂	<u></u>	ICID#8		-				04.4	
Equipme	ent & Le	ak Checl	k Data, OK?			Checks	1	2	3	4	5	6	Status	
Tambient	NA	NA	PRE		DGM ini	tial		947.960				947,96		
Thermoco	uples		Υ	Υ	Vacuum		15	12	15		1/1	1,10,	15,01	ĺ
Pitots	_		Υ	Υ	Leak Ra	te	7-002	0.004	0002			11/0	OK	
Tedlar Bag		T			DGM fin	al		947.990			- 0(/	947.990	0.000	Ì
	,	! <u> </u>	Dry Gas		Desired	Actual		DGM	DGM	T	248±9	248±9	lmp.	Cond.
	Clock	Test	Meter	Velocity		Orifice	Pump	Inlet	Outlet	Stack	Probe	Filter	Exit	Exit
Point#	Time	Time	Reading	Head	ΔH	ΔΗ	Vac.	Temp	Temp	Temp	Temp	Temp	Temp	Temp
		min	ft ³	in H ₂ O	in H ₂ O	in H₂O	in Hg	°F	٥F	°F	°F	°F	°F	°F
A - 12	751	0.0	857.215	0.0187		2.00	7	65	65	NAG	X754	251	54	40
- 11	701	10.0	864,63	0 0089		0.96	5	65	45	NA &	1253	7.53	50	40
10	<u> </u>	20.0	869.59	_			6	67	67	1252	INA	257	49	41
9	 	30.0	875,930			2.05		68	68	1256	NA	254	49	-41
8	 	40.0	883.34	0.0301	3.25	3:25	10_	70	70	1197	NA_	753	50	<u> 4/</u>
. 7	<u> </u>	50.0	892.89	12 02.04		2.20	8	772	77	1232	NÁ	252	_5 <i>a</i>	41
- 6		60.0	900.69	6.0152	_	1.65	 	73_	73	1726	NA	257	54	41
- 5	 	70.0	907.62	0.0134		1.50	8	75	75	1248	NA _	7.53	5.5	42
. 4		80.0			1.30	130	8	26	76	1240	NA	148	54	42
3	 	90.0	914.18	0.012		2.60	10	77_	77	1 226	NA	150	54	47
. 2	<u> </u>	100.0	970.18		7.7	3.10	10	7.8	78	1243	NA	251	55	42
. 1		110.0	978.64	0.0787	1		11	79	79	1748	NA	249	56	42
	(1) 5.0		938,000	0 0 37%		3.50	a	80	80	14730	NA	262	59	42
	1002	120.0	947.960						81	1198	NA -	U53	58	47
11			956.090			2.10	8	91	9.7	1218	NA -	25)	56	43
· 10	-		963, 920			1,70	9	<i>ब</i> र	84	1236		7.57	55	43
. 9	⊢ −		971.000			1.90	- '-	84	84	17.75		249	53	43
- 8	<u> </u>		978.48			7.55	11 9		85	1214		249	52	43
. 7	<u> </u>		987 73			7.00	-	85		1245		252		43
. 6		180.0				7.35		85	85	1236		253	#72 53	44
- 5		190.0	1003.18	1 00205	12.76	2.75	17	84	84			250	54	44
· 4	<u> </u>		1012.19			2.55		84	84	1249			56	uu_
. 3		210.0	1020.74	10.0189	11.99	2.00	10	93	83	1744		752 251	57	45
- 2		220.0	1028.38	10.0215	7.32	7.30	12	82	81	1238			59	4.5
· <u>1</u>	<u> </u>		1036.54		1.64	1.65	٩	83	83_	1243	<u>INA</u>	254	1-2-	+ 1/4
- END	1202	240.0	1043.35		↓	ļ			 	├	 	 	 	+
					<u> </u>				ļ	 	 	 	+	+
					<u></u>		<u> </u>	<u> </u>	—-	1	 	 	 	+
-						<u> </u>		<u> </u>	<u> </u>	 	<u> </u>		 	+
-								1	<u> </u>	<u> </u>	 	 	_	+
· ·	1	1								<u> </u>		<u></u>	<u></u>	
<u> </u>						MAX =>					7			
Average	Values	240.0	186.185	0,010	2,15	2.15		75		17.36	L			

		A = 0 0 M	ı				Run#		C_1	3-M428-				i
Client Name		AECOM					Project :		14875		Run Sta		770	ì
Plant Name		COCA-C							-		Run En		1134	
lant City, 8			NCE, CA				Personn		74		Kull Lil	<u> </u>	<u> </u>	I
est Location		STACK						ignature	20					I
Date of Tes			4-18				Checked		<u> </u>			5 0 To	Actuals	ı
		etic Fact	or Setup			sures		oling Equip	<u>pment</u>					
∆H @ 0.75 S	SCFM					29.9		onsole#		MB + T	NA	NA	CO ₂	
Meter Calib	ration	Factor		1.00	Pstatic	-0-23	Ideal No	zzle Diam	eter	16	.687	<u></u>	11.27	
Pitot Tube (Coeffic	ient		0.84	Abs P	29.9	Nozzle #	ŧ		30P-	1		O ₂	
Estimated D	orv Ga	s Meter T	Temp	30	Tstd, °F	68	Actual N	lozzle Diai	meter	0.75	/		9,59	
Estimated S				(300	Pstd	29.92	Probe L		30P-1	30P-1			CO	
Estimated D				0.02.80		nates	Liner Ma		<u> </u>	QTZ	XAD II	D & Tare	0.0	
Estimated N				6.0	CO2	4.5	Filter Bo			NA	XAD-5	3260	N ₂	
Estimated D				29.80	O ₂	14.5	Cold Bo			NA			79.1	i
Estimated V			- Cigiit	13.9	CO	0.0	Umbilica			NA			H ₂ 0	i
K Factor (de					N ₂	81.0	TC ID #s			30 P	-1	<u>. </u>	 	1
				95.72	<u> </u>	<u> </u>						6	Status	Í
			k Data, OK?			Checks	1	2	3	4	5	-	0.000	1
Tambient	NA	NA	PRE		DGM init									
Thermocou	ples		Υ	Y_	Vacuum		15	15				ļ	0	1
Pitots			Υ	Υ	Leak Ra	te .	D.004.	0.007	<u> </u>	L		ļ	OK	4
Tedlar Bag		N4			DGM fin	al	'		- 100 m			<u> . </u>	0.000	<u>. </u>
			Dry Gas		Desired	Actual	ŀ	DGM	DGM		248±9	248±9	mp.	Cond.
	Clock	Test	Meter	Velocity	Orifice	Orifice	Pump	Inlet	Outlet	Stack	Probe	Filter	Exit	Exit
	Time	Time	Reading	Head	ΔH	ΔH	Vac.	Temp	Temp	Temp	Temp	Temp	Temp	Temp
2	24 hr	min	ft ³			in H ₂ O	in Hg	°F	°F	°F	°F	°F	°F	°F
A - 12	771	0.0	44,379			742	5	58	58	1317	NA	244	48	39
· 1 <u>1</u>		10.0	52.570	0.0269	257	3.52	8	59	59	1330		220	48	42
- 10		20.0	61.00	0.0265	724	2.55	9_	60	60	1346		351	47	42
- 9		30.0	69.400	0.0317	3.03	3.00	10	62	62	1348		253	47	\ <u>\(\(\(\) \</u>
8		40.0	79.400	0.0 7 24	3.15	7.15	<u>II</u>	62	62	1360		75.7	46	42
. 7				0.0319		3.05	11	62	161_	1367	ļ. 	211	47	42
. 6				0.6286	274	7.35	1 11	67	63_	1290	<u> </u>	247	50	79
5			 	1.0317	3.0 3	3.00	11	67	67	1360	<u> </u>	215	5/	38
4		80.0	16.990	0 0200		1.90		68	68	1367	_	255	51	
3		90.0		0 0714	301	300	11	69	69	1325	<u> </u>	355		38
- 2			33.800			7.82	W	69	69	1280		247	49	138
. 1			143.100			2.60		70	70_	1265	ļ	718	79	38
B - 12 4	134	120.0	152-159	كاحمم	209	2.10	8	69	69	12.89		352	53	39
11			160.23			2.30	8	69	69	1245	<u> </u>	343	27	79
- 10			168.52			2,50	10	70	30-	13-80		2 Y 8 _	55	40
. 9					<u> </u>		10	= 70	30	1327	 	243	56	40
. 8			185.800			3.10	((71	7/	1330	 	243	5.7	40
. 7	(The		194.800	-	2.62	2.60	11	7(_	71	1320		 	 } 	12
1 0 1				0.0318	3.04	3.05	16	72	32	1380		782	53	43
1 . 5 g	13.00		P	0.0179	2,60	2.65	111	3	32	1380	 	247	55	43
-12-184			321,400		++	2.20	1!	<u> </u>	 			247	 	7 7
- 3			730.00			380	11	37	35	1360	 	718	17	145
- 2			138.83			3.15	11	33		1384		250	173	45
1 515	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		24795	U. U 556	1502	3.20	4 /1	- ∋3_	∋ ₹_	1390	 	50, 0	 1 - 7 -	+">
	1134	240.0	257.500	<u> </u>	 	-	 	 	 	 	 	 	+	+
-	'	<u> </u>	ļ				 	 	 	 	-	 	+	+
-					-	<u> </u>	 	 	 			 		+
-				 	 	-	 	 	 	+	 	 	+	+
- +			ļ	 	 	┼	}	 	\vdash	+	 	 	+	1
· <u>- </u>			 			MAX =>	1 11	 	<u> </u>			<u> </u>		
Average V	alues	240.0	<u> </u>	1011	272			 	. K	1335	1			
Average V	aiues	240.0	i .	V Vd-X	1 T 1	1211	1				J			

	— .													
Client Nam	ne	AECOM			_		Run#			3-M428-				
Plant Nam		COCA-C	COLA				Project #	ŧ	14875		Run Sta		730	
lant City,			NCE, CA	-			Personn	el	MNG	0.5	Run En	d	11 76	
est Locat		STACK			_	*		ignature	d	diV	,			
Date of Te		4/13/		<u> </u>			Checked			11/	MD			
Date of Te					Press	-		ling Equip	mont	-/- -		D & Tare	Actuals	I
		etic Fact	or Setup		_		Meter Co		Jilles II	11000	NA.	NA	CO ₂	I
∆H @ 0.75				1.85	Pbar	79.9				141325	INA	14/1	11-02	İ
Meter Calil	bration	Factor		1.00	Pstatic	-0.268	Ideal No.	zzle Diam	eter	0.687				
Pitot Tube	Coeffic	ient		0.84	Abs P	29.9	Nozzle #			30P1			<u>O₂</u>	i
Estimated			emp	70	Tstd, °F	68	Actual N	lozzle Diar	meter	0-751			9.43	2
Estimated				1300	Pstd	29.92	Probe L	gth/ID#	3	30P1			CO	
Estimated				0.078	Estin	nates	Liner Ma	terial		QTZ	XADI	D & Tare	0.0	İ
Estimated				6.0	CO ₂	4.5	Filter Bo	x #		NA	XAD-6	322.4	N ₂	ĺ
Estimated				29,30		14.5	Cold Bo			NA	_		79.6	i
			reigiit	_	CO	0.0	Umbilica			NA			H ₂ 0	i
Estimated				17.7	N ₂	81.0	TC ID #s			3Q.f	<u>, </u>	<u> </u>	-	ĺ
K Factor (45,71	L ₁₃	<u></u>	ICID#8		·	7			0.4	1
Equipme	nt & Le	ak Check	Data, OK?	Y or N	Leak C	Checks	1	2	3	4_	5	6	Status	
Tambient		NA	PRE	POST	DGM init	tial	-	\$3840			_		0.000	
Thermoco			Υ	Y	Vacuum		15	15_	15				150	
Pitots			Y	Y	Leak Ra		0003		0.00	4			OK]
Tedlar Bag		<u> </u>		-	DGM fin			363960					0.000	
Tediar Bag		<u></u>						DGM	DGM	T	248±9	248±9	mp.	Cond.
		١ ـ .	Dry Gas	 	Desired Orifice	Orifice	Pump	Inlet	Outlet	Stack	Probe	Filter	Exit	Exit
	Clock	Test	Meter	Velocity Head	ΔH		Vac.	Temp	Temp	Temp	Temp	Temp	Temp	Temp
Point #	Time	Time	Reading		in H ₂ O	in H ₂ O	in Hg	°F	°F	°F	°F	°F	°F	°F
	24 hr	min	ft ³				7	58	55	1365		2.54	49	35
A - 12	730	0.0	258 290		2./3	Z-15					 		47	16
· 11		10.0	765 840	0,0249		7.4)	9	57	52	1369	NA_	2.52	47	36
10		20.0	27402	0.0314		3.00	t)	60	60	1367		250		37
9		30.0	283.19	0.0289		2.75	10	62	62	1340			49	
8_		40.0	792,15	20244	7.354	2.35	9	65	68	1334	NA.	25/	51	38 38
. 7		50.0	300.48	U.0189	277	2.75	10	68	68	1328		255	53	34
· 6		60.0	309.62	U. UZ#	7.64	265	11_	69	61	13 43		255	53	
. 5		70.0	318.49	0,0317	2.03	3.05	1/	70	20	13/32	14	251	525	38
- 4		80.0	377.84	0.6 37.7	7 13	3.15	12	71	71	1335	NA	250	56	39
. 3				0. 2278		2.65	[ii _	72	77	1352	Ma	252	51	39
. 2					2 2 57	2.55	1/1	23	2-3	1344	NA	249	50	40
. 1	<u> </u>		364.85	0.0274		2.60	11	73	72_	1348	WA	252	51_	39
B 12	d2/	120.0	363.84	0.0749	7.32	7.35	123	25	75	1352	NA	783	52	39
• 11	179	130.0	712.4S	0.0783	2.71	2.70	0	i .	76	1249	Au	750	52	40
. 10				0.0 3 /0	3.05			78	78	1357	ÄN	248	54	40
. 9			390.7 <u>95</u>				2191		78	1346	NA	250	51	3 ℃
						2,30	11	80	80	1351	AW	248	57	39
- 8	-	170.0	400,250	0.0259	2001	2.80	 	82	87	1340	VÂ_	249	56	40
7	ļ		408.650				177	82_		1248	Ä	249	56	40
. 6	<u> </u>		417,750			2.65	11	06	87	1255	VA	248	57	140
- 5	ļ		426.530		2.69	2.70	11	84 84	84	1346		250	58	40
- 4	<u> </u>		435-760			3.10	12	<u>xd</u> -			AV	248	58	LUZ
3			445,325		317	3.15	12	84	84	1350	WA_			40
- 2			455.14			230	<u> </u>	84	84_	1349	NA_	251	59	140
· <u>1</u>		230.0	463.72	0027	2.18	2.20	11	85	8.5	1347	\ \	253	60	+-~-
END	1136	240.0	421.95	<u> </u>	<u> </u>				<u> </u>	<u> </u>	↓		↓	
-									1	·	—-		┼ ──	+
_	T T											<u> </u>		+
_	ļ	1		1	Ì	1					<u> </u>			
	1	+	 	<u> </u>										
<u> </u>	 	 	<u> </u>	†			1	<u> </u>	Ţ					
-		+	 			MAX =>	12	1						
Average	Values	240.0	 	0 028	2-69	2-60			74	1349]			
,ugo			<u> </u>	- UVU			-				_			

			D- CARB 42	<u>/</u>)
MOISTURE AND FIELD RECO	OVERY SHE	ET (METHO)	blad by:	V. Macedoni
Box No.: RB20 Date 1	Prepared:3	127/18	Assembled by.	5-18-M428-6
Box No.: Ri	un Number 5 1	B-N428-	4.12.18	4.13.18
Job No.	Test Date	. 11.10	4.12.18	4.13.18
Plant Name AFCOTT An City/State Torrange, CA An		NC NC	NC	NC
est Location TO Stack	Analyst			734.4
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H11131 W L. E.	748.5	772.2	501.5
Reagent HPLC DI H20 Volume (ml) 100	Tared Wt., g	534.2	529.4 242.8	232.9
Volume (ml)	Catch, g	214.3	2,34.5	330.4
Reagent XAD Resign	Final Wt., g	335,7	326.0	322.4
Volume (ml)	Tared Wt., g	327.0	8.5	8.0
A Offinite (mi)	Catch, g	<u></u>		
Reagent	Final Wt., g			
Volume (ml)	ultiply by 1.1*			
*(KMnO4 density of 1.1 g/ml)	Empty Wt., g Catch, g			
		447.8	451.2	450,3
Siilica Gel	Final Wt., g	400	400	400 503
	Catch, g	47.8	512	1 500 P
Balance No 8	TOTAL, g	270.8	302,5	291.2 4.
Span Weight, g / OOO	101:	<u></u>		41.0
Reading, g (± 0.5)			7.5	80
	% Silica Gel Spent	40	80	
Liquid	Level Marked (?)		T NA	NA
Filter (if applicable	e) No./Tare, g	NA		
	No./Tare, g		own Light B	rown Light Brun
(is applicable)		Light Bro	OWY LIGHT	1
Filter Appearance (if applicable)			Clear	Jean
(if needed)		Clear	- Chi	
Reagent Appearance (if needed)				
			·	
				
Comments				- M

AirKinetics, Inc.

AKI No.: 14875 Page 35 of 131

Intentionally Left Blank

AKI No.: 14875 Page 36 of 131

APPENDIX A

DIOXINS/FURANS (PTO STACK)

3.0 Analytical Data

AKI No.: 14875 Page 37 of 131

Intentionally Left Blank

AKI No.: 14875 Page 38 of 131

May 07, 2018

Vista Work Order No. 1800551

Mr. Neal Conroy AirKinetics, Inc. 1308 S. Allec Street Anaheim, CA 92805

Dear Mr. Conroy,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on April 16, 2018. This sample set was analyzed on a standard turn-around time, under your Project Name 'AECOM/14875'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier

Laboratory Director

Laulla Maier

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph. 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Vista Work Order No. 1800551 Case Narrative

Sample Condition on Receipt:

Eight MM5 samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The reagent blank components were placed on hold.

Analytical Notes:

CARB Method 428

These samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by CARB Method 428 using a ZB-5MS GC column.

Holding Times

The method holding time criteria were met for the samples.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery sample (OPR) were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

Work Order 1800551 Page 2 of 25

AKI No.: 14875 Page 40 of 131

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	6
Qualifiers	16
Certifications	17
Sample Receipt.	18

Page 3 of 25

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1800551-01	S-1A-M428-1	04-Apr-18 12:10	16-Apr-18 15:55	XAD
		·		Filter
				FH Rinse
				IMP Contents
				IMP Rinse
				BH Rinse
1800551-02	S-1A-M428-2	05-Apr-18 12:41	16-Apr-18 15:55	XAD
				Filter
				FH Rinse
				IMP Contents
				IMP Rinse
				BH Rinse
1800551-03	S-1A-M428-3	06-Apr-18 11:29	16-Apr-18 15:55	XAD
				Filter
\ \				FH Rinse
				IMP Contents
				IMP Rinse
				BH Rinse
1800551-04	M428-FB	06-Apr-18 12:00	16-Apr-18 15:55	XAD
				Filter
				FH Rinse
				IMP Contents
				IMP Rinse
	0.40.4400.4	44 4 40 40 00	40 4 40 45:55	BH Rinse
1800551-05	S-1B-M428-1	11-Apr-18 12:02	16-Арг-18 15:55	XAD Filter
				Filler FH Rinse
				IMP Contents
				IMP Rinse
				BH Rinse
1800551-06	S-1B-M428-2	12-Apr-18 11:34	16-Apr-18 15:55	XAD
1000001-00	G-1D-W420-2	12-2401-10 11:04	10-7 tp1 10 10.00	Filter
				FH Rinse
				IMP Contents
				IMP Rinse
				BH Rinse
1800551-07	S-1B-M428-3	13-Apr-18 11:36	16-Apr-18 15:55	XAD
		•	-	Filter
				FH Rinse

Vista Project: 1800551 Client Project: AECOM/14875

AKI No.: 14875 Page 42 of 131

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1800551-07	S-1B-M428-3	13-Apr-18 11:36	16-Apr-18 15:55	IMP Contents
				IMP Rinse
				BH Rinse
1800551-08	M428-RB	06-Apr-18 12:30	16-Apr-18 15:55	DI Water
				Methanol Rinse
				Toluene Rinse
				MeCl2 Rinse

Vista Project: 1800551

Client Project: AECOM/14875

Page 5 of 25

AKI No.: 14875 Page 43 of 131

ANALYTICAL RESULTS

Work Order 1800551 Page 6 of 25

AKI No.: 14875 Page 44 of 131

Sample ID:	Method Blank			-			CARB Me	thod 428	
Matrix: Air		QC Batch: B8D0 Date Extracted: 25-A	0194 pr-2018 7:07		Lab Sample: B8D0194-BLK1 Date Analyzed: 27-Apr-18 18:56	Column: ZB-	-5MS		
Analyte	Conc. (pg/Sample)	DL	ЕМРС	Qualifiers	Labeled Standard	%R	LCL-UCL	Qualifiers	
2,3,7,8-TCDD	ND	1.09			IS 13C-2,3,7,8-TCDD IS 13C-1,2,3,7,8-PeCDD	97.0	40 - 130		
1,2,3,7,8-PeCDD	ND	1.94				84.7	40 - 130 40 - 130		
1,2,3,4,7,8-HxCDD	ND	2.82			IS 13C-1,2,3,6,7,8-HxCDD	90.2	40 - 130 25 - 130		
1,2,3,6,7,8-HxCDD	ND	2.70			IS 13C-1,2,3,4,6,7,8-HpCDD	87.5	25 - 130		
1,2,3,7,8,9-HxCDD	ND	2.75			IS 13C-0CDD IS 13C-2,3,7,8-TCDF	61.3 92.5	40 - 130		
1,2,3,4,6,7,8-HpCDD	ND	2.07			IS 13C-2,3,7,8-TCDF IS 13C-1,2,3,7,8-PeCDF	87.4	40 - 130		
OCDD	ND	1.97				96.5	40 - 130		
2,3,7,8-TCDF	ND	1.29			IS 13C-1,2,3,6,7,8-HxCDF IS 13C-1,2,3,4,6,7,8-HpCDF	98,6	25 - 130		
1,2,3,7,8-PeCDF	ND	2.07			IS 13C-OCDF	79.3	25 - 130		
2,3,4,7,8-PeCDF	ND	2,15			AS 13C-1,2,3,7,8,9-HxCDF	103	40 - 130		
1,2,3,4,7,8-HxCDF	ND	1.16			Toxic Equivalent Quotient (TEQ) D	ata			
1 2 3,6,7,8-HxCDF	ND	1.05			TEOMinWHO2005Dioxin	0,00			
5,7,8-HxCDF	ND	1.16							
/7,8,9-HxCDF	ND	1.31							
1,2,3,4,6,7,8-HpCDF	ND	1.36							
1,2,3,4,7,8,9-HpCDF	ND	1.58							
OCDF	ND	2.37	<u> </u>						
Totals									
Total TCDD	ND	1,09			,				
Total PeCDD	ND .	1.94							
Total HxCDD	ND	2.76							
Total HpCDD	ND	2.07							
Total TCDF	ND	1,29							
Total PeCDF	ND	2.11							
Total HxCDF	ND	1.16		ļ					
Total HpCDF	ND	1.46							

DL - Sample specifc estimated detection limit EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800551

Page 7 of 25

AKI No.: 14875 Page 45 of 131

Sample ID: OPR		·					CARB Method 428
Matrix: Air	QC Batch: Date Extra		94 -2018 7:07		Lab Sample: B8D0194-BS1 Date Analyzed: 27-Apr-18 16:31 Column: ZB	-5MS	
Analyte	Amt Found (pg/Sample)	Spike Amt	%R	Limits	Labeled Standard	%R	LCL-UCL
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,5,8-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HyCDF 1,2,3,4,7,8-HyCDF 1,2,3,4,7,8-HyCDF 1,2,3,4,7,8,9-HyCDF 1,2,3,4,7,8,9-HyCDF 1,2,3,4,7,8,9-HyCDF 1,2,3,4,7,8,9-HyCDF	82.5 514 498 524 502 421 920 74.5 520 505 465 463 451 444 391 394 701	100 500 500 500 500 500 1000 100 500 500	82.5 103 99.5 105 100 84.1 92.0 74.5 104 101 93.1 92.5 90.2 88.8 78.2 78.9 70.1	60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	IS 13C-2,3,7,8-TCDD IS 13C-1,2,3,6,7,8-HxCDD IS 13C-1,2,3,6,7,8-HxCDD IS 13C-1,2,3,4,6,7,8-HxCDD IS 13C-0CDD IS 13C-2,3,7,8-TCDF IS 13C-1,2,3,6,7,8-HxCDF IS 13C-1,2,3,6,7,8-HxCDF IS 13C-1,2,3,6,7,8-HxCDF IS 13C-1,2,3,6,7,8-HxCDF IS 13C-1,2,3,6,7,8-HxCDF	102 87.8 88.0 90.5 60.5 100 89.6 91.4 92.4 78.0 97.8	40- 120 40- 120

Page 8 of 25

Work Order 1800551

Sample ID:	S-1A-M428-1						 		CARB Me	thod 428
Client Data Name: Project: Date Collected:	AirKinetics, Inc. AECOM/14875 04-Apr-2018 12:10	-	Sample Data Matrix:	Air	L Q	boratory Data ab Sample: C Batch: ate Analyzed:	1800551-01 B8D0194		16-Apr-201 25-Apr-201	
	Cara (na/Fample)	DL	ЕМРС		Qualifiers	Lab	eled Standard	%R	LCL-UCL	Qualifiers
Analyte 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8-TCDF 1,2,3,7,8-TCDF 1,2,3,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HyCDF	5.52 ND D 43.7 126 8.42 8.27 4.73 ND ND ND ND ND ND ND	1.69 2.69 1.4 1.6 1.5	5.15 5.76		1 1 1 1 1 1	IS 1300 IS 130	-2,3,7,8-TCDD -1,2,3,7,8-PcCDD -1,2,3,6,7,8-HxCDD -1,2,3,4,6,7,8-HxCDD -2,3,7,8-PcCDF -1,2,3,6,7,8-HxCDF -1,2,3,6,7,8-HxCDF -1,2,3,6,7,8-HxCDF -2,3,4,7,8-PcCDF -1,2,3,4,7,8-PcCDF -1,2,3,4,7,8-HxCDD -1,2,3,4,7,8-HxCDD -1,2,3,4,7,8-HxCDD -1,2,3,4,7,8-HxCDF -1,2,3,4,7,8-HxCDF -1,2,3,4,7,8-HxCDF -1,2,3,4,7,8-HxCDF -1,2,3,4,7,8-HxCDF	105 83.1 88.4 85.0 60.4 104 93.3 98.4 99.2 80.1 98.0 93.1 114 102 94.4	40- 130 40- 130 40- 130 25- 130 25- 130 40- 130 40- 130 25- 130 70- 130 70- 130 70- 130 70- 130 70- 130 70- 130 70- 130 70- 130	
OCDF Totals	4,48						<u>quivalent Quotient (TEO)</u> QMinWHO2005Dioxin	<u>Data</u> 4.17		
Total TCDD Total PcCDD Total HxCDD Total HpCDD Total TCDF Total PcCDF Total PcCDF Total HxCDF Total HxCDF	10.1 ND 80.1 92.2 97.8 75.4 21.9 16.3		16.8 84.2 132 38.0		· · · · · · · · · · · · · · · · · · ·		(A) 11 10 11 10 11 10 10 10 10 10 10 10 10			

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800551

Page 9 of 25

AKI No.: 14875 Page 47 of 131

Sample ID: S-1	1A-M428-2						<u> </u>		CARB M	ethod 42
Client Data Name: A Project: A	irKinetics, Inc. ECOM/14875 5-Apr-2018 12:41		Sample Data Matrix:	Аiт	La Qu	oratory b Sample Batch: ite Analy	e: 1800551-02 B8D0194	Date Received: Date Extracted: nn: DB-225	16-Apr-201 25-Apr-201	
Analyte C	onc. (pg/Sample)	DL	EMPC	<u> </u>	Qualifiers	т	Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF	ND ND 6.59 10.0 8.63 38.2 75.4 62.4 69.2 24.4		3,75 12.7] ; ; ; ;	IS IS	13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	120 97.9 103 97.5 65.8 115 105 108 114	40 - 130 40 - 130 40 - 130 25 - 130 25 - 130 40 - 130 40 - 130 40 - 130 25 - 130 25 - 130	
2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 5,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF	24.4 46.1 52.5 39.5 7.49 80.7 17.3 34.8				1 1 1 1	PS PS PS PS PS AS	37CI-2,3,7,8-TCDD 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF	99.5 101 114 110 94.8 101	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 40 - 130	
OCDF Totals	34,8					_Tox	ic Equivalent Quatient (TEQ) TEQMinWHO2005Dioxin	34.1		
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total TCDF Total TCDF Total TCDF	65.9 66.9 98.1 71.5 1450 574 315		140 101 689 337	· ·			I P.C.WITT M. HOSSASSENDAM	<i>2</i> -		

DL - Sample specife estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800551

Page 10 of 25

Sample ID: S-1A	A-M428-3								CARB Me	thod 42
Client Data Name: Airk Project: AEC	Kinetics, Inc. COM/14875 Apr-2018 11:29		Sample Data Matrix:	Air	Lab QC	ratory Data Sample: Batch: Analyzed:	1800551-03 B8D0194 04-May-18 12:58 Colu 27-Apr-18 21:21 Colum	Date Received: Date Extracted: mn: DB-225		
	((0 .12)	DI	EMPC		Qualifiers	Labe	led Standard	%R	LCL-UCL	Qualifiers
Analyte Con 2,3,7,8-TCDD 1,2,3,7,8-PcCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,7,8-PcCDF 1,2,3,7,8-PcCDF 2,3,4,7,8-PcCDF 1,2,3,4,7,8-PxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,7,8-HyCDF	ND ND ND ND ND ND ND ND ND ND ND ND ND N	2.5 1.7 2.8 3.2 3.1 3.1 2.5 1.2 1.4	1 6 5 5 2 8 27,2 9 1,60 2,44 7 4 3,30		J J	IS 13C- IS 13C- IS 13C- IS 13C- IS 13C- IS 13C- IS 13C- IS 13C- IS 13C- IS 13C- IS 13C- IS 13C- IS 13C- IS 13C- IS 13C- IS 13C- IS 13C- PS 13C	2,3,7,8-TCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HyCDD 0CDD 2,3,7,8-TCDF 1,2,3,7,8-PcCDF 1,2,3,4,6,7,8-HyCDF 0CDF 2,3,4,7,8-HyCDF 2,3,4,7,8-HyCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HyCDF	105 85.2 88.3 82.4 57.3 99.8 89.3 90.5 104 77.1 94.7 95.1 111 106 87.6 104	40 - 130 40 - 130 40 - 130 25 - 130 25 - 130 40 - 130 40 - 130 40 - 130 25 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	

DL - Sample specific estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800551

Page 11 of 25

Client Data Name: Project:	1428-FB AirKinetics, Inc. AECOM/14875 06-Apr-2018 12:00		Sample Data Matrix:	Air	L	ooratory I ab Sample C Batch: ate Analy:	: 1800551-04 B8D0194	Date Received: Date Extracted:	16-Apr-2018 25-Apr-2018	15:55
Date Conected.	70-Apr-2013 12.00				Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifier
Analyte	Conc. (pg/Sample)	DL	EMPC	 	Quanners		13C-2.3,7,8-TCDD	98.9	40 - 130	
2,3,7,8-TCDD	ND	1.38				1	13C-1,2,3,7,8-PeCDD	80.2	40 - 130	
1,2,3,7,8-PeCDD	ND	1.53					13C-1,2,3,6,7,8-HxCDD	82.5	40 - 130	
1,2,3,4,7,8-HxCDD	ND	2.30					13C-1,2,3,4,6,7,8-HpCDD	75.9	25 - 130	
1,2,3,6,7,8-HxCDD	ND	2.21					13C-OCDD	55.1	25 - 130	
1,2,3,7,8,9-HxCDD	ND	2.25					13C-2,3,7,8-TCDF	98.5	40 - 130	
,2,3,4,6,7,8-HpCDD			2.08				13C-1,2,3,7,8-PeCDF	88,6	40 - 130	
OCDD	ND	•	6.44				13C-1,2,3,6,7,8-HxCDF	87.1	40 - 130	
2,3,7,8-TCDF	ND	1,36	and the second second				13C-1,2,3,4,6,7,8-HpCDF	98.5	25 - 130	7.
1,2,3,7,8-PeCDF	ND	2.71					13C-OCDF	72.3	25 - 130	
2,3,4,7,8-PeCDF	ND	2.82					37Cl-2.3.7.8-TCDD	97.5	70 - 130	
1,2,3,4,7,8-HxCDF	ND	1;34					13C-2,3,4,7,8-PeCDF	98.3	70 - 130	
1,2,3,6,7,8-HxCDF	ND	1.21				1 " "	13C-1,2,3,4,7,8-HxCDD	111	70 - 130	
6,7,8-HxCDF	ND	1.34			•	PS PS	13C-1,2,3,4,7,8-HxCDF	103	70 - 130	
/7,8,9-HxCDF	ND	1.52				PS PS	13C-1,2,3,4,7,8,9-HpCDF	94.3	70 - 130	
1,4,3,4,6,7,8-HpCDF	ND	1.40				AS	13C-1,2,3,4,7,8,9-HxCDF	90.8	40 - 130	
1,2,3,4,7,8,9-HpCDF		1.71	and the second second			l				
OCDF	ND	2.74	1			Tox	ic Equivalent Quotient (TEO)	Data		
Totals						┪	TEQMinWHO2005Dioxin	0.00		
Total TCDD	ND	1.3				1				
Total PeCDD	ND	1.5			G	. [
Total HxCDD	ND		2.81							
Total HpCDD	4,26	1 12	6.34							
Total TCDF	ND	1.3								
Total PeCDF	ND	2.7								
Total HxCDF	ND	1.3				1				
Total HpCDF	ND	1.5	8				to the income control limit			

DL - Sample specife estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL. Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800551

Page 12 of 25

	3 4D 34430 1			-				CARB M	ethod 42
Sample ID: S Client Data Name: Project: Date Collected:	AirKinetics, Inc. AECOM/14875 11-Apr-2018 12:02		Sample Data Matrix:	Air	Lab QC	ratory Data Sample: 1800551 Batch: B8D019 e Analyzed: 27-Apr-		tracted: 25-Apr-20	
		DL	EMPC	_	Qualifiers	Labeled Stand	lard %1		Qualifier
Analyte	Conc. (pg/Sample)	1,70			Quantities	IS 13C-2,3,7,8-T	CDD 98.		
2,3, 7,8- TCDD	ND					IS 13C-1,2,3,7,8-	PeCDD 81.		
1,2,3,7,8-PeCDD	ND	2.76				IS 13C-1,2,3,6,7,			
1,2,3,4,7,8-HxCDD	ND	2.54				IS 13C-1,2,3,4,6,			
1,2,3,6,7,8-HxCDD	ND	2.43				IS 13C-OCDD	59.		
1,2,3,7,8,9-HxCDD	ND	2.48	•		J	IS 13C-2,3,7,8-T	CDF 96.		
1,2,3,4,6,7,8-HpCDI	D 13.1		22.0		,	IS 13C-1,2,3,7,8-		8 40 - 130	
OCDD	ND		23.8		ī			.2 40 - 130	
2,3,7,8-TCDF	3.90				. •	IS 13C-1,2,3,6,7, IS 13C-1,2,3,4,6,		3 25 - 130	
1,2,3,7,8-PeCDF	ND	2.72			1	IS 13C-OCDF	78	.6 25 - 130	
2,3,4,7,8-PeCDF	3,23		4.		J 7	PS 37Cl-2,3,7,8-7	CCDD 99	5 70 - 130	
1,2,3,4,7,8-HxCDF	7.43				J	PS 13C-2,3,4,7,8-	5 · · · · · · · · · · · · · · · · · · ·	4 70 - 130	
1,2,3,6,7,8-HxCDF	5,41				J	PS 13C-1,2,3,4,7,		2 70 - 130	
5,7,8-HxCDF	ND	1.64				PS 13C-1,2,3,4,7,		6 70 - 130	
/1,8,9-HxCDF	ND	1.83	5		т	PS 13C-1,2,3,4,7,	1	2 70 - 130	
1,2,3,4,6,7,8-HpCD					J	AS 13C-1,2,3,7,8	1.00	2 40-130	
1,2,3,4,7,8,9-HpCD	F ND	1.80) _.				,, inco:		
OCDF	11.6						Onotient (TEO) Data		
Totals		<u> </u>				TEQMinWHO	D2005Dioxin 3.0	33	
Total TCDD	ND	1.7			•	1			
Total PeCDD	ND	2.7]		,	
Total HxCDD	ND		21.6]			
Total HpCDD	27.9								
Total TCDF	29.9		32.0			1			
Total PeCDF	23.8		26.3						
Total HxCDF	12.8		24,1						
Total HpCDF	25.2					LICI Lower control limit -			

DL - Sample specific estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800551

Page 13 of 25

Sample ID: 5	S-1B-M428-2									CARB Me	thod 428
Client Data Name: Project: Date Collected:	AirKinetics, Inc. AECOM/14875 12-Apr-2018 11:34		Sample Data Matrix:	Air			ample: atch: analyze:	1800551-06 B8D0194 d: 27-Apr-18 23:45 Colum			8 7:07
Analyte	Conc. (pg/Sample)	DL	EMPC		Qualific	_		abeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	1,04				15		3C-2,3,7,8-TCDD	108	40 - 130	
1,2,3,7,8-PeCDD	ND	1,70				18		3C-1,2,3,7,8-PeCDD	88.2	40 - 130	
1,2,3,4,7,8-HxCDD	ND	2.18				19	S 13	3C-1,2,3,6,7,8-HxCDD	88.8	40 - 130	
2,3,6,7,8-HxCDD	ND	2.09				18	S 13	3C-1,2,3,4,6,7,8-HpCDD	84.3	25 - 130	
,2,3,7,8,9-HxCDD	ND	2.13				I IS	S 13	BC-OCDD	60.8	25 - 130	
,2,3,4,6,7,8-HpCDI					J] 13	S 13	3C-2,3,7,8-TCDF	104	40 - 130	
OCDD	ND		15.4			12	S 13	3C-1,2,3,7,8-PeCDF	93.8	40 - 130	
,3,7,8-TCDF	ND		2,29			I I	S 13	3C-1,2,3,6,7,8-HxCDF	93.7	40 - 130	
2,3,7,8-PeCDF	ND	2,29				13		3C-1,2,3,4,6,7,8-HpCDF	107	25 - 130	
2,3,4,7,8-PeCDF	ND	2,39				18	S 13	3C-OCDF	80.9	25 - 130	
1,2,3,4,7,8-HxCDF	ND	1,21				P	S 3	7CI-2,3,7,8-TCDD	95,4	70 - 130	
1,2,3,6,7,8-HxCDF	ND	1.09				P	S 1	3C-2,3,4,7,8-PeCDF	97.0	70 - 130	
6.7.8-HxCDF	ND	1.21				P	S 1	3C-1,2,3,4,7,8-HxCDD	113	70 - 130	
7,8,9-HxCDF	ND	1.37				P	S 1	3C-1,2,3,4,7,8-HxCDF	108	70 - 130	
1,2,3,4,6,7,8-HpCDI			•		J	P	S 13	3C-1,2,3,4,7,8,9-HpCDF	96.0	70 - 130	
1,2,3,4,7,8,9-HpCDI		1.61				A	AS 1	3C-1,2,3,7,8,9-HxCDF	105	40 - 130	
OCDF	ND	2.81				-	Taria	Equivalent Quotient (TEQ)	Data		
Totals						⊐:		EOMinWHO2005Dioxin	0,141		
Total TCDD	ND		1.53		,		-				
Total PeCDD	ND	1.70				- [
Total HxCDD	4.81		6.25								
Total HpCDD	14.8										
Total TCDF	ND	•	7.26								
Total PeCDF	4.49		_								
Total HxCDF	ND	÷	2.26	-							
Total HpCDF	6.63					- 1		. I V 's			

DL - Sample specife estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800551

Page 14 of 25

AKI No.: 14875 Page 52 of 131

Sample ID: S	-1B-M428-3								CARB Me	thod 42
Client Data Name: Project:	AirKinetics, Inc. AECOM/14875 13-Apr-2018 11:36		Sample Data Matrix:	Air		Laborato Lab San QC Bate Date An	nple: 1800551-07 ch: B8D0194	Date Received: Date Extracted: lumn: ZB-5MS		3 7:07
Analyte	Conc. (pg/Sample)	DL	EMPC	_	Qualifi	ers	Labeled Standard	%R 101	LCL-UCL 40 - 130	Qualifiers
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD 2,3,7,8-TCDF 1,2,3,4,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 6,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HxCDF	14.5 ND ND ND 2.30 ND ND ND	1.28 2.36 2.89 2.77 2.82 1.65 1.91 1.98 1.12 1.24 1.40	4.55		1	PS PS PS PS PS PS	13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,7,8,9-HxCDF	84.7 90.4 84.4 61.1 106 91.8 97.4 109 82.1 97.9 95.9 110 101 89.6 98.4	40- 130 40- 130 25- 130 25- 130 40- 130 40- 130 25- 130 70- 130 70- 130 70- 130 70- 130 70- 130 70- 130	
OCDF	ND .	2.85	<u> </u>		<u>-</u>	===	Toxic Equivalent Ouotient (TE TEQMinWHO2005Dioxin	O) Data 0.234		
Total TCDD Total TCDD Total PCDD Total HxCDD Total HyCDD Total TCDF Total PCDF Total HxCDF Total HxCDF	ND ND ND ND 12.7 ND 6.51	1.28 2.36 2.83			g.		12Qviii vi 102000			

DL - Sample specific estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800551

Page 15 of 25

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
E	The associated compound concentration exceeded the calibration range of the instrument.
Н	Recovery and/or RPD was outside laboratory acceptance limits.
I	Chemical Interference
J	The amount detected is below the Reporting Limit/LOQ.
M	Estimated Maximum Possible Concentration. (CA Region 2 projects only)
*	See Cover Letter
Conc.	Concentration
NA	Not applicable
ND	Not Detected
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Page 16 of 25

Work Order 1800551

AKI No.: 14875 Page 54 of 131

CERTIFICATIONS

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	17-015-0
Arkansas boparanons	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1322288
New Hampshire Environmental Accreditation Program	207717
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-008
Pennsylvania Department of Environmental Protection	014
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	9077
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Page 17 of 25

1800551 7.9°C, 18.3°C, 16.9°C

PO Number	r:	8419-NC		Sample (Chain of C	of Custody Record									P	age 1 of 3
Project Nam Location: Project No.:	:	AECOM Torrance, CA 14875 ta Package With Re	eport	AKI PM: Neal Cont PM Phone: (714) 254-1 PM email: conroyn@a Results to: akisublab@	1945; Ext. 210 airkineticsinc.com	Dioxins / Furans (CARB 428)			Ana	lyses	Requir	ed				
Date	End Time	e Sample ID	Component		Matrix	<u> </u>										Comments
4/4/2018		S - 1A - M428 - 1	XAD Resin			4										
			Filter			4									\dashv	
			FH Rinse		MeOH, Tol, MeCl	√_									 }	
			Imp Content	3	H2O	1									 -	
			Imp Rinse		MeOH, Tol, MeCl	1	<u> </u>					-	_			
			BH Rinse		MeOH, Toi, MeGI	1										
4/5/2018	1241	S - 1A - M428 - 2	XAD Resin			1										
			Filter			1				ļ	ļ .			-	\dashv	
			FH Rinse		MeOH, Tol, MeCl	√.				<u> </u>	<u> </u>	_		┝╼┥		
			Imp Content	s	H2O	-√	<u> </u>			<u> </u>	_			\vdash		
			Imp Rinse		MeOH,To!,MeCI	√.				<u> </u>	 -			┝┈┤		
			BH Rinse		MeOH, Tol, MeCl	1 4			-					_		
TAT:	Std - 3	Weeks		Relinquished by: (Sign	& Print)	<u> 474</u>	/Time	Loci Stor		5	ydy	(Sign	Kδ	ngy	ı to	Date/Time 1601 4/16/18
Ship to:	Martha			Carta and Carta	V	3:4	Spr			1	ma	m	Ke i	vito	λ.	4/10/10
		nalytical				+		∤ L	ا							-
		Vindfield Way				+				_			_			
		ado Hills, CA 95762 73-1520				<u> </u>				<u> </u>						
AKi	1308 S	i73-1520 etics, Inc. douth Allec Street im, CA 92805										- 			. —	

Work Order 1800551

Page 18 of 25

AKI No.: 14875 Page 56 of 131

PO Number:	:	8419-NC		Sample C	Chain of C	Cust	ody	Re	cor	d					1	Page 2 of 3	
Project Nam Location: Project No.:		AECOM Torrance, CA 14875		AKi PM: Neal Conn PM Phone: (714) 254-1 PM emeil: conroyn@al	945; Ext. 210	Dioxins / Furans (CARB 428)			Ana	lyses f	₹equir	ed					
	Full Dat	la Package With Re	port	Results to: akisublab@	airkineticsinc.com	ioxins /					Ì				ļ		
Date	End Time	Sample ID	Component		Matrix											Comments	4
4/6/2018	1129	S - 1A - M428 - 3	XAD Resin			1				\square							\dashv
			Filter			4											\dashv
			FH Rinse	<u> </u>	MeOH, Tol, MeCI	1	<u> </u>										ㅣ
			Imp Content	s	H2O	V											\dashv
			Imp Rinse		MeOH, To), MeCl	1						_					-{
	-		BH Rinse		MeOH,Tol,MeCi	√							_				ᅱ
\ `1/6/2018	1200	M428-FB	XAD Resin		1	1											
<i></i>			Filter			1									_		-
			FH Rinse		MeOH,Tol,MaCl	√_	<u> </u>		<u> </u>								
			Imp Content	s	H2O	\ \			ļ	ļ							\dashv
			Imp Rinse		MeOH, Tol, MeCl	√ √		<u></u>	 						- $ +$		\dashv
	<u> </u>		BH Rinse		MeOH,Tol,MeCI	1	-							<u> </u>			ㅓ
TAT:	Std - 3	Weeks		Relinquished by: (Sign	& Print)	4/16			cked orage	Recei	ved by:	(Sign	& Print	juto	\	Date/Time 160 4-/16/18	ا ا ا
Ship to:	1104 W	nalytical findfield Way		Current	<u> </u>	15.	<u>53</u>			C	1110			ing.		4-116/16	
		do Hills, CA 95762 73-1520	······			+				 							_
AKI AKI PERES INC.	1308 S Anahei	tics, Inc. outh Allec Stree m, CA 92805 54-1945				<u> </u>				<u> </u>							1

Work Order 1800551

Page 19 of 25

AKI No.: 14875 Page 57 of 131

PO Number:		8419-NC		Sample	Chain of C	Cust	ody	Re	cor	d						Page 1 of 2	
Project Name	e:	AECOM		AKI PM: Neal Co	пгоу				Ans	lyses R	equire	ed					
Location: Project No.:	•	Torrance, CA 14875		PM Phone: (714) 254 PM email: conroyn@ Results to: akisublab	@airkineticsinc.com	is / Furans RB 428)											
	Full Da	ta Package With Re	роп	MESURS TO. ARISUDIAL	J@arkineticsinc.com	Dioxins / F (CARB							- 1		}		
Date	End Time	Sample ID	Component		Matrix	<u> </u>					_					Comments	S
4/11/2018	1202	S - 1B - M428 - 1	XAD Resin			1					_	_					
			Filter			1				<u> </u>							
	Ī		FH Rinse		MeOH, Tol, MeCl	4					_						
			Imp Content	· •	H2O ·	1					_	ļ					
			Imp Rinse		MeOH,Tol,MeCl	√											
			BH Rinse		MaOH, Tol, MeCl	1	_			-		_		\dashv			
	<u> </u>	2 45 1460 0	VAD Basis			٠,	_				-	-					- :
4/12/2018	1134	S - 1B - M428 - 2	XAD Resin Filter			1				1	7		\neg				
 	+-		FH Rinse		MeOH, Tol, MeCl	V					_	\neg					
	 			 	H2O	1	-				\dashv						
	-		imp Content	<u> </u>	MeOH, Tol, MeCi	7	_				7						
	<u> </u>	 	Imp Rinse BH Rinse		MeOH, Tol, MeCI	1			_	一十							
	+-	<u> </u>	pri Kilise		(MECH, TO,MICE)	广			-	1							
TAT:	Std - 3	Weeks		Relinquished by: (Sig MOTANL 144		15:		Loc Stor		Receive Syd		_K	0/4	wo		Date/Time	⊢ - —
Ship to:	Martha	Maier		- YWXY }	<u> </u>	4/1	3/18	<u></u>		(1/2)	jan			<i>acci</i>	<u> </u>	4/16/12)
	Vista Ar	nalytical		<i> _ _ </i>		Ĺ .̈−		[7		- -			. - -			- -
ľ	1104 W	indfield Way		Ľ.		<u> </u>				ļ							
İ	El Dora	do Hills, CA 95762			:	↓. _				 				. -			
	(916) 67	73-1520		<u></u>	·		•••										_
AKI	Anaheir											. 					

Work Order 1800551

Page 20 of 25

AKI No.: 14875 Page 58 of 131

PO Number:	:	8419-NC		Samp	ole Chain of C	Cust	ody	Re	cor	d				***		Page 2 of 2
Project Nam Location: Project No.:		AECOM Torrance, CA 14875		PM Phone: (714	al Conroy i) 254-1945; Ext. 210 royn@airkineticsinc.com	Furans 428)			Апа	lyses	Requi	ed				
	Full Da	ita Package With Re	eport	<i>Results to:</i> akis	ublab@airkineticsinc.com	Dioxins / Furans (CARB 428)										
Date	End Tim	s Sample ID	Component		Matrix											Comments
4/13/2018	1136	S - 1B - M428 - 3	XAD Resin			1										
			Filter			4									Ļ	
			FH Rinse		MeOH, Tof, MeCl	4	<u></u>						_		<u> </u>	
			Imp Content	s	H2O	1								_		
_		i i	Imp Rinse		MeOH, Tol, MaCl	1				ļ				<u> </u>		
			BH Rinse		MeOH, Tol, MeCl	4					<u> </u>			ļ		
														<u> </u>		
\						 	_		<u> </u>	 -				-		
<i>'</i>									<u> </u>		<u> </u>			-		
		<u> </u>		_		<u> </u>			-	<u> </u>				-	-	
	_					├	- -		-	-	_					
	↓ _					 -	┼		-					_	<u> </u>	
	 	<u> </u>				+ "										
TAT:	Std - 3	Weeks		Relinquished by	· · · · · · · · · · · · · · · · · · ·	15	Літе 32_		keď rage	Recei	ved by Ydn Mh	(Sign	& Print) July	<u>-</u>	Date/Time
Ship to:	Martha	Maier		MI	MAN	4/1	3/10/			1	yth	m	Koš	inte	770	4/16/18
	Vista A	nalytical			<u>//</u>	<u> </u>		ļΓ	7		<u>/</u>	- 	-	<i>"</i>		ļ. -
	1104 W	/indfield Way			·	<u> </u>				<u> </u>		_				
	El Dora	do Hills, CA 95762				L	- – -			 		- 				<u> </u>
	(916) 6	73-1520	·	<u> </u>						<u> </u>			·	_		<u> </u>
AKI	1308 S	tics, Inc. outh Allec Street m, CA 92805				<u> </u>				<u> </u>	-					<u> </u>
Appendice, Inc.		m, CA 92605 54-1945														

Work Order 1800551

Page 21 of 25

AKI No.: 14875 Page 59 of 131

PO Number:		8419-NC		Sample Chain of Custody Record Analyses Required Analyses Required												Page 3 of 3
Project Nam Location: Project No.:	***	AECOM Torrance, CA 14875 ta Package With	s Report	PM Phone: (7 PM email: co	eal Conroy 14) 254-1945; Ext. 210 nroyn@airkineticsinc.com isublab@airkineticsinc.co	7 H			Ana	yses	Requir	ed				
Date	End Time	Sample ID	Companent		Matrix											Comments
4/6/2018	1230	M428-RB	DI H2O		DI H2O	1										
			MeOH		MeOH	1						_				
			Toluene		Toluene	1										
			MeCl2		MeCl2	1	<u> </u>	$\vdash \vdash$	\dashv			!		\vdash	$-\dagger$	<u> </u>
	+					_	_									
	+															
						-					<u> </u>					
	<u> </u>					+		\vdash								
	+	<u> </u>														
													<u> </u>			
							-							-		
TAT:	Std - 3	Weeks		Relinguished	by: (Sign & Print)	Date 4/6 54:	/Time	Lock Store	age		idna	uz K	& Print	i) ghotz	i	Date/Time [602 4/16/18
Ship to:	Martha Maier Vista Analytical 1104 Windfield Way		- 17 c	77 J9L U)4:	50]	0	t wel		<u></u>	<u>~</u>	<u>/% </u>	+/τψ/τδ	
	El Dora	ido Hills, CA 9576 73-1520	2			<u> </u>	– -									
AKI Aletholics, pre-	1308 S Anahei	rtics, Inc. outh Allec Street m, CA 92805 54-1945								<u> </u>				_ -		

Work Order 1800551

Page 22 of 25

AKI No.: 14875 Page 60 of 131

Sample Log-in Checklist

Vista Work Orde	er #:	18	0055	1	<u> </u>		т	AT_	St	<u>l</u>	
Samples	Date/Time	1.4-			tials:		Locati		WK.		
Arrival:	4/16/18	15	55	8	R		Shelf/l	Rack	:\ <u>\</u>	Â_	
	Date/Time			lni	tials:		Locati	on:	RI		
Logged In:	04/17/18	0	958	N.	SBW	SU	Shelf/l	Rack:	NA	<u> </u>	
Delivered By:	FedEx L	JPS	On Tra	С	GSO	DHI		Hanc eliver	3 1	Oth	ner
Preservation:	Ice		Blu	ie lo	ce)		Dry le	се		No	ne
Temp °C: 7.9	(uncorrecte	d) T	ime:	62	D D					# 4	16/18
Temp °C: 7.9			robe use	ed:	Yesk N	lo□	Therm	omet	ter ID∺ D	111-4 T-3	
Tilling the same of the same o	airinninna Tarinninna	mm		N.E.	coolin	mm	mmm	illini.	YES/	NO	NA
								1111111.	TES/	NO	INA
Adequate Samp		eivea	<u>(</u>	-					./		
Holding Time Ad			<u></u>	-					1/		
Shipping Contai			<u></u>		· · · · · · · · · · · · · · · · · · ·				<i>V</i>		V
Shipping Custoo											<i>i</i> /
Shipping Docum		ent?			 		_				<u>'</u>
Airbill	Trk #				·· ·				V		•
Sample Contain					· ·				<i>V</i>		
Sample Custody									V		
Chain of Custod			•							V	/
COC Anomaly/S	ample Accepta	ance F	OITH COITH	piei	eur						
If Chlorinated or	Drinking Wate	r Sam	ples, Acc	ept	able Pre	serva	tion?				7
Preservation Do	cumented:	Na	₂ S ₂ O ₃		Trizma	<u> </u>	None		Yes	No	(NA)
Shipping Contai	ner	(V	/ista)		Client		etain	Re	turn		ose
Comments: Contridge	Received: 1128-2 -1 -3	Filters 5-18	5 1-111428-1	ter:		4/w/18 Pert	ri disl	aiz s	sq. 1 SR 4/16/	716/18 18	
-7 ID.: LR - SLC	_	S-IF	3-M428.	-1 -2 -3 -Re	ev Date: 08	5/18/201	17	Pa	age: 1 of 1		
Work Order 1800551	rD									Pa	ge 23 of

AKI No.: 14875 Page 61 of 131

Page 23 of 25

Sample Log-in Checklist

Vista Work Orde	r#:	8(1)55	1						TAT	7d
Campulan	Date/Tim	ne		-	ln	itials:		Lo	ocation: WK-	2
Samples Arrival:	4/16/18	j l	5	55	۶	SRX		SI	helf/Rack:\b/8	··· -
Logged In:	Date/Tim		158	3		itials:	2lu	1	ocation: المرابع المرابع المرابع helf/Rack:	s R-1 1/a
Delivered By:	FedEx	UPS		On Tra	ıc	GSO	DHI	-	Hand Delivered	Other
Preservation:	lo	e		Blu	ıе	lce			Dry Ice	None
Temp °C: 18 →	(uncor	rected)	Time: 1610				<u>-</u>	71	hermometer ID	. ID /
Temp °C: \Q	一 人 (corre	ected)	Probe used: Yes□ No□					"	nemionieterio	, IN-4

			K1520 0	n lide	_		
					YES	NO	NA
Adequate Sample Volume Re	ceived?				1		
Holding Time Acceptable?		,		.	V		
Shipping Container(s) Intact?		·-			/		
Shipping Custody Seals Intac	t?		···				1/
Shipping Documentation Pres	ent?						V
Airbill Trk#							V
Sample Container Intact?					V		
Sample Custody Seals Intact	?						/
Chain of Custody / Sample Do	ocumentation Pre	esent?			/	ļ	
COC Anomaly/Sample Accep	tance Form com	pleted?				V	'
If Chlorinated or Drinking Wat	er Samples, Acc	eptable Pres	ervation?				V
Preservation Documented:	Na ₂ S ₂ O ₃	Trizma	None		Yes	No	(NA)
Shipping Container	Vista	(Client)	Retain	(Re	turn)	Dis	oose

Comm		Imp. Ringe	BH Rinse_	M428-RB
FH Ringe 5-18-19428-1	Imp. Cont. 5-18-1128-1 -2 -3	S-18-M+28-1 -2 -3	S-18-M428-1 -2 -3 -FR	DI Water Methanol Rinse Toluene Rinse
~FB	-FB	-FB		MeC12 Rinse

ID.; LR - SLC

Rev No.: 0

Rev Date: 05/18/2017

Page: 1 of 1

Sample Log-in Checklist

Vista Work Orde	r#:18	0055	\						TAT	<u>S</u>	<u>d</u>	_		
	Date/Tim	ie		·	ln	itials:		Lo	cation:	WE-2				
Samples Arrival:	4/16/18) 1	55	55 _	8	RN		SI	nelf/Rack:	N/a				
	Date/Tim	ne				itials:		Lo	ocation:	R-1		ļ		
Logged In:	04 17 18	0958	ı		<u>U</u>	Allo 1		SI	nelf/Rack:	<u> N/a</u>				
Delivered By:	FedEx	UPS		On Tra	ac	GSO	DHI	-	Hand Deliver		Oth	er		
Preservation:	lo	e		Bli	ue	lce			Dry Ice		Noi	/_		
Temp °C: 17,0	(uncor	rected)	}	IIII G . '	_	05		 T }	nermomet	er ID:	IR-4			
Temp °C: ∖(, ≿	(corre	ected)	P	robe us	ed:	Yes⊡l	,				812 4/11			
	RB21 on 118													
	dequate Sample Volume Received?													
	1													
Holding Time Ac		<u> </u>			_						+			
Shipping Contain	ner(s) Inta	ct?				. <u></u>					 	1		
Shipping Custod											+	<u> </u>		
Shipping Docum	entation P	resent?	<u> </u>							<u> </u>		\ <u>\</u>		
Airbill	Trk	#		<u></u>	-				<u> </u>	1/	-			
Sample Contain	er Intact?													
Sample Custody	Seals Inta	act?									-	<u> </u>		
Chain of Custod	y / Sample	Docun	ner	nta <u>tion P</u>	res	ent?				LV_	 			
COC Anomaly/S	ample Acc	ceptano	e F	orm cor	npl	eted?					<u> </u>	<u> </u>		
If Chlorinated or	Drinking V	Vater S	am	iples, Ac	ce	otable Pr	eserva	atio	n?					
Preservation Do				12S2O3		Trizma		No		Yes	No	(NA)		
Shipping Contain	ner		١	√ista		Clien	F	Reta	ain (Re	eturi	Dis	pose		

FH RINSC
S-1B-11428-1
-2
3

Imp. Rinse	
S-1B-11428-1	
-2	

ID.: LR - SLC

Rev No.: 0

Rev Date: 05/18/2017

Page: 1 of 1

Page 25 of 25

Intentionally Left Blank

AKI No.: 14875 Page 64 of 131

APPENDIX A

DIOXINS/FURANS (PTO STACK)

4.0 Equipment Calibrations

AKI No.: 14875 Page 65 of 131

Intentionally Left Blank

AKI No.: 14875 Page 66 of 131

Isokinetic Meterbox Calibration FULL TEST

 DGM Temp Check
 in
 Out

 DGM Temp. °F
 64
 65

 Amb. Temp. °F
 73

Meterbox ID: MB25 Calibrated by: CO Date: 03/26/18

Low				Low Medium			Medium			High		
Range	1A	1B	1C	2A	2B	2C	3A	3B	3C	4A	4B	4C
Run No.	1A		: +									
Stand, Crit, Orifice (SCRIT)	- 1	32	32	48	48	48	63	63	63	73	73	73
SCRIT ID#	32			0.3483	0.3483	0.3483	0.5937	0.5937	0.5937	0.8140	0.8140	0.8140
SCRIT K' Factor	0.1473	0.1473	0.1473	15	15	15	14	14	14	12	12	12
Min. SCRIT Vac., Vcr in. Hg	13	13	13	70	70	70	70	70	71	71	71	71
Amb Temp, tamb °F	63	68	68		29.93	29.93	29.93	29.93	29.93	29.93	29.93	29.93
Bar. Pressure, Pb in. Hg	29.93	29.93	29.93	29.93	29,93	29.80	20.00					
Meterbox (MB)						Y	Y		Υ Υ	Y	Y	Y
Leak-check OK? (Y or N)	Y	· Y		Y	Y		2.00	2.00	2.00	3.75	3.75	3.75
MB Orifice Delta H in. H2O	0.12	0.12	0.12	0.67	0.67	0.67		423,000	428.500	435.000	440.400	445.900
Initial MB Vol. Reading, Vdi acf	377,900	383.250	388.600	400.400	406.000	411.500	417.500	428.410	433.945	440.300	445.715	451.205
Final MB Vol. Reading, Vdf acf	383.200	388.570	393,970	405.860	411.460	416.960	422.910		5.44	5.30	5.32	5.31
Difference > 5.0 cf?	5.30	5.32	5.37	5.46	5.46	5.46	5.41	5. 4 1	 	76	76	76
Initial MB Temp, tdi oF	62	68	68	73	74	74	74	75	75	76	76	76
Final MB Temp, tdf oF	65	69	71	74	74	74	75	75	75	 	16	16
Pump Vac (> Vcr in. HG?)	18	18	18	17	17	17	16	16	16	16	5	5
Time, Minutes (M)	28	28	28	12	12	12	7	7	7 _	5	 	0
Time, Seconds (S)	0	0	0	0	0	0	0	0	0	0		
Calculations	╅									<u> </u>	 	1.002
M5 DGM Factor, Y _{i,}	1.009	1.010	1.002	1.003	1.004	1.004	1.006	1.006	0.999	1.003	1.000	
		 	ok			ok			ok	<u> </u>	ļ	ok
Yi: 0.95 < Yi < 1.05?	-		 	0.004	1 -	ok	0.007		ok	0.003		ok
$Diff = Y_{i(max)} - Y_{i(min)};$ $Diff \le +0.010?$	0.008	<u> </u>	ok	0.001	<u> </u>			 	 	┼	1.002	+
Average, Y _{ex(avg)}	T	1.007			1.004	<u> </u>	ļ	1.004	ļ -	0.000	1.002	ok
0.98 Yi(avg)/Yac(avg) < 1.02?	0.993		ok	0.996		ok	0.996	<u> </u>	ok	0.998	 	ok
Diff=Y _{((avg)} -Y _{ac(avg))} Diff <+0.027	-0.01	<u> </u>	ok	0.00	<u> </u>	ok	0.00	<u> </u>	ok	0.00	4.077	1.877
AH@i	1.833	1.833	1.830	1.823	1.821	1.821	1.875	1.873	1.877	1.877	1.877	1.077
		1.832	†	1	1.821	ļ		1.875	<u> </u>	_	1.877	
Average, ΔH _{@ac(avg)}		 	 	1		a.	-0,02		ok	-0.03	1	ok
Diff=∆H _{@i(avg)} -∆H _{@ac(avg);} Diff<+0.20?	0.02		ok	0.03	1	ok	-0,02	<u> </u>		↓		+
Flow Rate, scfm*	0.19	0.19	0.19	0.45	0.45	0.45	0.77	0.77	0.77	1.05	1.05	1.05
	0.19	+ -	+	0.45	-		0.77	<u> </u>	<u> </u>	1.05		+
Average Flow Rate, scfm* Requirements OK?	0.19+/-10	 	ok	0.44+/-10	1%	ok	0.75+/-109	6	ok	1.03+/-10)%	ok

*Gamma Corrected at Standard Conditions. Standard Temp = 88°F, Standard Pressure = 29.92 in Hg. $Y_{i} = \frac{K'P_{b}\left(\frac{t_{di} + t_{df}}{2} + 460\right)\left(M + \frac{S}{60}\right)}{(K'P_{b})}$ $\Delta H_{@1} = \frac{9.926 \Delta H\left(P_{b} + \frac{S}{60}\right)}{(K'P_{b})}$

 $\Delta H_{@1} = \frac{9.926 \Delta H \left(P_b + \frac{\Delta H}{13.6}\right) - \left(t_{amb} + 460\right)}{\left(K'P_b\right)^2 - \left(\frac{t_{di} + t_{df}}{2} + 460\right)}$

Y _{i(avg)}	1.00
SCAQMD AH@(avg)	1.88
EPA ΔΗ _{@((avg)}	1.85
In Range	

Notes:	

Checked By: R. Leyva 3/26/18

QA Administrator (Signature/Date)

AirKinetics, Inc. * 1308 S. Allec Street * Anaheim, CA 92805 * Tel: (714)254-1945 * Fax: (714)956-2350

QUARTZ NOZZLE LINER CALIBRATION

AirKinetics, Inc. * 1308 S. Allec Street * Anaheim, CA 92805 * Tel: (714)254-1945 * Fax: (714)956-2350

MAXIMUM DEVIATION ALLOWED FROM MEAN = 0.004"

LETTER ID: QP = Quartz Probe

Nozzie	Calib Data	Calib. By	Dia. 1	Dia, 2	Dia, 3	Dia. 4	Dia. 5	Average	MAX DEV
ID_	Calib. Date				1.248	1.247	1.247	1,248	0.002
6QP-1	4/28/17	MC	1.250	1.248		1.269	1.267	1.268	0.001
6QP-2	4/28/17	MC _	1.268	1.268	1.267				0.001
6QP-3	4/28/17	MC	1.252	1.251	1.250	1.251	1.250	1.251	
6QP-4	4/28/17	MC	1.254	1.254	1.256	1.256	1.258	1.256	0.002
			1.257	1.258	1 258	1.257	1.256	1.257	0.001
6QP-5	4/28/17	MC				1.250	1.251	1,249	0.002
6QP-6	4/28/17	MC _	1.248	1.249	1.249		L	1.257	0.002
6QP-7	4/28/17	MC	1.256	1.255	1.255	1.258	1.259		
6QP-8	4/28/17	MC	1.257	1.257	1.253	1.254	1.257	1.256	0.003
			0.751	0.750	0.750	0.752	0.751	0.751	0.001
3QP-1	3/30/18	KL_				0.746	0.746	0.746	0.000
3QP-2	03/30/18	KL	0.746	0.745	0.746				0.000
3QP-3	3/30/18	KL	0.755	0.757	0.758	0.755	0.756	0.756	0.000
				1		Į.	łL		

DIGITAL TOPLOADER CALIBRATION

Symmetry ED2000

Balance No.: ED2000 (DT#8)

Date: October 4, 2017

Laboratory Temperature: 71° F

Barometric Pressure: 29.85" Hg

Relative Humidity: 31%

Initials: VM

Time: 10:58

NIST Traceable Weights (g)	Balance Reading (g)	% Deviation
0.5	0.5	0.0000%
2	2.0	0.0000%
10	10.0	0.0000%
50	50.0	0.0000%
100	100.0	0.0000%
300	300.0	0.0000%
500	500.1	0.0200%
1000	1000.4	0.0400%
1300	1300.5	0.0385%
1500	1500.6	0.0400%
2000	2000.6	0.0300%

% Deviation = NIST Traceable Weights - Balance Reading x 100

NIST Traceable Weights

AKI No.: 14875 Page 69 of 131

Intentionally Left Blank

AKI No.: 14875 Page 70 of 131

APPENDIX B

DIOXINS/FURANS (BACKGROUND)

1.0 Results Tabulation and Calculations

AKI No.: 14875 Page 71 of 131

Intentionally Left Blank

AKI No.: 14875 Page 72 of 131

Site Information

Location: Torrance, Sampler: TE-1004

Site ID: NA Serial No: 1667 Date: 3-Apr-18 Tech: Randy Vorick

Site Conditions

759.5 Barometric Pressure (in Hg): 29.90 Corrected Pressure (mm Hg): 68.0 293.2 Temperature (deg F): Temperature (deg K): 759.5 Average Pressure (in Hg): 29.90 Corrected Average Pressure (mm Hg): 68.0 293.2 Average Temperature (deg F): Average Temperature (deg K):

Calibration Orifice

Make: Tisch

Model: TE-5040A Serial#: 0665

Qstd Slope: 9.88122 Qstd Intercept: -0.03577 Calibration Due Date: 26-Jul-17

Calibration Information

Linear Regression	Flow (corrected)	Flow (magn)	Qstd (m3/min)	Pressure (in H ₂ 0)	Plate or Test #
Slope: 34.5364	8.43	70.0	0.285	7.60	1
Intercept: -1.4648	7.81	60.0	0.268	6.70	2
Corr. Coeff: 0.9975	7.13	50.0	0.251	5.90	3
	6.37	40.0	0.229	4.90	4
# of Observations: 5	5.52	30.0	0.200	3.70	5

Calculations

Qstd = 1/m[Sqrt((H20)(Pa/760)(298/Ta))-b]Flow (corrected)=Sqrt((magn)(Pa/Pstd)(Tstd/Ta))

Qstd = standard flow rate

Flow (magn)= reading from magnehelic gauge

Flow (corrected)= corrected flow rate

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

Qstd = 1/m[Sqrt((H20)(Pa/760)(298/Ta))-b]

m = sampler slope

b = sampler intercept

(magn) = magnehelic reading

Tav = daily average temperature

Pav = daily average pressu

Sample ID: A - MTO9 - 2

Average Flow (magn):

50.0

Average Flow Over Sample (m3/min)

0.248770

Enter Total Time (hrs):

24.3

Total Flow Over Sample (m3)

362.8558959

Total Flow Over Sample (liters)

362855.8959

NOTE: Ensure calibration orifice has been certified within 12 months of use

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 • 877.263.7610 • sales@tisch-env.com • www.tisch-env.com

AKI No.: 14875 Page 73 of 131

Site Information

Location: Torrance,

Site ID: NA

Date: 3-Apr-18

Sampler: TE-1004

Serial No: 1667

Tech: Randy Vorick

Site Conditions

759.5 Corrected Pressure (mm Hg): Barometric Pressure (in Hg): 29.90 Temperature (deg F): 68.0 Temperature (deg K): 293.2 Corrected Average Pressure (mm Hg): 759.5 Average Pressure (in Hg): 29.90 Average Temperature (deg F): 68.0 Average Temperature (deg K): 293.2

Calibration Orifice

Make: Tisch Model: TE-5040A Serial#: 0665

Qstd Slope: 9.88122 Qstd Intercept: -0.03577 Calibration Due Date: 26-Jul-17

Calibration Information

Plate or Test #	Pressure (in H ₂ 0)	Qstd (m3/min)	Flow (magn)	Flow (corrected)	Linear Regression
1	7.60	0.285	70.0	8.43	Slope: 34.5364
2	6.70	0.268	60.0	7.81	Intercept: -1.4648
3	5.90	0.251	50.0	7.13	Corr. Coeff: 0.9975
4	4.90	0.229	40.0	6.37	
5	3.70	0.200	30.0	5.52	# of Observations: 5

Calculations

Pav = daily average pressu

Qstd = 1/m[Sqrt((H20)(Pa/760)(298/Ta))-b]Flow (corrected)=Sqrt((magn)(Pa/Pstd)(Tstd/Ta))

Qstd = standard flow rate Flow (magn)= reading from magnehelic gauge Flow (corrected)= corrected flow rate

m = calibrator Qstd slope b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = $298 \deg K$ Pstd = 760 mm Hg

For subsequent calculation of sampler flow: Qstd = 1/m[Sqrt((H20)(Pa/760)(298/Ta))-b]

m = sampler slope b = sampler intercept (magn) = magnehelic reading Tav = daily average temperature

Sample ID: A - MTO9 - 3

Average Flow (magn):

50.0

Average Flow Over Sample (m3/min)

0.248770

Enter Total Time (hrs):

24.0

Total Flow Over Sample (m3)

358.2287743

Total Flow Over Sample (liters)

358228.7743

NOTE: Ensure calibration orifice has been certified within 12 months of use

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 • 877.263.7610 • sales@tisch-env.com • www.tisch-env.com

AKI No.: 14875 Page 74 of 131

Location: Torrance,

Site ID: NA

Date: 3-Apr-18

Sampler: TE-1004

Serial No: 1667

Tech: Randy Vorick

Site Conditions

Corrected Pressure (mm Hg): 29.90 Barometric Pressure (in Hg): 68.0 Temperature (deg K): Temperature (deg F): Average Pressure (in Hg): 29.90 68.0

759.5 293.2

Corrected Average Pressure (mm Hg):

759.5

Average Temperature (deg K):

293.2

Calibration Orifice

Make: Tisch Model: TE-5040A Serial#: 0665

Average Temperature (deg F):

Qstd Slope: 9.88122 **Qstd Intercept:** -0.03577 Calibration Due Date: 26-Jul-17

Calibration Information

Plate or Test #	Pressure (in H ₂ 0)	Qstd (m3/min)	Flow (magn)	Flow (corrected)	Linear Regression
1	7.60	0.285	70.0	8.43	Slope: 34.5364
2	6.70	0.268	60.0	7.81	Intercept: -1.4648
3	5.90	0.251	50.0	7.13	Corr. Coeff: 0.9975
4	4.90	0.229	40.0	6.37	
5	3.70	0.200	30.0	5.52	# of Observations: 5

Calculations

Qstd = 1/m[Sqrt((H20)(Pa/760)(298/Ta))-b]Flow (corrected)=Sqrt((magn)(Pa/Pstd)(Tstd/Ta))

Qstd = standard flow rate

Flow (magn)= reading from magnehelic gauge

Flow (corrected)= corrected flow rate

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = $298 \deg K$

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

Qstd = 1/m[Sqrt((H20)(Pa/760)(298/Ta))-b]

m = sampler slope

b = sampler intercept

(magn) = magnehelic reading Tav = daily average temperature

Pav = daily average pressu

Sample ID: A - MT09 - 4

Average Flow (magn):

47.5

Average Flow Over Sample (m3/min)

0.243545

Enter Total Time (hrs):

24.0

Total Flow Over Sample (m3)

350.7047152

Total Flow Over Sample (liters)

350704.7152

NOTE: Ensure calibration orifice has been certified within 12 months of use

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 • 877.263.7610 • sales@tisch-env.com • www.tisch-env.com

AKI No.: 14875 Page 75 of 131

ISOKINETIC SAMPLING TRAIN RESULTS - METHOD: CARB 428

ANALYTICAL DATA		A-l	MT09-2	A	-MT09-3	A.	-MT09-4	Conversion
Compound	Unit	Pre	Amt	Pre	Amt	Pre	Amt	Factor
1 2,3,7,8-TCDD	pg	<	1.05	<	1.69	<	1.85	1E+12
2 Total TCDD	Pg	<	1.05	· V	1.7	<	1.9	1E+12
3 1,2,3,7,8-PeCDD	po	<	2.72	٧.	2.85	<	2.39	1E+12
4 Total PeCDD	0 :	<	2.72	٧	2.85	٧	2.39	1E+12
5 1,2,3,4,7,8-HxCDD		5	295	y., <	3.42	Ý	3.71	1E+12
6 1,2,3,6,7,8-HxCDD	100	~ ~	28.8	×	322	٧	3.56	1E+12
7 1,2,3,7,8,9-HxCDD	2.5	<	2.88	W <	3.34		3 63	1E+12
8 Total HxCDD	09	<u> </u>	288	× 5	3.35		15.9	1E+12
9 1,2,3,4,6,7,8-HpCDD	la c	<	16.8	iorini go _g ti si	21.1	and the	31.7	1E+12
10 Total-HpCDD	1.1		26.5	Karangan	51.2		77.5	1E+12
11 OCDD	pg		237		177		229	1E+12
12 2,3,7,8-TCDF	P.	* *	14.5	%	1.47	° <	3.10	1E+12
13 Total TCDF	2	<	1.43	٧	1.47		19.2	1E+12
14 1,2,3,7,8-PeCDF	901	Ab . <	244	* V	2.54	100	201	1E+12
15 2,3,4,7,8-PeCDF	2.3	<	2.19	V	265		2.09	1E+12
16 Total PeCDF	241	yg o Albania Geografia		er ven		in some	163	1E+12
17 1,2,3,4,7,8-HxCDF		<	1.92	1940 - S	1.81		1.99	1E+12
18 1,2,3,6,7,8-HxCDF	9.6	<	1.73	'	1.62	<	1.79	1E+12
19 2,3,4,6,7,8-HxCDF	es	. <	1.91	 .	1.80	<	1.98	1E+12
20 1,2,3,7,8,9-HxCDF	PS	<	2:17	×<	2.04	*	2.25	
21 Total HxCDF	pg	8 1	6.09		4.47		24.2	1E+12
22 1,2,3,4,6,7,8-HpCDF	29	-	7.21	ber 18	8.64		9.73	
23 1,2,3,4,7,8,9-HpCDF	pg		3.18	<	2.91	<	1.95	
24 Total HpCDF	pg		12.6		15.4		9.73	
25 OCDF	pg		7.66	<	7.31	<	14.5	1E+12

5/11/2018

Plant Name: Plane Name
Sampling Location: Test Location
Run Number: A-MT09-2
Run End Date: 04/05/18

Total Flow Over Sample, m³

362.8558959

Parameter	Catch Weight	Concentrations	Concentrations
	(pg)	(pg/m ³)	(ng/m ³)
PCDDs	(1 3)		
2,3,7,8-TCDD	1.05	0.00289	2.89E-06
Other TCDD	0	0.00000	0.00E+00
1,2,3,7,8-PeCDD	2.72	0.00750	7.50E-06
Other PeCDD	0	0.00000	0.00E+00
1,2,3,4,7,8-HxCDD	2.95	0.00813	8.13E-06
1,2,3,6,7,8-HxCDD	2.83	0.00780	7.80E-06
1,2,3,7,8,9-HxCDD	2.88	0.00794	7.94E-06
Other HxCDD	0	0.00000	0.00E+00
1,2,3,4,6,7,8-HpCDD	16.8	0.04630	4.63E-05
Other HpCDD	11.7	0.03224	3.22E-05
OCDD	237	0.65315	6.53E-04
TOTAL PCDDs	277.93	0.76595	7.66E-04
PCDFs			
2,3,7,8-TCDF	1.43	0.00394	3.94E-06
Other TCDF	0	0.00000	0.00E+00
1,2,3,7,8-PeCDF	2.11	0.00581	5.81E-06
2,3,4,7,8-PeCDF	2.19	0.00604	6.04E-06
Other PeCDF	0.17	0.00047	4.69E-07
1,2,3,4,7,8-HxCDF	1.92	0.00529	5.29E-06
1,2,3,6,7,8-HxCDF	1.73	0.00477	4.77E-06
2,3,4,6,7,8-HxCDF	1.91	0.00526	5.26E-06
1,2,3,7,8,9-HxCDF	2.17	0.00598	5.98E-06
Other HxCDF	0	0.00000	0.00E+00
1,2,3,4,6,7,8-HpCDF	7.21	0.01987	1.99E-05
1,2,3,4,7,8,9-HpCDF	3.18	0.00876	8.76E-06
Other HpCDF	2.21	0.00609	6.09E-06
OCDF	7.66	0.02111	2.11E-05
		0.00046	0.045.05
TOTAL PCDFs	33.89	0.09340	9.34E-05
TOTAL PCDDs and PCDFs	311.82	0.85935	8.59E-04

Plant Name: Plane Name
Sampling Location: Test Location
Run Number: A-MT09-3
Run End Date: 04/06/18

Total Flow Over Sample, m³ 358.2287743

5	0 () ()	<u> </u>	0 ' '
Parameter	Catch Weight	Concentrations	
	(pg)	(pg/m ³)	(ng/m³)
PCDDs			
2,3,7,8-TCDD	1.69	0.00472	4.18E-07
Other TCDD	0	0.00000	0.00E+00
1,2,3,7,8-PeCDD	2.85	0.00796	7.05E-07
Other PeCDD	0	0.00000	0.00E+00
1,2,3,4,7,8-HxCDD	3.42	0.00955	8.46E-07
1,2,3,6,7,8-HxCDD	3.28	0.00916	8.11E-07
1,2,3,7,8,9-HxCDD	3.34	0.00932	8.26E-07
Other HxCDD	0	0.00000	0.00E+00
1,2,3,4,6,7,8-HpCDD	21.1	0.05890	5.22E-06
Other HpCDD	30.1	0.08402	7.45E-06
OCDD	177	0.49410	4.38E-05
TOTAL PCDDs	242.78	0.67772	6.01E-05
PCDFs			
2,3,7,8-TCDF	1.47	0.00410	3.64E-07
Other TCDF	0	0.00000	0.00E+00
1,2,3,7,8-PeCDF	2.54	0.00709	6.28E-07
2,3,4,7,8-PeCDF	2.65	0.00740	6.56E-07
Other PeCDF	0	0.00000	0.00E+00
1,2,3,4,7,8-HxCDF	1.81	0.00505	4.48E-07
1,2,3,6,7,8-HxCDF	1.62	0.00452	4.01E-07
2,3,4,6,7,8-HxCDF	1.8	0.00502	4.45E-07
1,2,3,7,8,9-HxCDF	2.04	0.00569	5.05E-07
Other HxCDF	0	0.00000	0.00E+00
1,2,3,4,6,7,8-HpCDF	8.64	0.02412	2.14E-06
1,2,3,4,7,8,9-HpCDF	2.91	0.00812	7.20E-07
Other HpCDF	3.85	0.01075	9.52E-07
OCDF	7.31	0.02041	1.81E-06
TOTAL PCDFs	36.64	0.10228	9.06E-06
TOTAL PCDDs and PCDFs	279.42	0.78000	6.91E-05

Plant Name: Plane Name
Sampling Location: Test Location
Run Number: A-MT09-4
Run End Date: 04/10/18

Total Flow Over Sample, m³

350.7047152

Parameter	Catch Weight	Concentrations	Concentrations
	(pg)	(pg/m ³)	(ng/m ³)
PCDDs	(1.3)		
2,3,7,8-TCDD	1.85	0.00528	6.42E-07
Other TCDD	0	0.00000	0.00E+00
1,2,3,7,8-PeCDD	2.39	0.00681	8.29E-07
Other PeCDD	0	0.00000	0.00E+00
1,2,3,4,7,8-HxCDD	3.71	0.01058	1.29E-06
1,2,3,6,7,8-HxCDD	3.56	0.01015	1.23E-06
1,2,3,7,8,9-HxCDD	3.63	0.01035	1.26E-06
Other HxCDD	5	0.01426	1.73E-06
1,2,3,4,6,7,8-HpCDD	31.7	0.09039	1.10E-05
Other HpCDD	45.8	0.13059	1.59E-05
OCDD	229	0.65297	7.94E-05
0022	220	0.00207	7.0.2 00
TOTAL PCDDs	326.64	0.93138	1.13E-04
DODE-			
PCDFs	2.4	0.00004	4.005.00
2,3,7,8-TCDF	3.1	0.00884	1.08E-06
Other TCDF	16.1	0.04591	5.58E-06
1,2,3,7,8-PeCDF	2.01	0.00573	6.97E-07
2,3,4,7,8-PeCDF	2.09	0.00596	7.25E-07
Other PeCDF	12.2	0.03479	4.23E-06
1,2,3,4,7,8-HxCDF	1.99	0.00567	6.90E-07
1,2,3,6,7,8-HxCDF	1.79	0.00510	6.21E-07
2,3,4,6,7,8-HxCDF	1.98	0.00565	6.87E-07
1,2,3,7,8,9-HxCDF	2.25	0.00642	7.80E-07
Other HxCDF	16.19	0.04616	5.61E-06
1,2,3,4,6,7,8-HpCDF	9.73	0.02774	3.37E-06
1,2,3,4,7,8,9-HpCDF	1.95	0.00556	6.76E-07
Other HpCDF	0	0.00000	0.00E+00
OCDF	14.5	0.04135	5.03E-06
TOTAL PCDFs	85.88	0.24488	2.98E-05
TOTAL PCDDs and PCDFs	412.52	1.17626	1.43E-04

Location: Torrance, Sampler: TE-1004

Site ID: NA

Serial No: 1667

Date: 3-Apr-18

Tech: Randy Vorick

Site Conditions

Barometric Pressure (in Hg): 29.90 68.0 Temperature (deg F):

29.90

Corrected Pressure (mm Hg): Temperature (deg K): 759.5 293.2

Average Pressure (in Hg): Average Temperature (deg F):

68.0

Corrected Average Pressure (mm Hg): Average Temperature (deg K): 759.5

293.2

Calibration Orifice

Make: Tisch Model: TE-5040A Serial#: 0665

Qstd Slope: 9.88122 Qstd Intercept: -0.03577

Calibration Due Date: 26-Jul-17

Calibration Information

Flow (corrected)	Flow (magn)	Qstd (m3/min)	Pressure	Plate or Test #
•				1621#
8.43	70.0	0.285	7.60	1
7.81	60.0	0.268	6.70	2
7.13	50.0	0.251	5.90	3
6.37	40.0	0.229	4.90	4
5.52	30.0	0.200	3.70	5
	(corrected) 8.43 7.81 7.13 6.37	(magn) (corrected) 70.0 8.43 60.0 7.81 50.0 7.13 40.0 6.37	(m3/min) (magn) (corrected) 0.285 70.0 8.43 0.268 60.0 7.81 0.251 50.0 7.13 0.229 40.0 6.37	(in H ₂ 0) (m3/min) (magn) (corrected) 7.60 0.285 70.0 8.43 6.70 0.268 60.0 7.81 5.90 0.251 50.0 7.13 4.90 0.229 40.0 6.37

Calculations

Qstd = 1/m[Sgrt((H20)(Pa/760)(298/Ta))-b]Flow (corrected)=Sqrt((magn)(Pa/Pstd)(Tstd/Ta))

Qstd = standard flow rate

Flow (magn)= reading from magnehelic gauge

Flow (corrected)= corrected flow rate

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

Qstd = 1/m[Sqrt((H20)(Pa/760)(298/Ta))-b]

m = sampler slope b = sampler intercept

(magn) = magnehelic reading

Tav = daily average temperature

Pav = daily average pressu

Sample ID: A - MTO9 - 5

Average Flow (magn):

47.5

Average Flow Over Sample (m3/min)

0.243545

Enter Total Time (hrs):

24.0

Total Flow Over Sample (m3)

350.7047152

Total Flow Over Sample (liters)

350704.7152

NOTE: Ensure calibration orifice has been certified within 12 months of use

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 • 877.263.7610 • sales@tlsch-env.com • www.tisch-env.com

AKI No.: 14875 Page 80 of 131

Location: Torrance,

Site ID: NA

Date: 3-Apr-18

Sampler: TE-1004

Serial No: 1667

Tech: Randy Vorick

Site Conditions

29.90 Barometric Pressure (in Hg): 68.0 Temperature (deg F):

Corrected Pressure (mm Hg): Temperature (deg K): 759.5 293.2

Average Pressure (in Hg):

Corrected Average Pressure (mm Hg):

29.90

759.5

Average Temperature (deg F):

68.0

Average Temperature (deg K):

293.2

Calibration Orifice

Make: Tisch

Model: TE-5040A Serial#: 0665

Qstd Slope: 9.88122

Qstd Intercept: -0.03577

Calibration Due Date: 26-Jul-17

Calibration Information

Plate or Test #	Pressure (in H ₂ 0)	Qstd (m3/min)	Flow (magn)	Flow (corrected)	Linear Regression
1	7.60	0.285	70.0	8.43	Slope: 34.5364 Intercept: -1.4648
2	6.70	0.268 0.251	60.0 50.0	7.81 7.13	Corr. Coeff: 0.9975
3 4	5.90 4.90	0.231	40.0	6.37	
5	3.70	0.200	30.0	5.52	# of Observations: 5

Calculations

Qstd = 1/m[Sqrt((H20)(Pa/760)(298/Ta))-b]Flow (corrected)=Sqrt((magn)(Pa/Pstd)(Tstd/Ta))

Qstd = standard flow rate

Flow (magn)= reading from magnehelic gauge

Flow (corrected)= corrected flow rate

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

Qstd = 1/m[Sqrt((H20)(Pa/760)(298/Ta))-b]

m = sampler slope

b = sampler intercept

(magn) = magnehelic reading

Tay = daily average temperature

Pav = daily average pressu

Sample ID: A - MT09 - 6

Average Flow (magn):

50.0

Average Flow Over Sample (m3/min)

0.248770

Enter Total Time (hrs):

24.0

Total Flow Over Sample (m3)

358.2287743

Total Flow Over Sample (liters)

358228.7743

NOTE: Ensure calibration orifice has been certified within 12 months of use

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 • 877.263.7610 • sales@tisch-env.com • www.tisch-env.com

AKI No.: 14875 Page 81 of 131

Location: Torrance, Sampler: TE-1004

Site ID: NA Serial No: 1667 Date: 3-Apr-18 Tech: Randy Vorick

Site Conditions

Corrected Pressure (mm Hg): 29.90 Barometric Pressure (in Hg): Temperature (deg K): 68.0 Temperature (deg F): Corrected Average Pressure (mm Hg): Average Pressure (in Hg): 29.90 68.0 Average Temperature (deg F):

Average Temperature (deg K):

759.5 293.2

759.5

293.2

Calibration Orifice

Make: Tisch Model: TE-5040A Serial#: 0665

Qstd Slope: 9.88122 Qstd Intercept: -0.03577 Calibration Due Date: 26-Jul-17

Calibration Information

Plate or	Pressure	Qstd	Flow	Flow	Linear Regression Slope: 34.5364
Test #	(in H ₂ 0)	(m3/min)	(magn)	(corrected)	
1	7.60	0.285	70.0	8.43	Intercept: -1.4648 Corr. Coeff: 0.9975
2	6.70	0.268	60.0	7.81	
3	5.90	0.251	50.0	7.13	_
4	4.90	0.229	40.0	6.37	
5	3.70	0.200	30.0	5.52	# of Observations: 5

Calculations

Qstd = 1/m[Sqrt((H20)(Pa/760)(298/Ta))-b]Flow (corrected)=Sqrt((magn)(Pa/Pstd)(Tstd/Ta))

Qstd = standard flow rate Flow (magn)= reading from magnehelic gauge Flow (corrected)= corrected flow rate

m = calibrator Qstd slope b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow: Qstd = 1/m[Sqrt((H20)(Pa/760)(298/Ta))-b]

m = sampler slope b = sampler intercept (magn) = magnehelic reading Tay = daily average temperature Pav = daily average pressu

Sample ID: A - MTO9 - 7

Average Flow (magn):

45.0

Average Flow Over Sample (m3/min)

0.238180

Enter Total Time (hrs):

24.0

Total Flow Over Sample (m3)

342.9799089

Total Flow Over Sample (liters)

342979.9089

NOTE: Ensure calibration orifice has been certified within 12 months of use

Tisch Environmental 145 South Miami Ave, Cleves OH 45002 • 877.263.7610 • sales@tisch-env.com • www.tisch-env.com

AKI No.: 14875 Page 82 of 131

ISOKINETIC SAMPLING TRAIN RESULTS - METHOD: CARB 428

ANALYTICAL DATA	/	A	-MT09-5	A	-MT09-6	Α	-MT09-7	Conversion
Compound	Unit	Pre	Amt	Pre	Amt	Pre	Amt	Factor
1 2,3,7,8-TCDD	pg	7	4.92	₹	1.24	Υ.	1.15	1E+12
2 Total TCDD	Pg	<	4.92	¥	1.24	. .	1.15	1E+12
3 1,2,3,7,8-PeCDD	pg	~	12.8	٧	2.38		2.67	1E+12
4 Total PeCDD	pg	٧	12.8	Α,	2 筆	<u> </u>	2/67	1E+12
5 1,2,3,4,7,8-HxCDD	09	V	9.18		3.26	8 S	3.40	1E+12
6 1,2,3,6,7,8-HxCDD	D	Ø	876		3.22	. 4	3.26	1E+12
7 1,2,3,7,8,9-HxCDD		. <	8.92	* <	3.23		18 12	1E+12
8 Total HxCDD	199	<	8.94	Burly Mad	3.20			1E+12
9 1,2,3,4,6,7,8-HpCDD	PS		49.7	(* 11.50) 11. 12.00	28.3		24.9	1E+12
10 Total-HpCDD	LE LE		116	ŝ.		A CANADA CA	50/3	1E+12
11 OCDD	pg		386		243		253	1E+12
12 2,3,7,8-TCDF	0	February Control	province of the post	Mr. State	1.47	*		1E+12
13 Total TCDF		~	4.76	<	191	<		1E+12
14 1,2,3,7,8-PeCDF		. <	400	a ie	 	817 (See	2.79	
15 2,3,4,7,8-PeCDF		10.00			216	<		1E+12
16 Total PeCDF		Service of these	10.5	**************************************	AND THE STREET	remark (
			(5.9%)	*		\$	245	1E+12
17 1,2,3,4,7,8-HxCDF 18 1,2,3,6,7,8-HxCDF	P.9	<	476	<	2 11	<	A Company of agreement	4
10 1,2,3,6,7,6-HXCDI	09		5.25		2.3	a very consist a very consist	2 14	
19 2,3,4,6,7,8-HxCDF	9.5		5.97	-	2.5	7	2.42	1E+12
20 1,2,3,7,8,9-HxCDF	92		19.6		9.42	1	4 05	
21 Total HxCDF	<u>22</u>		- Thirties and	-	102	a gran e	8.64	
22 1,2,3,4,6,7,8-HpCDF			CAN EXPENSE		1.80	7	2.25	
23 1,2,3,4,7,8,9-HpCDF			15.1		10.2	2 -	13.7	
24 Total HpCDF	pg				100		21.4	1E+12
25 OCDF	pg	<u>'L</u>	., .0.0	Ъ-			<u> </u>	

14875 - EPA TO-9 (5,6,7).xls\ANALYTIKIAttiDA;TrAc.-Revison Date 03/28/2016

Plant Name: Plane Name
Sampling Location: Test Location
Run Number: A-MT09-5
Run End Date: 04/11/18

Total Flow Over Sample, m³ 350.7047152

Parameter	Catch Weight	Concentrations	Concentrations
i arameter	· ·	(pg/m³)	(ng/m³)
DODD:	(pg)	(Pg/III)	(11g/111)
PCDDs	4.00	0.04.400	4 405 05
2,3,7,8-TCDD	4.92	0.01403	1.40E-05
Other TCDD	0	0.00000	0.00E+00
1,2,3,7,8-PeCDD	12.8	0.03650	3.65E-05
Other PeCDD	0	0.00000	0.00E+00
1,2,3,4,7,8-HxCDD	9.13	0.02603	2.60E-05
1,2,3,6,7,8-HxCDD	8.76	0.02498	2.50E-05
1,2,3,7,8,9-HxCDD	8.92	0.02543	2.54E-05
Other HxCDD	0	0.00000	0.00E+00
1,2,3,4,6,7,8-HpCDD	49.7	0.14171	1.42E-04
Other HpCDD	66.3	0.18905	1.89E-04
OCDD	306	0.87253	8.73E-04
TOTAL PCDDs	466.53	1.33026	1.33E-03
PCDFs			
2,3,7,8-TCDF	4.76	0.01357	1.36E-05
Other TCDF	0	0.00000	0.00E+00
1,2,3,7,8-PeCDF	10.4	0.02965	2.97E-05
2,3,4,7,8-PeCDF	10.9	0.03108	3.11E-05
Other PeCDF	0	0.00000	0.00E+00
1,2,3,4,7,8-HxCDF	5.29	0.01508	1.51E-05
1,2,3,6,7,8-HxCDF	4.76	0.01357	1.36E-05
2,3,4,6,7,8-HxCDF	5.26	0.01500	1.50E-05
1,2,3,7,8,9-HxCDF	5.97	0.01702	1.70E-05
Other HxCDF	0	0.00000	0.00E+00
1,2,3,4,6,7,8-HpCDF	9.2	0.02623	2.62E-05
1,2,3,4,7,8,9-HpCDF	9.44	0.02692	2.69E-05
Other HpCDF	0	0.00000	0.00E+00
OCDF	13.9	0.03963	3.96E-05
005.	10.0	0.00000	0.002 00
TOTAL PCDFs	79.88	0.22777	2.28E-04
	. 0.00	0.22	
TOTAL PCDDs and PCDFs	546.41	1.55803	1.56E-03

14875 - EPA TO-9 (5,6,7).xls\TOTAl\(\text{irRUinefics}\), Inc.-Revison Date 03/28/2016

Plant Name: Plane Name
Sampling Location: Test Location
Run Number: A-MT09-6
Run End Date: 04/12/18

Total Flow Over Sample, m³ 358.2287743

Parameter	Catch Waight	Concentrations	Concontrations
raiailletei	· ·	(pg/m³)	(ng/m³)
	(pg)	(pg/III)	(Hg/HT)
PCDDs			
2,3,7,8-TCDD	1.24	0.00346	3.46E-06
Other TCDD	0	0.00000	0.00E+00
1,2,3,7,8-PeCDD	2.38	0.00664	6.64E-06
Other PeCDD	0	0.00000	0.00E+00
1,2,3,4,7,8-HxCDD	3.36	0.00938	9.38E-06
1,2,3,6,7,8-HxCDD	3.22	0.00899	8.99E-06
1,2,3,7,8,9-HxCDD	3.28	0.00916	9.16E-06
Other HxCDD	0	0.00000	0.00E+00
1,2,3,4,6,7,8-HpCDD	28.3	0.07900	7.90E-05
Other HpCDD	40.3	0.11250	1.12E-04
OCDD	241	0.67275	6.73E-04
TOTAL PCDDs	323.08	0.90188	9.02E-04
PCDFs			
2,3,7,8-TCDF	1.47	0.00410	4.10E-06
Other TCDF	0	0.00000	0.00E+00
1,2,3,7,8-PeCDF	1.95	0.00544	5.44E-06
2,3,4,7,8-PeCDF	2.03	0.00567	5.67E-06
Other PeCDF	0.24	0.00067	6.70E-07
1,2,3,4,7,8-HxCDF	2.35	0.00656	6.56E-06
1,2,3,6,7,8-HxCDF	2.11	0.00589	5.89E-06
2,3,4,6,7,8-HxCDF	2.34	0.00653	6.53E-06
1,2,3,7,8,9-HxCDF	2.65	0.00740	7.40E-06
Other HxCDF	0	0.00000	0.00E+00
1,2,3,4,6,7,8-HpCDF	10.2	0.02847	2.85E-05
1,2,3,4,7,8,9-HpCDF	1.8	0.00502	5.02E-06
Other HpCDF	0	0.00000	0.00E+00
OCDF	16.3	0.04550	4.55E-05
332.	. 5.6	0.0 .000	
TOTAL PCDFs	43.44	0.12126	1.21E-04
		0	
TOTAL PCDDs and PCDFs	366.52	1.02315	1.02E-03

14875 - EPA TO-9 (5,6,7).xls\TOTAl\(\)ir\(\)Un\(\)e6cs, Inc.-Revison Date 03/28/2016

Plant Name: Plane Name
Sampling Location: Test Location
Run Number: A-MT09-7
Run End Date: 04/13/18

Total Flow Over Sample, m³

342.9799089

Parameter	Catch Weight	Concentrations	
	(pg)	(pg/m³)	(ng/m³)
PCDDs	07		
2,3,7,8-TCDD	1.15	0.00335	3.35E-06
Other TCDD	0	0.00000	0.00E+00
1,2,3,7,8-PeCDD	2.67	0.00778	7.78E-06
Other PeCDD	0	0.00000	0.00E+00
1,2,3,4,7,8-HxCDD	3.4	0.00991	9.91E-06
1,2,3,6,7,8-HxCDD	3.26	0.00950	9.50E-06
1,2,3,7,8,9-HxCDD	3.32	0.00968	9.68E-06
Other HxCDD	0	0.00000	0.00E+00
1,2,3,4,6,7,8-HpCDD	24.9	0.07260	7.26E-05
Other HpCDD	33.9	0.09884	9.88E-05
OCDD	253	0.73765	7.38E-04
TOTAL PCDDs	325.60	0.94933	9.49E-04
PCDFs			
2,3,7,8-TCDF	1.3	0.00379	3.79E-06
Other TCDF	0	0.00000	0.00E+00
1,2,3,7,8-PeCDF	2.79	0.00813	8.13E-06
2,3,4,7,8-PeCDF	2.91	0.00848	8.48E-06
Other PeCDF	0	0.00000	0.00E+00
1,2,3,4,7,8-HxCDF	2.15	0.00627	6.27E-06
1,2,3,6,7,8-HxCDF	1.93	0.00563	5.63E-06
2,3,4,6,7,8-HxCDF	2.14	0.00624	6.24E-06
1,2,3,7,8,9-HxCDF	2.42	0.00706	7.06E-06
Other HxCDF	0	0.00000	0.00E+00
1,2,3,4,6,7,8-HpCDF	8.64	0.02519	2.52E-05
1,2,3,4,7,8,9-HpCDF	2.25	0.00656	6.56E-06
Other HpCDF	2.81	0.00819	8.19E-06
OCDF	21.4	0.06239	6.24E-05
302.		0.00200	0.2.2
TOTAL PCDFs	50.74	0.14794	1.48E-04
TOTAL PCDDs and PCDFs	376.34	1.09727	1.10E-03

APPENDIX A

DIOXINS/FURANS (BACKGROUND)

2.0 Field Data

AKI No.: 14875 Page 87 of 131

Intentionally Left Blank

AKI No.: 14875 Page 88 of 131

Ambient Sampler Field Data Sheet

INVALID

Coca-Cola Distribution Center Torrance, CA

Sample:

1A) or 1B : (1) 2 or 3

Run1

	<u>Start</u>	End	Avg/Elasped
Date	4/3/18	4/4/18	
Time	10:00	10:00	
Bar Press, (in. Hg)	29.9	29.9	29,9
Temp, (°F)	65	85	75
Magn, (psi)	50	50 5035	5D
Recorder, (hrs)	02848.77	2872.77	24.0

Ambient Sampler Field Data Sheet

Coca-Cola Distribution Center Torrance, CA

Sample:

(A) or 1B : 1 (2) or 3

Run 2

	<u>Start</u>	Avg/Elasped	
Date	4/4 18	416/18	
Time	11:35 10:05	11: 35	
Bar Press, (in. Hg)	29.9	299	2.9.9
Temp, (°F)	65	85	75
Magn, (psi)	2872.77	50	50
Recorder, (hrs)	50	2 897.08	24.31

AKI No.: 14875 Page 90 of 131

Ambient Sampler Field Data Sheet

Coca-Cola Distribution Center Torrance, CA

Sample:

(1A) or 1B: 1 2 or (3)

	<u>Start</u>	<u>End</u>	Avg/Elasped
Date	415/18	4/6/18	
Time	11:45	14 7 U:45	
Bar Press, (in. Hg)	29.9	29.9	29.9
Temp, (°F)	65	85	75
Magn, (psi)	50	50	50
Recorder, (hrs)	2897.08	2921.08	24.0

AKI No.: 14875 Page 91 of 131

Ambient Sampler Field Data Sheet

Coca-Cola Distribution Center Torrance, CA

Sample:

1A or 1B : 1 2 or 3 4

Run 4

	<u>Start</u>	<u>End</u>	Avg/Elasped
Date	4/9/18	4/10/18	
Time	1025	1025	
Bar Press, (in. Hg)	299	29.9	Z9.9
Temp, (°F)	70	77	73.5
Magn, (psi)	50	45	47.5
Recorder, (hrs)	2921.08	29 45,09	24.0

AKI No.: 14875 Page 92 of 131

Ambient Sampler Field Data Sheet

Coca-Cola Distribution Center Torrance, CA

Sample:

1A or (1B): (1) 2 or 3

	<u>Start</u>	<u>End</u>	Avg/Elasped
Date	10:35	(035	
Time	4/101/8	4/11/18	<u></u>
Bar Press, (in. Hg)	299	29.9	29.9
Temp, (°F)	79	80	78.5
Magn, (psi)	50	45	47.5
Recorder, (hrs)	2945.00	2969-09	24.0

AKI No.: 14875 Page 93 of 131

Ambient Sampler Field Data Sheet

Coca-Cola Distribution Center Torrance, CA

Sample:

1A or (1B): 1 (2) or 3 Run 6

	<u>Start</u>	<u>End</u>	Avg/Elasped
Date	4/11/192	4/12/18	
Time	(0:40	10:40	
Bar Press, (in. Hg)	29.9	29.01	29.9
Temp, (°F)	80	75	17.5
Magn, (psi)	50	50	50
Recorder, (hrs)	2969.69	2993.10	240

AKI No.: 14875 Page 94 of 131

Ambient Sampler Field Data Sheet

Coca-Cola Distribution Center Torrance, CA

Sample:

1A or (1B): 1 2 or (3) Kun 7

	<u>Start</u>	<u>End</u>	Avg/Elasped
Date	4/14/18	4/13/18	
Time	10:45	10:45	
Bar Press, (in. Hg)	29.9	29.9	29.9
Temp, (°F)	75	80	775
Magn, (psi)	50	40	45
Recorder, (hrs)	2993.10	3017.10	24.0

AKI No.: 14875 Page 95 of 131

Ambient Sampler Calibration Sheet

Coca-Cola Distribution Center Torrance, CA

Sampler ID:

TE-1004, Serial 1667

Date:

4/3/18

Test#	Magn, psi	Press 1	Press 2	Total Press
1	70	3.9	3.7	7.6
2	60	3.4	3.3	6.7
3	50	3.0	2.9	5.9
4	40	2.5	2.4	4.9
5	30	1.9	1.8	3.7

AKI No.: 14875 Page 96 of 131

APPENDIX A

DIOXINS/FURANS (BACKGROUND)

3.0 Analytical Data

AKI No.: 14875 Page 97 of 131

Intentionally Left Blank

AKI No.: 14875 Page 98 of 131

May 09, 2018

Vista Work Order No. 1800573

Mr. Neal Conroy AirKinetics, Inc. 1308 S. Allec Street Anaheim, CA 92805

Dear Mr. Conroy,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on April 16, 2018. This sample set was analyzed on a standard turn-around time, under your Project Name 'AECOM/14875'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier

Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Page 1 of 20

Vista Work Order No. 1800573 Case Narrative

Sample Condition on Receipt:

Six PUF samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. Samples "A-MT09-2" and "A-MT09-3" were received outside of the hold time. The client was notified by email on April 18, 2018.

Analytical Notes:

Method TO-9A

These samples were extracted and analyzed for tetra-through-octa chlorinated dioxins and furans by Method TO-9A using a ZB-5MS GC column.

Holding Times

Samples "A-MT09-2", "A-MT09-3" and "A-MT09-4" were extracted outside of the method holding time criteria.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery sample (OPR) were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank. The OPR recoveries were within the method acceptance criteria.

The extraction glassware containing sample "A-MT09-5" developed a crack early in the extraction process and a significant amount of the extract was lost. The sample was transferred to new glassware and the extraction was re-started. The pre-spike recoveries are high for this sample, indicating that extract was lost prior to a thorough extraction of the PUF; the reported concentrations of the analytes may be biased high.

The labeled standard recoveries outside of the method acceptance criteria are listed in the table below.

Page 2 of 20

Work Order 1800573

AKI No.: 14875 Page 100 of 131

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag	%Rec
1800573-04	A-MTO9-5	EPA Method TO-9	13C-2,3,7,8-TCDD	Н	24.7
1800573-04	A-MTO9-5	EPA Method TO-9	13C-1,2,3,7,8-PeCDD	н	18,4
1800573-04	A-MTO9-5	EPA Method TO-9	13C-1,2,3,6,7,8-HxCDD	Н	21.4
1800573-04	A-MTO9-5	EPA Method TO-9	13C-1,2,3,4,6,7,8-HpCDD	Н	19.7
1800573-04	A-MTO9-5	EPA Method TO-9	13C-OCDD	Н	15.8
1800573-04	A-MTO9-5	EPA Method TO-9	13C-2,3,7,8-TCDF	H	22.9
1800573-04	A-MTO9-5	EPA Method TO-9	13C-1,2,3,7,8-PeCDF	Н	20.4
1800573-04	A-MTO9-5	EPA Method TO-9	13C-1,2,3,6,7,8-HxCDF	H	21.8
1800573-04	A-MTO9-5	EPA Method TO-9	13C-1,2,3,4,6,7,8-HpCDF	Н	22.2
1800573-04	A-MTO9-5	EPA Method TO-9	13C-OCDF	Н	19.4
1800573-04	A-MTO9-5	EPA Method TO-9	37Cl-2,3,7,8-TCDD	Н	410
1800573-04	A-MTO9-5	EPA Method TO-9	13C-2,3,4,7,8-PeCDF	Н	389
1800573-04	A-MTO9-5	EPA Method TO-9	13C-1,2,3,4,7,8-HxCDD	H	464
1800573-04	A-MTO9-5	EPA Method TO-9	13C-1,2,3,4,7,8-HxCDF	H.	430
1800573-04	A-MTO9-5	EPA Method TO-9	13C-1,2,3,4,7,8,9-HpCDF	Н	383

H = Recovery was outside laboratory acceptance criteria.

Page 3 of 20

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	4
Sample Inventory	5
Analytical Results	ϵ
Qualifiers	15
Certifications	16
Sample Receipt.	17

Work Order 1800573 Page 4 of 20

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1800573-01	A-MTO9-2	05-Apr-18 11:35	16-Apr-18 15:55	PUF Cartridge
1800573-02	A-MTO9-3	05-Apr-18 11:45	16-Apr-18 15:55	Filter PUF Cartridge Filter
1800573-03	A-MTO9-4	10-Apr-18 10:25	16-Apr-18 15:55	PUF Cartridge
1800573-04	A-MTO9-5	11-Apr-18 10:35	16-Apr-18 15:55	Filter PUF Cartridge Filter
1800573-05	A-MTO9-6	12-Apr-18 10:40	16-Apr-18 15:55	PUF Cartridge
1800573-06	A-MTO9-7	13-Apr-18 10:45	16-Apr-18 15:55	Filter PUF Cartridge Filter

Vista Project: 1800573

Client Project: AECOM/14875

ANALYTICAL RESULTS

Work Order 1800573 Page 6 of 20

AKI No.: 14875 Page 104 of 131

Sample ID:	Method Blank		-				EPA Met	hod TO-9
Matrix: Air		X	D0125 -Apr-2018 10:27		Lab Sample: B8D0125-BLK1 Date Analyzed: 27-Apr-18 18:08	Column: ZB-5N	MS	
Analyte	Conc. (pg/Sample)	DL	EMPC	Qualifiers	Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-PeCDD 1,2,3,7,8-PeCDD 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7	ND ND ND ND	1,29 1,60 1,65 1,59 1,61 2,38 0,951 1,87 1,95 0,976 0,877 0,971 1,10 1,18 1,38 2,52 1,29 1,60 1,62 2,38 0,951		J	IS 13C-2,3,7,8-TCDD IS 13C-1,2,3,7,8-PeCDD IS 13C-1,2,3,6,7,8-HxCDD IS 13C-1,2,3,4,6,7,8-HxCDD IS 13C-0,CDD IS 13C-2,3,7,8-TCDF IS 13C-1,2,3,7,8-PeCDF IS 13C-1,2,3,4,7,8-HxCDF IS 13C-1,2,3,4,7,8-HxCDF PS 13C-1,2,3,4,7,8-HxCDD PS 13C-1,2,3,4,7,8-HxCDD PS 13C-1,2,3,4,7,8-HxCDD PS 13C-1,2,3,4,7,8-HxCDD PS 13C-1,2,3,4,7,8-HxCDD Toxic Equivalent Quotient (TEQ) Directory of the propert	98.0 83.6 88.6 85.2 60.4 92.1 82.8 89.9 95.8 77.5 97.0 95.3 110 104 89.7 91.7	50 - 120 50 - 120 50 - 120 40 - 120 50 - 120 50 - 120 50 - 120 50 - 120 60 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120	
Total PeCDF Total HxCDF Total HoCDF	ND ND ND	1.91 0.975 1.27		÷				

DL - Sample specife estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL. Lower control limit - upper control limit

Max-The TEQ is calculated using the detection limit (DL) for congeners that are not detected.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800573

Page 7 of 20

Sample ID: OPR					_	EPA Method TO-
Matrix: Air	~			Lab Sample: B8D0125-BS1 Date Analyzed: 27-Apr-18 15:43 Column: ZB-5M		LCL-UCL
Analyte Amt Found (g/Sample) Spike	Amt %R	Limits	Labeled Standard	%R	
2,3,7,8-TCDD 1,2,3,7,8-PcCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8-TCDF 1,2,3,7,8-PcCDF 2,3,4,7,8-PsCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,7,8-HxCDF	83.1 100 530 500 476 500 476 500 476 500 476 500 476 500 476 500 476 500 515 100 70.2 100 514 500 515 500 439 500 421 500 438 500 370 500 385 500 691 100	83.1 106 90.6 95.3 91.9 95.3 91.9 90.9 103 103 0 90.0 87.7 0 84.3 0 87.7 0 74.1	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	IS 13C-2,3,7,8-TCDD IS 13C-1,2,3,7,8-PeCDD IS 13C-1,2,3,6,7,8-HxCDD IS 13C-1,2,3,4,6,7,8-HyCDD IS 13C-0CDD IS 13C-0CDD IS 13C-1,2,3,7,8-PeCDF IS 13C-1,2,3,7,8-PeCDF IS 13C-1,2,3,7,8-PeCDF IS 13C-1,2,3,4,6,7,8-HyCDF IS 13C-1,2,3,4,7,8-TCDD PS 37C-1,2,3,4,7,8-TCDD PS 13C-2,3,4,7,8-PeCDF PS 13C-1,2,3,4,7,8-HxCDD PS 13C-1,2,3,4,7,8-HxCDD PS 13C-1,2,3,4,7,8-HxCDF PS 13C-1,2,3,4,7,8-HxCDF AS 13C-1,2,3,4,7,8-HxCDF	109 87.8 93.7 87.4 58.9 110 91.4 91.1 91.4 77.2 97.3 99.1 105 102 89.2 99.4	50- 120 50- 120 50- 120 40- 120 50- 120 50- 120 50- 120 50- 120 40- 120 50- 120 50- 120 50- 120 50- 120 50- 120 50- 120 50- 120

LCL-UCL - Lower control limit - upper control limit

Work Order 1800573

Page 8 of 20

Sample ID: A-	MTO9-2							EPA Metl	10d TO-9
Client Data Name: A Project: A	irKinetics, Inc. .ECOM/14875 5-Apr-2018 11:35		Sample Data Matrix:	PUF	Lat QC	oratory Data o Sample: 1800573-01 Batch: B8D0125 te Anaiyzed: 26-Apr-18 18:50 Colu	Date Received: Date Extracted: mn: ZB-5MS	16-Apr-201 18-Apr-201	
		DI	EMPC		Qualifiers	Labeled Standard	%R	LCL-UCL	Qualifier
	Conc. (pg/Sample)	1.0			Quantitati	IS 13C-2,3,7,8-TCDD	99.5	50 - 120	
2,3,7,8-TCDD	ND	2,7				IS 13C-1,2,3,7,8-PeCDD	75.0	50 - 120	
1,2,3,7,8-PeCDD	ND	2.7				IS 13C-1,2,3,6,7,8-HxCDD	85.2	50 - 120	
1,2,3,4,7,8-HxCDD	ND	2.9				IS 13C-1,2,3,4,6,7,8-HpCDD	85.1	40 - 120	
1,2,3,6,7,8-HxCDD	ND	2.8				IS 13C-OCDD	67.8	40 - 120	
1,2,3,7,8,9-HxCDD	ND	2.0	9 16.8		•	IS 13C-2,3,7,8-TCDF	95.8	50 - 120	
,2,3,4,6,7,8-HpCDD	ND		10,0		В	IS 13C-1,2,3,7,8-PeCDF	84.2	50 - 120	
CDD	237	1.4	2		_	IS 13C-1,2,3,6,7,8-HxCDF	84.6	50 - 120	
,3,7,8-TCDF	ND	1.4 2,1				IS 13C-1,2,3,4,6,7,8-HpCDF	87.1	40 - 120	
,2,3,7,8-PeCDF	ND				•	IS 13C-OCDF	80.9	40 - 120	
2,3,4,7,8-PeCDF	ND	2.1				PS 37CI-2,3,7,8-TCDD	100	50 - 120	
1,2,3,4,7,8-HxCDF	ND	1.9				PS 13C-2,3,4,7,8-PeCDF	97.3	50 - 120	
1,2,3,6,7,8-HxCDF	ND	1.7				PS 13C-1,2,3,4,7,8-HxCDD	114	50 - 120	
6,7,8-HxCDF	ND	1.9				PS 13C-1,2,3,4,7,8-HxCDF	107	50 - 120	
/,8,9-HxCDF	ND	2.1	.7		J	PS 13C-1,2,3,4,7,8,9-HpCDF	95.1	40 - 120	
4,6,7,8-HpCDF, فرم,	7.21				J.	AS 13C-1,2,3,7,8,9-HxCDF	86.1	50 - 120	
1,2,3,4,7,8,9-HpCDF	ND	3.1	and the second second second	9.00					
OCDF	ND		7.66		·	Toxic Equivalent Quotient (TEC			
Totals			_			TEQMaxWHO2005Dioxin	6.62		
Total TCDD	ND	1.0				TEQMinWHO2005Dioxin	0.143		
Total PeCDD	ND	2.							
Total HxCDD	ND	2,1							
Total HpCDD	28.5		45.2						
Total TCDF	ND	1.5	13						
Total PeCDF	4.47		7.66		:	1			
Total HxCDF	6.09								
Total HpCDF	12.6					11/ /			

DL - Sample specife estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Max-The TEQ is calculated using the detection limit (DL) for congeners that are not detected.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800573

Page 9 of 20

Sample ID: A Client Data Name: Project:	AirKinetics, Inc. AECOM/14875		Sample Data Matrix: PUF	1	boratory Data ab Sample: QC Batch: Date Analyzed:	1800573-02 B8D0125 26-Apr-18 19:38 Colum	Date Received: Date Extracted: n; ZB-5MS	16-Apr-2018 18-Apr-2018	10:27
Date Collected:	05-Apr-2018 11:45					1 1 Standard	%R	LCL-UCL	Qualifiers
Analyte 2,3.7,8-TCDD 1,2,3.7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8-PECDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,3,4,7,8-HxCDF 1,3,4,7,8-HxCDF 1,3,4,7,8-HxCDF 1,3,4,7,8-HxCDF 1,3,4,7,8-HxCDF 1,3,4,7,8-HxCDF 1,3,4,7,8-HxCDF	ND ND 1.1 177 ND ND ND ND ND ND ND ND ND ND ND ND ND	1.69 2.85 3.42 3.28 3.34 1.47 2.54 2.65 1.81 1.66 1.88		Qualifie J B	IS 13C IS 13C IS 13C IS 13C IS 13C IS 13C IS 13C IS 13C IS 13C IS 13C IS 13C IS 13C IS 13C IS 13C IS 13C	eled Standard -2,3,7,8-TCDD -1,2,3,6,7,8-HcDD -1,2,3,4,6,7,8-HxCDD -1,2,3,4,6,7,8-HpCDD -2,3,7,8-TCDF -1,2,3,7,8-PcCDF -1,2,3,7,8-HxCDF -1,2,3,4,6,7,8-HpCDF -0,2,3,7,8-TCDD -2,2,3,7,8-TCDD -2,2,3,4,7,8-HxCDF -1,2,3,4,7,8-HxCDF	94.9 66.2 81.3 77.0 61.2 94.4 78.3 82.9 83.4 75.7 103 98.3 115	50 - 120 50 - 120 50 - 120 40 - 120 40 - 120 50 - 120 50 - 120 50 - 120 40 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120	
1,2,3,4,6,7,8-HpCl 1,2,3,4,7,8,9-HpCl OCDF Totals Total TCDD Total PcCDD	DF 8.64 DF ND ND ND ND ND	2.9 1.6 2.8 3.3	7.31 9 5			C-1,2,3,7,8,9-HxCDF quivalent Quotient (TEQ 3QMaxWHQ2005Dioxin 3QMinWHQ2005Dioxin	7.67 0.351		<u> </u>
Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND 51.2 ND ND 4.47 15.4	1.4			or the Lower	r control limit - upper control limi calculated using the detection limi			

Page 10 of 20 Work Order 1800573

AKI No.: 14875 Page 108 of 131

Sample ID:	A-MTO9-4								EPA Met	hod TO-9
Client Data Name: Project: Date Collected:	AirKinetics, Inc. AECOM/14875 10-Apr-2018 10:25		Sample Data Matrix:	PUF	Lat QC	oratory Da o Sample: C Batch: te Analyzeo	1800573-03 B8D0125	Date Received: Date Extracted: nn: ZB-5MS	16-Apr-201 18-Apr-201	
Analyte	Conc. (pg/Sample)	DL	ЕМРС		Qualifiers	La	beled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	1.85			•	IS 13	C-2,3,7,8-TCDD	104	50 - 120	
1,2,3,7,8-PeCDD	ND					IS 13	C-1,2,3,7,8-PeCDD	74.3	50 - 120	
1,2,3,4,7,8-HxCDD	ND	2.39 3.71	1 .			IS 13	C-1,2,3,6,7,8-HxCDD	86.3	50 - 120	
1,2,3,6,7,8-HxCDD	ND	3,56				IS 13	C-1,2,3,4,6,7,8-HpCDD	85.2	40 - 120	
1,2,3,7,8,9-HxCDD	ND	3.63				IS 13	C-OCDD	70.0	40- 120	
1,2,3,4,6,7,8-HpCDD		_,	ī.,		J	IS 13	C-2,3,7,8-TCDF	100	50 - 120	
OCDD	229				В	IS 13	C-1,2,3,7,8-PeCDF	86.1	50 - 120	•
2,3,7,8-TCDF	ND	3.10				IS 13	C-1,2,3,6,7,8-HxCDF	83.6	50 - 120	
1.2,3.7,8-PeCDF	ND	2.01				IS 13	C-1,2,3,4,6,7,8-HpCDF	95.6	40 - 120	
2,3,4,7,8-PeCDF	ND	2.09			-	IS 13	C-OCDF	84.2	40 - 120	
1,2,3,4,7,8-HxCDF	ND	1.99				PS 37	C1-2,3,7,8-TCDD	101	50 - 120	
1,2,3,6,7,8-HxCDF	ND	1.79				PS 13	C-2,3,4,7,8-PeCDF	97.9	50 - 120	
1,2,5,6,7,8-HxCDF	ND ND	1.98				PS 13	C-1,2,3,4,7,8-HxCDD	114	50 - 120	
7,8,9-HxCDF	ND	2.25				PS 13	C-1,2,3,4,7,8-HxCDF	105	50 - 120	
4,6,7,8-HpCDF			-		J	PS 13	C-1,2,3,4,7,8,9-HpCDF	97.5	40 - 120	
1,2,3,4,7,8,9-HpCDF		1.95	* * *			AS 13	C-1,2,3,7,8,9-HxCDF	93.3	50 - 120	
OCDF	ND		14.5			l 	1 1 1 0 -t -t (TEO)	Data		
Totals							Equivalent Ouotient (TEO) EQMaxWHO2005Dioxin	7.64		
Total TCDD	ND	1.85					OMinWHO2005Dioxin	0.483		
Total PeCDD	ND	2,39				''	Z.imi ii 2202000000000			
Total HxCDD	15.9									
Iotal HpCDD	77,5									
Total TCDF	19.2		23.2							
Total PeCDF	ND		16.3							
Total HxCDF	24.2									
Total HoCDF	9.73		18.5			I				

Total HpCDF 9,73
DL - Sample specific estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit
Max-The TEQ is calculated using the detection limit (DL) for congeners that are not detected.
Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800573

Page 11 of 20

Sample ID: A	-MTO9-5		<u> </u>			ratory Data				16.66
Name: Project:	AirKinetics, Inc. AECOM/14875 11-Apr-2018 10:35		Sample Data Matrix:	PUF	Lab QC	Sample: 15 Batch: B	800573-04 8D0125 6-Apr-18 21:14 Colum	Date Received: Date Extracted: n: ZB-5MS	16-Apr-2018 18-Apr-2018	8 10:27
Date Concelled.					Ovelifiere	Laheled	Standard	%R	LCL-UCL	Qualifiers
13,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDI 0CDD 2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,3,8-HxCDF 1,8,9-HxCDF	ND ND ND ND ND ND ND ND ND ND ND ND ND N	12.8 9.13 8.76 8.92 4.77 10. 10. 5.2 4.7	DL EMPC 4.92 12.8 9.13 8.76 8.92 4.76 10.4 10.9 5.29 4.76 5.26 5.97		Qualifiers J B	Labeled Standard IS 13C-2,3,7,8-TCDD IS 13C-1,2,3,6,7,8-HcDD IS 13C-1,2,3,6,7,8-HxCDD IS 13C-1,2,3,4,6,7,8-HpCDD IS 13C-0CDD IS 13C-0CDD IS 13C-1,2,3,7,8-PcCDF IS 13C-1,2,3,7,8-PcCDF IS 13C-1,2,3,4,6,7,8-HpCDF IS 13C-1,2,3,4,6,7,8-HpCDF IS 13C-0CDF PS 37C1-2,3,7,8-TCDD PS 13C-2,3,4,7,8-PcCDF PS 13C-1,2,3,4,7,8-HxCDD PS 13C-1,2,3,4,7,8-HxCDD PS 13C-1,2,3,4,7,8-HxCDD PS 13C-1,2,3,4,7,8-HxCDF	24.7 18.4 21.4 19.7 15.8 22.9 20.4 21.8 22.2 19.4 410 389 464 430 383	50 - 120 50 - 120 50 - 120 40 - 120 40 - 120 50 - 120 50 - 120 50 - 120 40 - 120 40 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120	H H H H H H H H H H H H H H H H H H H	
1,2,3,4,6,7,8-HpCD 1,2,3,4,7,8,9-HpCD OCDF Totals		9.4	<u>9</u>		<u> </u>	Toxic Equit	2,3,7,8,9-HxCDF valent Ouotient (TEO) MaxWHO2005Dioxin MinWHO2005Dioxin	27.4 0.589		
Total TCDD Total PeCDD Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF	ND ND ND 116 ND ND ND	4.5 12 8.5 4.1 10	8 24			NOST	III W ETOZOGOZIZANI			

DL - Sample specife estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

Max-The TEQ is calculated using the detection limit (DL) for congeners that are not detected.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800573

Page 12 of 20

AKI No.: 14875 Page 110 of 131

	A DEFEND							EPA Meti	od TO-9
Sample ID: Client Data Name: Project: Date Collected:	A-MTO9-6 AirKinetics, Inc. AECOM/14875 12-Apr-2018 10:40		Sample Data Matrix:	PUF	Lai QC	oratory Data Sample: 1800573-05 Batch: B8D0125 te Analyzed: 26-Apr-18 22:03 Colum	Date Received: Date Extracted: nn: ZB-5MS	16-Apr-201 18-Apr-201	8 15:55 8 10:27
Date Conecieu.	12-Api-2016 10:40	DL	EMPC		Qualifiers	Laheled Standard	%R	LCL-UCL 50- 120	Qualifiers
Analyte 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,8,9-HxCDF 1,8,9-HxCDF 1,8,9-HxCDF 1,4,6,7,8-HxCDF 1,8,9-HxCDF	ND ND 28.3 241 ND ND ND ND ND ND ND ND ND ND ND ND ND	1.24 2.33 3.30 3.21 3.21 1.4 1.9 2.0 2.3 2.1 2.3 2.6	7 5 3 5		1 B 1	IS 13C-2,3,7,8-TCDD IS 13C-1,2,3,7,8-PeCDD IS 13C-1,2,3,6,7,8-HxCDD IS 13C-1,2,3,4,6,7,8-HxCDD IS 13C-0CDD IS 13C-2,3,7,8-TCDF IS 13C-1,2,3,7,8-PeCDF IS 13C-1,2,3,6,7,8-HxCDF IS 13C-1,2,3,4,6,7,8-HxCDF IS 13C-0CDF PS 37C1-2,3,7,8-TCDD PS 13C-2,3,4,7,8-PeCDF PS 13C-1,2,3,4,7,8-HxCDD PS 13C-1,2,3,4,7,8-HxCDD PS 13C-1,2,3,4,7,8-HxCDD PS 13C-1,2,3,4,7,8-HxCDD	108 75.2 87.9 84.5 70.9 105 88.9 81.8 101 83.3 96.9 90.4 110 104 90.0 87.7	50 - 120 50 - 120 40 - 120 50 - 120 50 - 120 50 - 120 50 - 120 40 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120 50 - 120	
,4,6,7,8-HPCD 1,2,3,4,7,8,9-HPCD OCDF Totals Total TCDD Total PeCDD		1.8	16.3 4 8			AS 13C-1,2,3,7,8,9-HxCDF Toxic Equivalent Quotient (TEQ TEQMaxWHO2005Dioxin TEQMinWHO2005Dioxin			
Total HxCDD Total HpCDD Total TCDF Total PeCDF Total HxCDF Total HxCDF	ND 68.6 ND ND ND 10.2	3.2 1.4	* +			LICL Lower control limit - upper control limit			

Total HpCDF 10,2

DL - Sample specific estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit
Max-The TEQ is calculated using the detection limit (DL) for congeners that are not detected.
Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Work Order 1800573

Page 13 of 20

Client Data Name: Project:	AirKinetics, Inc. AECOM/14875 13-Apr-2018 10:45		Sample Data Matrix:	PUF	Lal QC	ratory Data Sample: Batch: te Analyzed	1800573-06 B8D0125	Date Received: Date Extracted: n: ZB-5MS	16-Apr-2018 18-Apr-2018	15:55 10:27
Date Collected:	13-Apr-2018 10.45					T	beled Standard	%R	LCL-UCL	Qualifier
1.4.	Conc. (pg/Sample)	DL	EMPC		Qualifiers		C-2,3,7,8-TCDD	98.2	50 - 120	
	ND	1.15				IS 13	C-1,2,3,7,8-PeCDD	70.6	50 - 120	
3,7,8-TCDD	ND	2.67				IS 13	C-1,2,3,6,7,8-HxCDD	84.8	50 - 120	
2,3,7,8-PeCDD	ND ND	3,40				IS 13	C-1,2,3,4,6,7,8-HpCDD	83.6	40 - 120	
,2,3,4,7,8-HxCDD	ND	3.26						69.0	40 - 120	
,2,3,6,7,8-HxCDD		3.32					C-OCDD	97.6	50 - 120	•
,2,3,7,8,9-HxCDD	ND 24.9				J	IS 13	C-2,3,7,8-TCDF	81.7	50 - 120	
,2,3,4,6,7,8-HpCDI	. 24.9 . 253			-	В		C-1,2,3,7,8-PeCDF	82.3	50 - 120	
CDD		1.30					C-1,2,3,6,7,8-HxCDF	98.1	40 - 120	
,3,7,8-TCDF	ND	2.79			100		C-1,2,3,4,6,7,8-HpCDF	82.3	40 - 120	
,2,3,7,8-PeCDF	ND	2.91				10	C-OCDF	98.5	50 - 120	
2,3,4,7,8-PeCDF	ND	2.15				PS 37	CI-2,3,7,8-TCDD	93.1	50 - 120	
1,2,3,4,7,8-HxCDF	ND	1.93				PS 13	3C-2,3,4,7,8-PeCDF	110	50 - 120	
1,2,3,6,7,8-HxCDF	ND	2.14				PS 13	3C-1,2,3,4,7,8-HxCDD	102	50 - 120	
6,7,8-HxCDF	ND	2.42		•	•	PS 13	3C-1,2,3,4,7,8-HxCDF	88.0	40 - 120	
,8,9-HxCDF	ND	2.42	8.64			PS 13	3C-1,2,3,4,7,8,9-HpCDF	86.1	50 - 120	
4,6,7,8-HpCD! ذ, مر	F ŅD	2.2				AS 1	3C-1,2,3,7,8,9-HxCDF	80.1		
1,2,3,4,7,8,9-HpCD	F ND	2.2	21.4	er en en en en en		OP- min	Equivalent Quotient (TEO)	Data		
OCDF	ND		21.7				EQMaxWHO2005Dioxin	7.21		
Totals						T	EQMinWHO2005Dioxin	0.325		
Total TCDD	ND	1.1				1	DQIII		•	
Total PeCDD	ND	2.6								
Total HxCDD	ND	3,3	•							
Total HpCDD	58.8	1.2								
Total TCDF	ЙD	1.3 2.8				1				
Total PeCDF	ND	2.8	4.05			1				
Total HxCDF	ND		13.7			1				
Total HpCDF	ND		13.7			T TICL Law	er control limit - upper control limit calculated using the detection limit			

EMPC - Estimated maximum possible concentration

Work Order 1800573

Page 14 of 20

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank.
D	Dilution
E	The associated compound concentration exceeded the calibration range of the instrument.
Н	Recovery and/or RPD was outside laboratory acceptance limits.
I	Chemical Interference
J	The amount detected is below the Reporting Limit/LOQ.
M	Estimated Maximum Possible Concentration. (CA Region 2 projects only)
*	See Cover Letter
Conc.	Concentration
NA	Not applicable
ND	Not Detected
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	17-015-0
7416411645	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1322288
New Hampshire Environmental Accreditation Program	207717
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-008
Pennsylvania Department of Environmental Protection	014
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	9077
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Page 16 of 20

1800543

PO Number:		8419-NC		Sample	Chain of C	Cust	ody	Re					7.0	100	Page 1	of 1
Project Name ocation: Project No.:		AECOM Torrance, CA 14875 a Package With R			·	65			Anal	yses F	Requir	e <u>d</u>			_	
nd Date	End Time	Sample ID	Component		Matrix	ă									Cor	mments
/10/2018	_	A - MTO9 - 4	Filter PUF Cartridg			4										
/11/2018	1035	A - MTO9 - 5	Filter PUF Cartridg			4										
4/12/2018	1040	A - MTO9 - 6	Filter			4										-
4/13/2018	PUF Cart					1										
4/1 4/2 818	1200	MTOS-FB	Filter PUF Centrids	18		+									 	
	<u> </u>					-										
TAT:	Std - 3	Weeks		Relinquished by: (1		15:	30		ked rage	Recei	ved by	: (Sign	& Prin) July		0ate/Time 600 16/18
Ship to:	Manha Maler Vista Analytical 1104 Windfield Way)	41:	3/1 /3 _].	0	<u></u>	7	<i>(F.9</i> 0			
		ido Hills, CA 95762 73-1520				+				<u> </u>						
Acianica, inc.	1308 S Anahei	tics, Inc. outh Allec Street m, CA 92805 154-1945				-+										

Work Order 1800573

Page 17 of 20

AKI No.: 14875 Page 115 of 131

											1000)5'	73			
O Number:		8419-NC	·	Sample C	Chain of C	Cust	ody	Re			_		73 79	<u>ق</u>	F	Page 1 of 1
Project Name ocation: Project No.:		AECOM Torrance, CA 14875		AKi PM: Neal Conro PM Phone: (714) 254-19 PM email: conroyn@ai	945; Ext. 210	O-9 Furans			Ana	yses	Requir	ed				
	Full Date	a Package With F	Report	Results to: akisublab@	airkineticsinc.com	EPA TO-9 Dioxins / Furans										0
End Date	End Time	Sample ID	Companent		Matrix	\vdash										Comments
1/5/2018	_	A - MTO9 - 2	Filter			4		-					-+			
			PUF Cartridg	ge		1										
4/6/2018	1145	A - MTO9 - 3	Filter PUF Cartrid			1								_		
						L		<u> </u>		_			_			
							<u> </u>	<u> </u>								
						-	- 1		 	_	\vdash					
	<u> </u>					 		-	Ė							
	<u> </u>							L.		_		<u> </u>				
						<u> </u>	ļ_	 	-	_	├		-	_		
						┼─	-	┝		┢		┝╌	 	_		
		<u> </u>				┼-	╁╌	\dagger	+	 -						
TAT:	Std - 3	Weeks		Relinquished by: (Sign	& Print)	\ <u>u</u> ∠	Time		cked orage	Rece	ydy.	إسه	& Print	4	<u>n</u> _	Date/Time 1600 4/16/18
Ship to:	Martha i	Maier		allite	7.4	101:	U 8	+-		1	gov		LOVY			11.410
	Vista Ar	•		<i></i>		+		1 L	ال	-×-						
		indfield Way				\dagger				Ĺ.,						ļ
		do Hills, CA 95762 73-1520				<u> </u>										 -
AKI AMELANIKA, BET.	AlrKine 1308 S Anahei	tics, Inc. outh Allec Street m, CA 92805 54-1945	- · -			<u> </u>										<u> </u>

Work Order 1800573

Page 18 of 20

Sample Log-in Checklist

Vista Work Orde	r #:	18	005	73		TA	т <u></u> S	H	
	Date/Tim	e e		Initials	<u> </u>	Location	n: Wi	R-2	
Samples Arrival:	4/16/1	8 15	555	8R	_	Shelf/Ra	ıck: <u> </u>	J/A	
Logged In:	Date/Tim		5744	Initials	_	Location Shelf/Ra	1325/14/1	NK.	- !
Delivered By:	FedEx	UPS	On Tr	ac GS	О ВН		land ivered	Oth	ner
Preservation:	lo	e	B	lue Ice)	Dry lce		No	
Temp °C: 7.9 Temp °C: 7.9			Time: Probe us	1620 sed: Yes	×⊠No□	Thermo	meter ID	-11-3 1 : 1R-4 DT-3	16/18
remp 'C: 7.1		cted/		blue coa				<u> </u>	
							YE:	8 NO	NA
Adequate Samp	le Volume	Receive	d?						<u> </u>
Holding Time Ac							1/	\Box	<u> </u>
Shipping Contain		ct?						<u> </u>	<u> </u>
Shipping Custod									<u> </u>
Shipping Docum								_	1
Airbill	Trk							4_	1
Sample Contain	er Intact?								<u> </u>
Sample Custody		act?							<u> </u>
Chain of Custod			entation F	Present?			<u> </u>		ļ <u> </u>
COC Anomaly/S	=				?		V		<u></u>
						ation?			/
If Chlorinated or Preservation Do		- 1	va₂S₂O₃		zma	None	Ye	s No	(NA)
		<u></u>			- / 	Retain	Return	Dis	spose
Shipping Contain			(Vista)		54 4/16/18		4	R 4/16/18	
Comments:	Receive	d71	inused f	itters	and per	tri dish	n SR4	16/18	

ID.: LR - SLC

Rev No.: 0

Rev Date: 05/18/2017

Page: 1 of 1

Chain of Custody Anomaly/Sample Acceptance Form

nt: Itact: Email: Phone:	AirKinetics, Inc. Neal Conroy conroyn@airkineticsinc.com		Workorder Number: Date Received: Documented by/date:	1800573 16-Apr-18 15:55 B.Benedict 04/17/2018
Please rev authorizat	riew the following information and c tion before proceeding with sample a	omplete the Client Authorizat malysis.	ion section. To comply	with NELAC regulations, we must receive
Thank yo	u, .			
Martha M mmaier@ 916-673-	vista-analytical.com			
	ring information or item is needed Complete Chain-of-Custody Test Method Requested Analyte List Requested Other:	to proceed with analysis: Preservative Sample Identification Sample Collection Da		Collector's Name Sample Type Sample Location
The following th	Temperature outside < 6°C Range Temperature°C Sample ID Discrepancy Sample Holding Time Missed: See Custody Seals Broken Ints: Samples out of hold: A-MTO9-2 A-MTO9-3	Samples Affe Ice Present? Y In: Comments Sa		n
Client	Authorization d with Analysis: YES NO Comments/Instructions ()	Signature and Date	Milh Stemail allo	9115 118

Page 20 of 20

APPENDIX C SAMPLING METHOD DESCRIPTION AND SCHEMATICS

AKI No.: 14875 Page 119 of 131

Intentionally Left Blank

AKI No.: 14875 Page 120 of 131

EPA Method 1 – Sample and Velocity Traverses for Stationary Sources

For test locations equal to or greater than 12 inches in diameter or 113 inches² in cross sectional area, the number and locations of the sampling and/or traverse points are determined according to the procedures outlined in EPA Method 1. Verification of absence of cyclonic flow testing is conducted prior to testing or documented from historical test data.

EPA Method 2 – Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)

For test locations that meet the criteria of EPA Method 1, the flue gas velocity and volumetric flow rate are determined according to the procedures outlined in EPA Method 2. Velocity measurements are made using Type S Pitot tubes conforming to the geometric specifications in the test method. Accordingly, each has been assigned a coefficient of 0.84. Differential pressures are measured with fluid manometers. Effluent gas temperatures are measured with Type K (chromel-alumel) thermocouples equipped with hand-held digital readouts.

Updated: March 5, 2012

AKI No.: 14875 Page 121 of 131

EPA Method 3 - Gas Analysis for the Determination of Molecular Weight

Flue gas analyses for carbon dioxide (CO_2) and oxygen (O_2) and the determination of molecular weight are performed in accordance with EPA Method 3. Single point grab, single point integrated, or multi-point integrated sampling is used to obtain a flue gas sample. A stainless steel probe and a pump are used to fill a sample bag. For molecular weight determination, either an Orsat or a Fyrite analyzer is used for analysis.

Updated: March 5, 2012

AKI No.: 14875 Page 122 of 131

The flue gas moisture content is determined according to the sampling and analytical procedures outlined in EPA Method 4. The sampling train consists of a stainless steel or glass tubing probe equipped with a filter, four chilled impingers in series, a pump, a dry gas meter, and a calibrated orifice. The first and second impingers each contain 100 mL of deionized (DI) water, the third impinger is empty, and the fourth contains preweighed silica gel. A sampling train schematic is presented below.

Pre and post test leak checks are performed on the entire sampling train. The sampling points are determined in accordance with EPA Method 1. Sampling is maintained within 10 percent of constant rate. The contents of the impingers are recovered and either volumed or weighed to determine the moisture catch. The silica gel is returned to their original container and weighed to determine the moisture catch.

EPA Method 4 Sampling System

Updated: March 5, 2012

AKI No.: 14875 Page 123 of 131

CARB Method 428 - Determination of Polychlorinated Dibenzo-p-dioxin (PCDD), Polychlorinated Dibenzofuran (PCDF), and Polychlorinated Biphenyl Emissions from Stationary Sources

Particulate and gaseous phase PCDD, PCDF and PCB are extracted isokinetically from the stack and collected on XAD-2 resin, in the impingers or in upstream sampling train components. Only the total amounts of each target PCDD, PCDF or PCB analyte in the stack emissions can be determined with this method. Isotopically labelled internal standards are added to all samples in known quantities before matrix-specific extraction of the sample with appropriate organic solvents. If both PCDD/PCDF and PCB are to be determined, it is necessary after extraction to split the sample for two different preliminary fractionation and cleanup procedures. The constituents in each of the processed extracts are separated with high resolution capillary column gas chromatography (HRGC) and identified and measured with low resolution, electron ionization mass spectrometry (LRMS). High resolution mass spectrometry (HRMS) is an alternative method that may be used only for detection of PCDDs and PCDFs.

The sampling train consists of a glass nozzle, a heated glass probe, a heated glass fiber filter, a water-cooled condenser, a XAD sorbent trap, four chilled impingers in series, a pump, a dry gas meter, and a calibrated orifice. The filter is housed in glass filter holder and supported on a Teflon frit. The condenser is placed above the XAD sorbent trap allowing the condensate to drain vertically through the sorbent for removal of the organic constituents in the gas. The sorbent trap is charged with the precleaned resin. The first impinger is empty, the second contains deionized (DI) water, the third is empty, and the fourth contains preweighed silica gel.

Care is taken to ensure that the XAD resin is stored on ice before and after sample collection to prevent resin decomposition.

All glassware (including the sorbent trap glassware) are precleaned prior to sampling according to the procedure listed below.

- 1. Soak in hot soapy water
- 2. Rinse three times with tap water
- 3. Rinse three times with DI water
- 4. Rinse three times with methanol rinse
- 5. Rinse three times with toluene
- 6. Rinse three times with methylene chloride
- 7. Cap glassware with clean glass plugs or methylene chloride-rinsed aluminum foil.

The entire sample train is leak tested to ensure that leakage does not exceed the lesser of a) 4 percent of the average sampling rate, or b) 0.02 cfm. The probe exit filter compartment temperatures are maintained at $248^{\circ}F \pm 25^{\circ}F$ during sampling. Sampling is maintained within \pm 10 percent of isokinetics. The temperature of the gas entering the sorbent trap is maintained at or below 60 °F.

After sampling the XAD trap is removed, capped, and stored on ice. The filter is removed and place in a petri dish and sealed with Teflon tape, and stored on ice. The contents of the first three impingers are returned to the original jar, weighed, the weight recorded, and the liquid level marked. The silica gel is returned to the original jar, weighed, and the weight recorded.

The volume of water vapor collected in the impingers and silica gel are summed and entered into the moisture content calculations.

Updated: October 23, 2014

CARB Method 428 - Determination of Polychlorinated Dibenzo-p-dioxin (PCDD), Polychlorinated Dibenzofuran (PCDF), and Polychlorinated Biphenyl Emissions from Stationary Sources Cont.

The front half of the train including the nozzle, probe, and front half of the filter holder is rinsed three times each with methanol, toluene, and methylene chloride into an amber glass jar. The back half of the filter holder and the condenser are rinsed three times each with methanol, toluene, and methylene chloride into an amber glass jar. The first impinger, and connecting glassware are rinsed three times each with methanol, toluene, and methylene chloride into a separate amber glass jar. The second and third impingers are rinsed with DI water three times and the rinse is transferred back to the impinge contents jar. Samples are maintained at 0-4 °C from the time of collection to extraction using ice, coldpacks, and/or refrigeration.

The XAD trap, probe, condenser, filter, impinger contents and rinses are analyzed according to CARB Method 428. The analytical method entails the addition of internal standards in known quantities, matrix-specific extraction of the sample, preliminary fractionating and cleanup of extracts (if necessary) and analysis of the processed extract for analyte.

Sealing greases are not used on the sample train. Recovery of the samples and assembly of the sample trains are conducted in an environment free from uncontrolled dust. A blank train is prepared and consists of a complete sampling train (probe, filter, condenser, XAD trap and impinger set) which is assembled and leak checked in the same manner as a test run. The train is disassembled for recovery using the same procedure used to recover the actual samples. The blank train sample is analyzed along with the sample train ones.

Updated: October 23, 2014

AKI No.: 14875 Page 125 of 131

EPA Method TO-9 - Dioxins/Furans for Ambient Sampling

A quartz-fiber filter and glass PUF adsorbent cartridge, precleaned and spiked and provided by the subcontracted analytical laboratory, was installed in the calibrated high—volume air sampler and sampled at a rate to collected 325-400 m³ over 24 hours for each ambient background sample run. After each run was completed, the filter was placed in the original shipping container and the PUF cartridge was wrapped in aluminum foil, identified and shipped to the laboratory for sample processing using proper chain of custody procedures.

Updated: March 5, 2012

AKI No.: 14875 Page 126 of 131

APPENDIX D AETB AND QI CERTIFICATIONS

AKI No.: 14875 Page 127 of 131

Intentionally Left Blank

AKI No.: 14875 Page 128 of 131

Accredited Air Emission Testing Body

A2LA has accredited

AIRKINETICS, INC.

Anaheim, CA

In recognition of the successful completion of the joint A2LA and Stack Testing Accreditation Council (STAC) evaluation process, this laboratory is accredited to perform testing activities in compliance with ASTM D7036 - Standard Practice for Competence of Air Emission Testing Bodies.

Presented this 31st day of August 31, 2017.

President and CEO
For the Accreditation Council
Certificate Number 3760.01
Valid to October 31, 2019

This accreditation program is not included under the A2LA ILAC Mutual Recognition Arrangement.

AKI No.: 14875 Page 129 of 131

Intentionally Left Blank

AKI No.: 14875 Page 130 of 131

APPENDIX E DIOXINS/FURANS RAW ANALYTICAL DATA (CD-ROM)

AKI No.: 14875 Page 131 of 131

ATTACHMENT 4 Laboratory Analytical Reports

TABLE 4-1 COMPREHENSIVE VOC AND FIXED GAS SOIL VAPOR ANALYTICAL RESULTS Soil Vapor Extraction Pilot Test Report Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

Study	Sample Location	Sample ID	Sample Date	Time	TPH (as Gasoline)	Acetone	Benzene	Benzyl Chloride	Bromodichlor omethane	Bromoform	Bromometha ne	2-Butanone	Carbon Disulfide	Carbon Tetrachloride	Chlorobenze ne	Chloroethane	Chloroform	Chlorometha ne	Dibromochlor omethane
					ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv
				alytical Metho	d EPA TO-3M								TO-15M						
Baseline - Shallow	SVE-1A	VSS01351	04/02/18	1035	13,000	40 J	6,800	<2.5	<3.1	<4.0	<6.9	<22	<14	<3.1	<3.4		<3.5	<12	<2.7
Baseline - Deep	SVE-1B	VSS01350	04/02/18	1028	12,000	51 J	7,600	<2.5	<3.1	<4.0	<6.9	<22	<14	<3.1	<3.4	<12	<3.5	<12	<2.7
Shallow Zone																			
Shallow Step Test; Step 1	SVE-1A	VSS01355	04/02/18	1255	9,100	34 J	5,400	<2.0	<2.5	<3.2	<5.5	<17	<11	<2.5	<2.7		<2.8	<9.6	<2.2
Challew Step 165t, Step 1	Influent	VSS01352	04/02/18	1301	170	0.42 J	120	<0.016	<0.020	<0.026	<0.044	<0.14	<0.089	<0.020	<0.022	< 0.077	<0.022	<0.077	<0.018
Shallow Step Test; Step 2	SVE-1A	VSS01357	04/02/18	1339	13,000	34 J	7,100	<2.5	<3.1	<4.0	<6.9	<22	<14	<3.1	<3.4	<12	<3.5	<12	<2.7
Challett Stop 1 dat, Stop 2	Influent	VSS01360	04/02/18	1353	260	0.22 J	81	<0.0049	<0.0062	<0.0081	<0.014	<0.043	<0.028	<0.0062	<0.0068	<0.024	<0.0069	<0.024	<0.0055
Shallow Step Test; Step 3	SVE-1A	VSS01353	04/02/18	1450	14,000	36 J	7,800	<3.1	<3.9	<5.1	<8.7	<27	<17	<3.9	<4.2	<15	<4.3	<15	<3.4
	Influent	VSS01354	04/02/18	1453	630	<0.72	380	<0.12	<0.15	<0.20	<0.35	<1.1	<0.70	<0.15	<0.17	<0.60	<0.17	<0.60	<0.14
Shallow Step Test; Step 4	SVE-1A			1	SVE-1A sample		as high system		not be overcome b		T		1	1	T		I	1	
	Influent	VSS01358	04/02/18	1606	1,000	<0.23	580	<0.039	<0.050	<0.065	<0.11	<0.35	<0.22	<0.049	<0.054	<0.19	<0.055	<0.19	<0.044
Shallow Step Test; End	SVE-1A	VSS01359	04/02/18	1707	12,000	<0.029	3,700	<0.0049	<0.0062	<0.0081	<0.014	0.048 J	0.036 J	<0.0062	<0.0068	<0.024	<0.0069	<0.024	<0.0055
	Influent	VSS01356	04/02/18	1701	1,400	<1.1	710	<0.20	<0.25	<0.32	<0.55	<1.7	<1.1	<0.25	<0.27	<0.96	<0.28	<0.96	<0.22
0	SVE- 1A	VSS01361	04/03/18	916	15,000	12 J	4,200	<0.49	<0.62	<0.81	<1.4	<4.3	<2.8	<0.62	<0.68	<2.4	<0.69	<2.4	<0.55
Shallow Constant Rate Test; Initial Hour 1.4	Influent	VSS01363	04/03/18	915	890	<0.11	330	<0.020	<0.025	<0.032	<0.055	<0.17	<0.11	<0.025	<0.027	<0.096	<0.028	<0.096	<0.022
	Effluent	VSS01362	04/03/18	918	12	0.021 J	1	<0.00020	<0.00025	<0.00032	<0.00055	<0.0017	<0.0011	<0.00025	<0.00027	<0.00096	<0.00028	<0.00096	<0.00022
Shallow Constant Rate Test; Midpoint Hour	SVE- 1A	VSS01365	04/05/18	1201	13,000	<23	7,600	<3.9	<5.0	<6.5	<11	<35	<22	<4.9	<5.4	<19	<5.5	<19	<4.4
39.4	Influent	VSS01366	04/05/18	1200	1,700	16 J	980	<0.49	<0.62	<0.81	<1.4	<4.3	<2.8	<0.62	<0.68	<2.4	<0.69	<2.4	<0.55
	Effluent	VSS01367	04/05/18	1205	/	0.042 J	7 000	<0.0012	<0.0015	<0.0020	<0.0035	<0.011	<0.0070	<0.0015	<0.0017	<0.0060	<0.0017	<0.0060	<0.0014
Challey Constant Data Test: Final Hour CC 4	SVE-1A	VSS01368	04/06/18	1455	19,000	<23	7,600	<3.9	<5.0	<6.5	<11	<35	<22	<4.9	<5.4	<19	<5.5	<19 <2.4	<4.4
Shallow Constant Rate Test; Final Hour 66.4	Influent	VSS01369	04/06/18	1500	1,600	31 J	660	<0.49	<0.62	<0.81	<1.4	<4.3	<2.8	<0.62	<0.68	<2.4	<0.69		<0.55
D	Effluent	VSS01370	04/06/18	1505	8	0.0059 J		<0.00098	<0.0012	<0.0016	<0.0028	<0.0086	<0.0056	<0.0012	<0.0014	<0.0048	<0.0014	<0.0048	<0.0011
Deep Zone	ICVE 4D	1,0004272	04/00/40	logg	147,000	Lac	10.700	1.04	1.7.7	1.40	1.47	1.54	1.05	1.7.7	<8.5	1.20	-0.7	1.20	1.00
Deep Step Test; Step 1	SVE-1B Influent	VSS01372 VSS01371	04/09/18	833 835	17,000 5.700	<36 21 J	8,700 3.600	<6.1 <2.0	<7.7 <2.5	<10 <3.2	<17 <5.5	<54 <17	<35 <11	<7.7 <2.5	<0.5 <2.7	<30 <9.6	<8.7 <2.8	<30 <9.6	<6.8 <2.2
		VSS01371		1005	-,		8,900	<2.0 <7.8	<9.9	<13	<22	<69	<44	<9.9	<11		<2.0 <11	<38	<8.8
Deep Step Test; Step 2	SVE-1B Influent	VSS01374 VSS01373	04/09/18	1005	19,000 9.400	<46 1.3 J	3.100	<0.039	< 0.050	<0.065	<0.11	<0.35	<0.22	<0.049	<0.054	<39 <0.19	<0.055	<0.19	<0.044
	SVE-1B	VSS01373	04/09/18	1220	18,000	48 J	7,700	<7.8	<9.9	<13	<22	<69	<0.22	<9.9	<0.054	<39	<0.055	<38	<8.8
Deep Step Test; Step 3	Influent	VSS01376	04/09/18	1225	12.000	<29	5.700	<4.9	<6.2	<8.1	<14	<43	<28	<6.2	<6.8	<24	<6.9	<24	<5.5
	SVE-1B	VSS01378	04/09/18	1317	19,000	<46	6,900	<7.8	<9.9	<13	<22	<69	<44	<9.9	<11	<39	<11	<38	<8.8
Deep Step Test; Step 4	Influent	VSS01376	04/09/18	1315	11,000	30 J	5.100	<3.9	<5.0	<6.5	<11	<35	<22	<4.9	<5.4		<5.5	<19	<4.4
	SVE-1B	VSS01377	04/09/18	1420	18,000	<46	8,300	<7.8	<9.9	<13	<22	<69	<44	<9.9	<11	<39	<11	<38	<8.8
Deep Step Test; End	Influent	VSS01379	04/09/18	1415	11.000	40 J	4.600	<3.9	<5.0	<6.5	<11	<35	<22	<4.9	<5.4		<5.5	<19	<4.4
	SVE-1B	VSS01381	04/09/18	1615	17,000	<46	7,900	<7.8	<9.9	<13	<22	<69	<44	<9.9	<11	<39	<11	<38	<8.8
Deep Constant Rate Test; Initial Hour 1.5	Influent**	VSS01383	04/09/18	1625	170	0.53 J	33	<0.031	<0.039	<0.051	<0.087	<0.27	<0.17	<0.039	<0.042	<0.15	<0.043	<0.15	<0.034
Boop constant rate root, initial riour rio	Effluent	VSS01382	04/09/18	1620	110	0.35 J	17	<0.020	<0.025	<0.032	<0.055	<0.17	<0.17	<0.025	<0.042	<0.096	<0.028	<0.096	<0.022
	SVE-1B	VSS01384	04/11/18	1028	16,000	<29	7,500	<4.9	<6.2	<8.1	<14	<43	<28	<6.2	<6.8	<24	<6.9	<24	<5.5
Deep Constant Rate Test; Midpoint Hour 32.7		VSS01385	04/11/18	1025	8,900	14 J	3.900	<2.5	<3.1	<4.0	<6.9	<22	<14	<3.1	<3.4		<3.5	<12	<2.7
2557 25.10(4)11 (140) 1001, 111040 02.11	Effluent*	VSS01386	04/11/18	1030	570	<1.1	81*	<0.20	<0.25	<0.32	<0.55	<1.7	<1.1	<0.25	<0.27	<0.96	<0.28	<0.96	<0.22
	SVE-1B	VSS01387	04/12/18	1000	15,000	<29	7,200	<4.9	<6.2	<8.1	<14	<43	<28	<6.2	<6.8	<24	<6.9	<24	<5.5
Deep Constant Rate Test; Midpoint Hour 56.3		VSS01388	04/12/18	1000	8,500	18 J	4,100	<2.5	<3.1	<4.0	<6.9	<22	<14	<3.1	<3.4	<12	<3.5	<12	<2.7
	Effluent*	VSS01389	04/12/18	1005	540	< 0.46	64*	<0.078	<0.099	<0.13	<0.22	<0.69	<0.44	<0.099	<0.11	<0.39	<0.11	<0.38	<0.088
	SVE-1B	VSS01390	04/13/18	1145	15,000	29 J	4,800	<4.9	<6.2	<8.1	<14	<43	<28	<6.2	<6.8	<24	<6.9	<24	<5.5
Deep Constant Rate Test; Final Hour 82	Influent	VSS01392	04/13/18	1156	8,900	20 J	2,600	<2.5	<3.1	<4.0	<6.9	<22	<14	<3.1	<3.4		<3.5	<12	<2.7
2300 00110101111111111111111111111111111	Effluent	VSS01392	04/13/18	1151	220	0.36 J	19	<0.020	<0.025	<0.032	<0.055	<0.17	<0.11	<0.025	<0.027	<0.096	<0.028	<0.096	<0.022
	Lindont	1.0001001	3 1/ 13/ 10	1.101	1	10.000	1.0	10.020	10.020	-0.00L	-0.000	1 -0.11	1 10.11	10.020	10.021	-3.000	-5.020	10.000	-3.022

%v = percent volume

- < = not detected above the method detection limit
- -- = sample not collected per RD Work Plan Sampling and Analytical Plan (AECOM 2018)

J = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
*Elevated due to higher throughput of hydrocarbons for thermal oxidation during deep soil testing and influence from influent concentrations during lab sample collection.
*Initial deep constant rate test system influent vapor sample collected on 4/9 was anomalous as it is not consistent with the SVE-1B well head vapor sample.

TABLE 4-1 COMPREHENSIVE VOC AND FIXED GAS SOIL VAPOR ANALYTICAL RESULTS Soil Vapor Extraction Pilot Test Report Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

Study	Sample Location	Sample ID	Sample Date	Time	1,2- Dibromoetha	1,2- Dichlorobenz ene	1,3- Dichlorobenz ene	1,4- Dichlorobenz ene	Dichlorodiflu oromethane	1,1- Dichloroetha ne	1,2- Dichloroetha	1,1- Dichloroethe	c-1,2- Dichloroethe	t-1,2- Dichloroethe	1,2- Dichloroprop		t-1,3- Dichloroprop ene	Dichlorotetraf luoroethane	Ethylbenzene
					ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv
	•	· !	An	alytical Method		. U- L-	11-1-	11:1:	11-1-	11-1-	10-1-	EPA TO-15M		13.1	13-3-		11.1.	11:1:	D-T-
Baseline - Shallow	SVE-1A	VSS01351	04/02/18	1035	<3.4	<2.7	<8.1	<3.4	<3.0	<3.2	<3.4	<9.9	<4.4	<6.4	<9.5	<3.3	<3.5	<13	1700
Baseline - Deep	SVE-1B	VSS01350	04/02/18	1028	<3.4	<2.7	<8.1	<3.4	<3.0	<3.2	<3.4	<9.9	<4.4	<6.4	<9.5	<3.3	<3.5	<13	1900
Shallow Zone																			
Shallow Step Test; Step 1	SVE-1A	VSS01355	04/02/18	1255	<2.8	<2.1	<6.5	<2.7	<2.4	<2.5	<2.7	<8.0	<3.5	<5.1	<7.6	<2.6		<11	1700
Challett Ctop 1 ddt, Ctop 1	Influent	VSS01352	04/02/18	1301	<0.022	<0.017	<0.052	<0.022	<0.019	<0.020	<0.022	<0.064	<0.028	<0.041	<0.061	<0.021	<0.022	<0.085	11
Shallow Step Test; Step 2	SVE-1A	VSS01357	04/02/18	1339	<3.4	<2.7	<8.1	<3.4	<3.0	<3.2	<3.4	<9.9	<4.4	<6.4	<9.5	<3.3	<3.5	<13	2700
	Influent	VSS01360	04/02/18	1353	<0.0069	<0.0053	<0.016	<0.0067	0.015 J	<0.0063	<0.0069	<0.020	<0.0087	<0.013	<0.019	<0.0065	<0.0069	<0.027	9
Shallow Step Test; Step 3	SVE-1A	VSS01353	04/02/18	1450	<4.3	<3.3	<10	<4.2	<3.7	<3.9	<4.3	<12	<5.5	<8.0	<12	<4.1	<4.3	<17	3200
·	Influent	VSS01354	04/02/18	1453	<0.17	<0.13	<0.40	<0.17	<0.15	<0.16	<0.17	<0.50	<0.22	<0.32	<0.48	<0.16	<0.17	<0.66	47
Shallow Step Test; Step 4	SVE-1A Influent	VSS01358	04/00/40	14000	SVE-1A sampl <0.055		as high system			by sample box	-0.0EE	-0.46	<0.070	T.0.10	<0.15	T-0.050	T-0.055	1.0.04	1400
	SVE-1A	VSS01358 VSS01359	04/02/18 04/02/18	1606 1707	<0.0069	<0.042 <0.0053	<0.13 <0.016	<0.054 <0.0067	<0.048 0.015 J	<0.050 <0.0063	<0.055 <0.0069	<0.16 <0.020	<0.070	<0.10 <0.013	<0.15	<0.052 <0.0065	<0.055 <0.0069	<0.21 <0.027	180 930
Shallow Step Test; End	Influent	VSS01359	04/02/18	1701	<0.28	<0.21	< 0.65	<0.0067	<0.24	<0.0063	<0.0069	<0.020	<0.007	<0.013	<0.76	<0.0065	<0.28	<1.1	300
	SVE- 1A	VSS01361	04/02/18	916	<0.69	<0.53	<1.6	<0.67	1.5 J	<0.63	<0.69	<2.0	<0.87	<1.3	<1.9	<0.65	<0.69	<2.7	970
Shallow Constant Rate Test; Initial Hour 1.4	Influent	VSS01363	04/03/18	915	<0.03	<0.021	<0.065	<0.027	<0.024	<0.025	<0.027	<0.080	<0.035	<0.051	<0.076	<0.026	<0.028	<0.11	83
Orianow Coriotant Nato Post, Illian Prod 1. 1	Effluent	VSS01362	04/03/18	918	<0.0028	<0.00021	<0.00065	<0.0027	<0.0024	<0.0025	<0.0027	<0.00080	<0.00035	<0.0001	<0.00076	<0.0026	<0.00028	<0.0011	1.3
	SVE- 1A	VSS01365	04/05/18	1201	<5.5	<4.2	<13	<5.4	<4.8	<5.0	<5.5	<16	<7.0	<10	<15	<5.2	<5.5	<21	1900
Shallow Constant Rate Test; Midpoint Hour	Influent	VSS01366	04/05/18	1200	<0.69	<0.53	<1.6	<0.67	< 0.60	< 0.63	<0.69	<2.0	<0.87	<1.3	<1.9	< 0.65	<0.69	<2.7	670
39.4	Effluent	VSS01367	04/05/18	1205	<0.0017	< 0.0013	<0.0040	<0.0017	< 0.0015	<0.0016	< 0.0017	< 0.0050	<0.0022	<0.0032	<0.0048	<0.0016	< 0.0017	<0.0066	2.2
	SVE-1A	VSS01368	04/06/18	1455	<5.5	<4.2	<13	<5.4	<4.8	<5.0	<5.5	<16	<7.0	<10	<15	<5.2	<5.5	<21	3000
Shallow Constant Rate Test; Final Hour 66.4	Influent	VSS01369	04/06/18	1500	<0.69	< 0.53	<1.6	<0.67	< 0.60	< 0.63	< 0.69	<2.0	<0.87	<1.3	<1.9	< 0.65	<0.69	<2.7	320
	Effluent	VSS01370	04/06/18	1505	<0.0014	<0.0011	< 0.0032	<0.0013	< 0.0012	< 0.0013	< 0.0014	< 0.0040	<0.0017	< 0.0025	<0.0038	< 0.0013	<0.0014	< 0.0053	1.6
Deep Zone																			
Deep Step Test; Step 1	SVE-1B	VSS01372	04/09/18	833	<8.6	<6.6	<20	<8.4	<7.4	<7.9	<8.6	<25	<11	<16	<24	<8.2	<8.7	<33	2800
Boop Gtop Tost, Gtop T	Influent	VSS01371	04/09/18	835	<2.8	<2.1	<6.5	<2.7	<2.4	<2.5	<2.7	<8.0	<3.5	<5.1	<7.6	<2.6	<2.8	<11	1100
Deep Step Test; Step 2	SVE-1B	VSS01374	04/09/18	1005	<11	<8.5	<26	<11	<9.5	<10	<11	<32	<14	<20	<31	<10	<11	<42	3000
	Influent	VSS01373	04/09/18	1005	<0.055	<0.042	<0.13	<0.054	<0.048	<0.050	<0.055	<0.16	<0.070	<0.10	<0.15	<0.052	<0.055	<0.21	870
Deep Step Test; Step 3	SVE-1B	VSS01376	04/09/18	1220	<11	<8.5	<26	<11	<9.5	<10	<11	<32	<14	<20	<31	<10	<11	<42	2200
	Influent	VSS01375	04/09/18	1225	<6.9	<5.3	<16	<6.7	<6.0	<6.3	<6.9	<20	<8.7	<13	<19	<6.5	<6.9	<27	2700
Deep Step Test; Step 4	SVE-1B	VSS01378	04/09/18	1317	<11	<8.5 <4.2	<26	<11	<9.5	<10 <5.0	<11	<32	<14 <7.0	<20 <10	<31	<10	<11	<42 <21	2700
	Influent SVE-1B	VSS01377 VSS01380	04/09/18 04/09/18	1315 1420	<5.5 <11	<4.2 <8.5	<13 <26	<5.4 <11	<4.8 <9.5	<10	<5.5 <11	<16 <32	<14	<20	<15 <31	<5.2 <10	<5.5 <11	<42	2600 3000
Deep Step Test; End	Influent	VSS01360 VSS01379	04/09/18	1415	<5.5	<4.2	<13	<5.4	<4.8	<5.0	<5.5	<16	<7.0	<10	<15	<5.2	<5.5	<21	2100
	SVE-1B	VSS01379	04/09/18	1615	<11	<8.5	<26	<11	<9.5	<10	<11	<32	<14	<20	<31	<10	<11	<42	2700
Deep Constant Rate Test; Initial Hour 1.5	Influent**	VSS01383	04/09/18	1625	<0.043	<0.033	<0.10	<0.042	<0.037	<0.039	<0.043	<0.12	<0.055	<0.080	<0.12	<0.041	<0.043	<0.17	82
Deep Constant Nate Test, Initial Floar 1.5	Effluent	VSS01382	04/09/18	1620	<0.028	<0.033	<0.065	<0.027	<0.024	<0.025	<0.027	<0.080	<0.035	<0.051	<0.076	<0.026	<0.028	<0.17	39
	SVE-1B	VSS01384	04/11/18	1028	<6.9	<5.3	<16	<6.7	<6.0	<6.3	<6.9	<20	<8.7	<13	<19	<6.5	<6.9	<27	4800
Deep Constant Rate Test; Midpoint Hour 32.75		VSS01385	04/11/18	1025	<3.4	<2.7	<8.1	<3.4	<3.0	<3.2	<3.4	<9.9	<4.4	<6.4	<9.5	<3.3	<3.5	<13	3200
,	Effluent*	VSS01386	04/11/18	1030	<0.28	<0.21	<0.65	<0.27	<0.24	<0.25	<0.27	<0.80	<0.35	<0.51	<0.76	<0.26	<0.28	<1.1	310*
	SVE-1B	VSS01387	04/12/18	1000	<6.9	<5.3	<16	<6.7	<6.0	<6.3	<6.9	<20	<8.7	<13	<19	<6.5	<6.9	<27	5900
Deep Constant Rate Test; Midpoint Hour 56.3	Influent	VSS01388	04/12/18	1000	<3.4	<2.7	<8.1	<3.4	<3.0	<3.2	<3.4	<9.9	<4.4	<6.4	<9.5	<3.3	<3.5	<13	3400
	Effluent*	VSS01389	04/12/18	1005	<0.11	<0.085	<0.26	<0.11	<0.095	<0.10	<0.11	<0.32	<0.14	<0.20	<0.31	<0.10	<0.11	<0.42	130*
	SVE-1B	VSS01390	04/13/18	1145	<6.9	<5.3	<16	<6.7	<6.0	<6.3	<6.9	<20	<8.7	<13	<19	<6.5	<6.9	<27	1900
Deep Constant Rate Test; Final Hour 82	Influent	VSS01392	04/13/18	1156	<3.4	<2.7	<8.1	<3.4	<3.0	<3.2	<3.4	<9.9	<4.4	<6.4	<9.5	<3.3	<3.5	<13	1300
																			39

%v = percent volume

- < = not detected above the method detection limit
- -- = sample not collected per RD Work Plan Sampling and Analytical Plan (AECOM 2018)
- J = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
 *Elevated due to higher throughput of hydrocarbons for thermal oxidation during deep soil testing and influence from influent concentrations during lab sample collection.
 *Initial deep constant rate test system influent vapor sample collected on 4/9 was anomalous as it is not consistent with the SVE-1B well head vapor sample.

TABLE 4-1 COMPREHENSIVE VOC AND FIXED GAS SOIL VAPOR ANALYTICAL RESULTS Soil Vapor Extraction Pilot Test Report Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

Study	Sample Location	Sample ID	Sample Date	Time	4- Ethyltoluene	Hexachloro- 1,3-Butadiene	2-Hexanone	4-Methyl-2- Pentanone	Methyl-t- Butyl Ether (MTBE)	Methylene Chloride	Styrene	1,1,2,2- Tetrachloroet hane	Tetrachloroet hene	Toluene	1,1,2-Trichloro- 1,2,2- Trifluoroethane	1,2,4- Trichlorobenz ene	1,1,1- Trichloroetha ne	1,1,2- Trichloroetha ne
					ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv	ppmv
				alytical Method								PA TO-15M				_		
Baseline - Shallow	SVE-1A	VSS01351	04/02/18	1035		<5.1	<22	<19	<7.6	<12	<3.2	<6.9	<3.4	78 J	<3.5	<6.2	<3.9	<9.1
Baseline - Deep	SVE-1B	VSS01350	04/02/18	1028	<7.9	<5.1	<22	<19	<7.6	<12	<3.2	<6.9	<3.4	92 J	<3.5	<6.2	<3.9	<9.1
Shallow Zone	1-	,		_		1	1	,	_	_	1				1	1	1	,
Shallow Step Test; Step 1	SVE-1A	VSS01355	04/02/18	1255	<6.4	<4.1	<18	<15	<6.1	<9.9	<2.5	<5.5		67 J	<2.8	<5.0	<3.2	<7.3
Chairen Grep 1 331, Grep 1	Influent	VSS01352	04/02/18	1301	<0.051	<0.033	<0.14	<0.12	<0.049	<0.079	<0.020	<0.044	<0.022	0.90 J	<0.022	<0.040	<0.025	<0.058
Shallow Step Test; Step 2	SVE-1A	VSS01357	04/02/18	1339	<7.9	<5.1	<22	<19	<7.6	<12	<3.2	<6.9	<3.4	100 J	<3.5	<6.2	<3.9	<9.1
	Influent	VSS01360	04/02/18	1353	<0.016	<0.010	<0.044	<0.037	<0.015	<0.025	0.0080 J	<0.014	<0.0067	1.3	<0.0070	<0.012	<0.0079	<0.018
Shallow Step Test; Step 3	SVE-1A	VSS01353	04/02/18	1450	<9.9	<6.4	<27	<23	<9.5	<15	<4.0	<8.6	<4.2	110 J	<4.4	<7.8	<4.9	<11
1 / 1	Influent	VSS01354	04/02/18	1453	<0.40	<0.26	<1.1	<0.93	<0.38	<0.62	<0.16	<0.34	<0.17	3.2 J	<0.18	<0.31	<0.20	<0.46
Shallow Step Test; Step 4	SVE-1A	1/0004050	0.4/0.0/4.0	14000	SVE-1A sample		s high system v		not be overcome		10.000 1	1044	0.054				0.000	10.45
1 / 1	Influent	VSS01358	04/02/18	1606	<0.13	<0.082	<0.35	<0.30	<0.12	<0.20	0.092 J	<0.11		5.9	<0.056	<0.099	<0.063	<0.15
Shallow Step Test; End	SVE-1A	VSS01359	04/02/18	1707	0.11	<0.010	<0.044	<0.037	<0.015	<0.025	0.77	<0.014	<0.0067	25	<0.0070	<0.012	<0.0079	<0.018
·	Influent	VSS01356	04/02/18	1701	<0.64	<0.41	<1.8	<1.5	<0.61	<0.99	<0.25	<0.55	<0.27	10 J	<0.28	<0.50	<0.32	<0.73
Challey Canatant Data Tasty Initial Hour 1.4	SVE- 1A	VSS01361	04/03/18	916	<1.6	<1.0	<4.4	<3.7	<1.5	<2.5 <0.099	0.94 J	<1.4	<0.67 <0.027	62	<0.70	<1.2	<0.79	<1.8
Shallow Constant Rate Test; Initial Hour 1.4	Influent	VSS01363 VSS01362	04/03/18	915	<0.064	<0.041	<0.18	<0.15	<0.061	<0.099	0.11 J	<0.055	<0.027	4.6 0.029	<0.028	<0.050	<0.032	<0.073
	Effluent		04/03/18	918	0.00098 J	<0.00041	<0.0018	<0.0015 <30	<0.00061		0.0023 J	<0.00055			<0.00028	<0.00050	<0.00032	<0.00073
Shallow Constant Rate Test; Midpoint Hour	SVE- 1A	VSS01365	04/05/18	1201	<13 <1.6	<8.2 <1.0	<35 <4.4	<3.7	<12 <1.5	<20 <2.5	<5.1 0.97 J	<11 <1.4	<5.4 <0.67	87 J 20 J	<5.6 <0.70	<9.9 <1.2	<6.3 <0.79	<15 <1.8
39.4	Influent Effluent	VSS01366 VSS01367	04/05/18	1200								<0.0034	<0.07		<0.70	<0.0031	<0.79	
	SVE-1A	VSS01367 VSS01368	04/05/18 04/06/18	1205 1455	<0.0040 <13	<0.0026 <8.2	<0.011 <35	<0.0093 <30	<0.0038 <12	<0.0062 <20	<0.0016 <5.1	<11	<5.4	0.033 J 110 J	<5.6	<9.9	<6.3	<0.0046 <15
Shallow Constant Rate Test; Final Hour 66.4	Influent	VSS01368 VSS01369	04/06/18	1500	<1.6		<4.4	<3.7	<1.5	<2.5	<0.64	<1.4	<0.67	13 J	<0.70	<1.2	<0.79	<1.8
Shallow Constant Nate Test, Final Hour 60.4	Effluent	VSS01309	04/06/18	1505	<0.0032	<0.0020	<0.0088	<0.0074	<0.0031	<0.0050	<0.04	<0.0028	<0.0013	0.027 J	<0.0014	<0.0025	<0.79	<0.0036
Deep Zone	Elliuelii	143301370	04/06/16	11000	<0.0032	<0.0020	<0.0000	<0.0074	<0.0031	<0.0030	<0.0013	<0.0020	<0.0013	0.027 3	C0.0014	<0.0025	<0.0010	<0.0030
Deep Zone	SVE-1B	VSS01372	04/09/18	833	<20	<13	<55	<47	<19	<31	<8.0	<17	<8.4	74 J	<8.8	<16	<9.9	<23
Deep Step Test; Step 1	Influent	VSS01372	04/09/18	835	<6.4	<4.1	<18	<15	<6.1	<9.9	<2.5	<5.5		39 J	<2.8	<5.0	<3.2	<7.3
	SVE-1B	VSS01371	04/09/18	1005	<25	<16	<70	<60	<24	<40	<10	<22		82 J	<11	<20	<13	<29
Deep Step Test; Step 2	Influent	VSS01374	04/09/18	1005	0.37 J	<0.082	<0.35	<0.30	<0.12	<0.20	0.16 J	<0.11	<0.054	49	<0.056	<0.099	<0.063	<0.15
	SVE-1B	VSS01376	04/09/18	1220	<25	<16	<70	<60	<24	<40	<10	<22		65 J	<11	<20	<13	<29
Deep Step Test; Step 3	Influent	VSS01376	04/09/18	1225	<16	<10	<44	<37	<15	<25	<6.4	<14		56 J	<7.0	<12	<7.9	<18
	SVE-1B	VSS01373	04/09/18	1317	<25	<16	<70	<60	<24	<40	<10	<22	<11	60 J	<11	<20	<13	<29
Deep Step Test; Step 4	Influent	VSS01377	04/09/18	1315	<13	<8.2	<35	<30	<12	<20	<5.1	<11		55 J	<5.6	<9.9	<6.3	<15
	SVE-1B	VSS01380	04/09/18	1420	<25	<16	<70	<60	<24	<40	<10	<22	<11	70 J	<11	<20	<13	<29
Deep Step Test; End	Influent	VSS01379	04/09/18	1415	<13	<8.2	<35	<30	<12	<20	<5.1	<11	<5.4	44 J	<5.6	<9.9	<6.3	<15
	SVE-1B	VSS01381	04/09/18	1615	<25	<16	<70	<60	<24	<40	<10	<22	<11	63 J	<11	<20	<13	<29
Deep Constant Rate Test; Initial Hour 1.5	Influent**	VSS01383	04/09/18	1625	<0.099	<0.064	<0.27	<0.23	<0.095	<0.15	<0.040	<0.086	<0.042	1.0 J	<0.044	<0.078	<0.049	<0.11
Book constant reaso root, initial rical ric	Effluent	VSS01382	04/09/18	1620	<0.064	<0.041	<0.18	<0.15	<0.061	<0.099	<0.025	<0.055	<0.042	0.53 J	<0.028	<0.050	<0.032	<0.073
	SVE-1B	VSS01384	04/11/18	1028	<16	<10	<44	<37	<15	<25	<6.4	<14		85 J	<7.0	<12	<7.9	<18
Deep Constant Rate Test; Midpoint Hour 32.75	Influent	VSS01385	04/11/18	1025	<7.9	<5.1	<22	<19	<7.6	<12	<3.2	<6.9	<3.4	50 J	<3.5	<6.2	<3.9	<9.1
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Effluent*	VSS01386	04/11/18	1030	<0.64	<0.41	<1.8	<1.5	<0.61	<0.99	<0.25	<0.55	<0.27	2.4 J	<0.28	<0.50	<0.32	<0.73
	SVE-1B	VSS01387	04/12/18	1000	<16	<10	<44	<37	<15	<25	<6.4	<14	<6.7	87 J	<7.0	<12	<7.9	<18
Deep Constant Rate Test; Midpoint Hour 56.3		VSS01388	04/12/18	1000	<7.9	<5.1	<22	<19	<7.6	<12	<3.2	<6.9	<3.4	54 J	<3.5	<6.2	<3.9	<9.1
= 11p 11motor (ato 100t, maponit flour oolo	Effluent*	VSS01389	04/12/18	1005	<0.25	<0.16	<0.70	<0.60	<0.24	<0.40	<0.10	<0.22	<0.11	1.7 J	<0.11	<0.20	<0.13	<0.29
	SVE-1B	VSS01390	04/13/18	1145	<16	<10	<44	<37	<15	<25	<6.4	<14	16 J	43 J	<7.0	<12	<7.9	<18
Deep Constant Rate Test; Final Hour 82	Influent	VSS01392	04/13/18	1156	<7.9	<5.1	<22	<19	<7.6	<12	<3.2	<6.9	<3.4	25 J	<3.5	<6.2	<3.9	<9.1
227 20.000	Effluent	VSS01391	04/13/18	1151	<0.064	<0.041	<0.18	<0.15	<0.061	<0.099	<0.025	<0.055	0.029 J	0.50 J	<0.028	<0.050	<0.032	<0.073
			, ,	1	,					,	,		,		,	,		

%v = percent volume

- < = not detected above the method detection limit
- -- = sample not collected per RD Work Plan Sampling and Analytical Plan (AECOM 2018)
- J = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
 *Elevated due to higher throughput of hydrocarbons for thermal oxidation during deep soil testing and influence from influent concentrations during lab sample collection.
- **Initial deep constant rate test system influent vapor sample collected on 4/9 was anomalous as it is not consistent with the SVE-1B well head vapor sample.

TABLE 4-1 COMPREHENSIVE VOC AND FIXED GAS SOIL VAPOR ANALYTICAL RESULTS Soil Vapor Extraction Pilot Test Report Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

Study	Sample Location	Sample ID	Sample Date	Time	ne	Trichlorofluor omethane	1,2,4- Trimethylben zene	1,3,5- Trimethylben zene	,	Vinyl Chloride	o-Xylene	p/m-Xylene	Methane	Carbon Dioxide	Carbon Monoxide	Nitrogen	Oxygen (+ Argon)
			Δ.	nalytical Method	ppmv	ppmv	ppmv	ppmv EPA T	ppmv 0.45M	ppmv	ppmv	ppmv	ppmv SCAQMD 25.1M	%v	%v	%v D-1946	%v
Baseline - Shallow	SVE-1A	VSS01351	04/02/18	1035	<3.5	<8.5	<7.7	<7.2	<4.9	<11	<7.8	<17	290	7.48	<0.183	89.1	3.47
	SVE-1A SVE-1B	VSS01351	04/02/18	1035	<3.5	<8.5	<7.7	<7.2	<4.9 <4.9	<11	<7.8	<17	360	15.5	<0.183	81.9	2.62
Shallow Zone	OVL-1D	140001000	104/02/10	1020	[<0.0	10.5	<u> </u>	Ν1.Z	<u> </u>	<11	\(\bar{1}\).0	1<17	1300	110.0	[<0.105	101.9	2.02
	SVE-1A	VSS01355	04/02/18	1255	<2.8	<6.8	<6.1	<5.8	<3.9	<8.9	<6.3	<13	270	5.52	<0.183	87.6	6.91
Shallow Step Test; Step 1	Influent	VSS01352	04/02/18	1301	<0.022	<0.055	0.060 J	<0.046	<0.031	<0.071	<0.050	<0.11	9	0.220 J	<0.183	78.9	20.9
	SVE-1A	VSS01357	04/02/18	1339	<3.5	<8.5	<7.7	<7.2	<4.9	<11	<7.8	<17	310	6.52	<0.183	89.1	4.33
Shallow Step Test; Step 2	Influent	VSS01360	04/02/18	1353	<0.0069	<0.017	<0.015	<0.014	<0.0098	<0.022	<0.016	<0.033	10	0.204 J	<0.183	78.8	21
Oladla Otas Tast Otas O	SVE-1A	VSS01353	04/02/18	1450	<4.3	<11	<9.6	<9.1	<6.1	<14	<9.8	<21	320	6.77	<0.183	89.1	4.17
Shallow Step Test; Step 3	Influent	VSS01354	04/02/18	1453	<0.17	< 0.43	<0.38	<0.36	<0.24	<0.56	<0.39	< 0.83	20	0.434 J	<0.183	79.2	20.3
Challan Ctar Tast Ctar 4	SVE-1A		•		SVE-1A samp	e not collected a	s high system v	acuum could no	t be overcome	by sample box	1	•		•	•		· ·
Shallow Step Test; Step 4	Influent	VSS01358	04/02/18	1606	<0.056	<0.14	<0.12	<0.12	<0.078	<0.18	<0.13	<0.27	24	0.559	<0.183	79.3	20.1
Shallow Step Test; End	SVE-1A	VSS01359	04/02/18	1707	< 0.0069	< 0.017	<0.015	<0.014	<0.0098	<0.022	0.17	0.5	300	7.17	<0.183	88.3	4.54
Shallow Step Test, End	Influent	VSS01356	04/02/18	1701	<0.28	<0.68	<0.61	<0.58	<0.39	<0.89	< 0.63	<1.3	29	0.747	<0.183	79.5	19.7
	SVE- 1A	VSS01361	04/03/18	916	< 0.69	<1.7	<1.5	<1.4	<0.98	<2.2	<1.6	<3.3	300	8.16	<0.183	88	3.86
Shallow Constant Rate Test; Initial Hour 1.4	Influent	VSS01363	04/03/18	915	<0.028	< 0.068	< 0.061	<0.058	< 0.039	< 0.089	< 0.063	<0.13	19	0.506	<0.183	79.1	20.4
	Effluent	VSS01362	04/03/18	918	<0.00028	<0.00068	0.0012 J	<0.00058	<0.00039	<0.00089	0.00098 J	0.0024 J					
Shallow Constant Rate Test; Midpoint Hour	SVE- 1A	VSS01365	04/05/18	1201	<5.6	<14	<12	<12	<7.8	<18	<13	<27	260	11	<0.183	83.4	5.63
39.4	Influent	VSS01366	04/05/18	1200	<0.69	<1.7	<1.5	<1.4	<0.98	<2.2	<1.6	<3.3	26	1.19	<0.183	79	19.8
00.4	Effluent	VSS01367	04/05/18	1205	< 0.0017	< 0.0043	<0.0038	<0.0036	<0.0024	<0.0056	<0.0039	<0.0083					
	SVE-1A	VSS01368	04/06/18	1455	<5.6	<14	<12	<12	<7.8	<18	<13	<27	250	12.4	<0.183	82.7	4.93
Shallow Constant Rate Test; Final Hour 66.4	Influent	VSS01369	04/06/18	1500	<0.69	<1.7	<1.5	<1.4	<0.98	<2.2	<1.6	<3.3	23	1.18	<0.183	78.9	19.9
	Effluent	VSS01370	04/06/18	1505	<0.0014	<0.0034	<0.0031	<0.0029	<0.0020	<0.0044	<0.0031	<0.0067		<u> </u>			
Deep Zone	- · -	L	I / / /-	Taba	T	Γ	T	T		T ==	T ==	T	Taba	Train	T =	T	12 .2
Deep Step Test; Step 1	SVE-1B	VSS01372	04/09/18	833	<8.7	<21	<19	<18	<12	<28	<20	<42	290	16.3	<0.183	81.2	2.42
' ' '	Influent	VSS01371	04/09/18	835	<2.8	<6.8	<6.1	<5.8	<3.9	<8.9	<6.3	<13	120	6.44	<0.183	79.5	14.1
Deep Step Test; Step 2	SVE-1B	VSS01374	04/09/18	1005	<11	<27	<25	<23	<16	<36	<25	<53	290	16.1	<0.183	81.4	2.55
	Influent	VSS01373	04/09/18	1005	<0.056	<0.14	<0.12	<0.12	<0.078	<0.18	0.20 J	0.38 J	130	7.29	<0.183	79.6	13.1
Deep Step Test; Step 3	SVE-1B	VSS01376	04/09/18	1220	<11 <6.9	<27 <17	<25 <15	<23 <14	<16 <9.8	<36 <22	<25 <16	<53 <33	280	15.9 9.86	<0.183	81.5	2.53 9.95
	Influent	VSS01375	04/09/18	1225 1317		<27	<15 <25	<23	<9.8 <16		<25		350	15.8	<0.183	80.2 81.6	2.61
Deep Step Test; Step 4	SVE-1B Influent	VSS01378 VSS01377	04/09/18 04/09/18	1317	<11 <5.6	<14	<12	<12	< 1.6 < 7.8	<36 <18	<13	<53 <27	170	8.66	<0.183 <0.183	79.9	11.4
	SVE-1B	VSS01377	04/09/18	1420	<11	<27	<25	<23	<16	<36	<25	<53	330	16	<0.183	81.4	2.61
Deep Step Lest: End	Influent	VSS01360 VSS01379	04/09/18	1415	<5.6	<14	<12	<12	<7.8	<18	<13	<27	130	8.34	<0.183	79.8	11.8
	SVE-1B	VSS01379	04/09/18	1615	<11	<27	<25	<23	<16	<36	<25	<53	250	15.9	<0.183	81.1	3.04
Deep Constant Rate Test; Initial Hour 1.5	Influent**	VSS01383	04/09/18	1625	<0.043	<0.11	<0.096	<0.091	<0.061	<0.14	<0.098	<0.21					
Boop Gonstant Nate 16st, Illitial Flour 1.5	Effluent	VSS01382	04/09/18	1620	<0.043	<0.068	<0.061	<0.051	<0.039	<0.089	<0.063	<0.13	0.82 J	<0.139	<0.183	78.5	21.4
	SVE-1B	VSS01384	04/11/18	1028	<6.9	<17	<15	<14	<9.8	<22	<16	<33	270	14.9	<0.183	78.8	6.29
Deep Constant Rate Test; Midpoint Hour 32.75		VSS01385	04/11/18	1025	9.3 J	<8.5	<7.7	<7.2	<4.9	<11	<7.8	<17	130	7.48	<0.183	78.6	14
Book Constant reals 1 cot, Milapoint 1 car oz.70	Effluent*	VSS01386	04/11/18	1030	<0.28	<0.68	<0.61	<0.58	<0.39	<0.89	< 0.63	<1.3					
	SVE-1B	VSS01387	04/12/18	1000	<6.9	<17	<15	<14	<9.8	<22	<16	<33	140	14.4	<0.183	78	7.55
	Influent	VSS01388	04/12/18	1000	4.0 J	<8.5	<7.7	<7.2	<4.9	<11	<7.8	<17	76	7.62	<0.183	78.2	14.2
' ' '	Effluent*	VSS01389	04/12/18	1005	0.11 J	<0.27	<0.25	<0.23	<0.16	<0.36	<0.25	<0.53					
	SVE-1B	VSS01390	04/13/18	1145	<6.9	<17	<15	<14	<9.8	<22	<16	<33	82	13.8	<0.183	77.8	8.4
Deep Constant Rate Test; Final Hour 82	Influent	VSS01392	04/13/18	1156	<3.5	<8.5	<7.7	<7.2	<4.9	<11	<7.8	<17	45	7.09	<0.183	78.1	14.8
1 · · · · · · · · · · · · · · · · · · ·	Effluent	VSS01391	04/13/18	1151	<0.028	<0.068	<0.061	<0.058	< 0.039	<0.089	< 0.063	<0.13					

%v = percent volume

- < = not detected above the method detection limit
- -- = sample not collected per RD Work Plan Sampling and Analytical Plan (AECOM 2018)
- J = Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
 *Elevated due to higher throughput of hydrocarbons for thermal oxidation during deep soil testing and influence from influent concentrations during lab sample collection.
 *Initial deep constant rate test system influent vapor sample collected on 4/9 was anomalous as it is not consistent with the SVE-1B well head vapor sample.

Calscience

Supplemental Report 1

The original report has been revised/corrected.

WORK ORDER NUMBER: 18-04-0188

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AECOM

Client Project Name: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Attention: Julie Doane-Allmon

130 Robin Hill Road

Suite 100

Santa Barbara, CA 93117-3153

Vikas Patel

Approved for release on 04/18/2018 by:

Vikas Patel **Project Manager**

ResultLink >

Email your PM >

Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Del Amo Superfund Site, Los Angeles / 60566	36446.2018.1.060°
--	-------------------

Work Order Number: 18-04-0188

1	Work Order Narrative	3
2	Sample Summary	4
3	QC Association Summary	5
4	Detections Summary	7
5	Client Sample Data. 5.1 ASTM D-1946 Fixed Gases (Air). 5.2 EPA TO-15 (M) Full List (Air). 5.3 EPA TO-3 (M) TPH Gasoline (Air). 5.4 SCAQMD 25.1 TGNMO and CH4 (Air).	12 12 16 51 54
6	Quality Control Sample Data. 6.1 Sample Duplicate. 6.2 LCS/LCSD.	57 57 58
7	Sample Analysis Summary	78
8	Glossary of Terms and Qualifiers	79
9	Chain-of-Custody/Sample Receipt Form	80

Work Order Narrative

Work Order: 18-04-0188 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/03/18. They were assigned to Work Order 18-04-0188.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

DoD Projects:

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.

Sample Summary

Client: AECOM Work Order:

18-04-0188 Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 Project Name:

130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153

04/03/18 17:45

PO Number: 100067

Date/Time Received:

15 Number of

Containers:

Attn: Julie Doane-Allmon

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
VSS01361	18-04-0188-1	04/03/18 09:24	2	Air
VSS01362	18-04-0188-2	04/03/18 09:18	1	Air
VSS01363	18-04-0188-3	04/03/18 09:15	1	Air
VSS01360	18-04-0188-4	04/02/18 13:35	1	Air
VSS01358	18-04-0188-5	04/02/18 16:06	1	Air
VSS01359	18-04-0188-6	04/02/18 17:07	1	Air
VSS01357	18-04-0188-7	04/02/18 13:39	1	Air
VSS01356	18-04-0188-8	04/02/18 17:01	1	Air
VSS01355	18-04-0188-9	04/02/18 12:55	1	Air
VSS01354	18-04-0188-10	04/02/18 14:53	1	Air
VSS01353	18-04-0188-11	04/02/18 14:50	1	Air
VSS01352	18-04-0188-12	04/02/18 13:01	1	Air
VSS01351	18-04-0188-13	04/02/18 10:35	1	Air
VSS01350	18-04-0188-14	04/02/18 10:28	1	Air

QC Association Summary

Work Order: 18-0	04-0188				Pag	e 1 of 2
Client Sample ID	Method Name	<u>Type</u>	Ext Name	Instrument	MS/MSD/SDP	LCS/LCSD
VSS01361	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180403L01
VSS01361	EPA TO-15 (M) Full List		N/A	GC/MS II	*2	180403L02
VSS01361	EPA TO-15 (M) Full List	R	N/A	GC/MS II	*1	180404L02
VSS01361	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180403D02	180403L02
VSS01361	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180403L01
VSS01362	EPA TO-15 (M) Full List		N/A	GC/MS II	*2	180403L02
VSS01362	EPA TO-15 (M) Full List	R	N/A	GC/MS II	*1	180403L02
VSS01362	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180403D02	180403L02
VSS01363	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180403L01
VSS01363	EPA TO-15 (M) Full List		N/A	GC/MS II	*2	180403L02
VSS01363	EPA TO-15 (M) Full List	R	N/A	GC/MS II	*1	180404L02
VSS01363	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180403D02	180403L02
VSS01363	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180403L01
VSS01360	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180403L01
VSS01360	EPA TO-15 (M) Full List		N/A	GC/MS II	*2	180403L02
VSS01360	EPA TO-15 (M) Full List	R	N/A	GC/MS II	*1	180404L02
VSS01360	EPA TO-15 (M) Full List	R	N/A	GC/MS II	*1	180404L02
VSS01360	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180403D02	180403L02
VSS01360	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180403L01
VSS01358	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180403L01
VSS01358	EPA TO-15 (M) Full List		N/A	GC/MS II	*2	180403L02
VSS01358	EPA TO-15 (M) Full List	R	N/A	GC/MS II	*1	180404L02
VSS01358	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180403D02	180403L02
VSS01358	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180403L01
VSS01359	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180403L01
VSS01359	EPA TO-15 (M) Full List		N/A	GC/MS II	*2	180403L02
VSS01359	EPA TO-15 (M) Full List	R	N/A	GC/MS II	*1	180404L02
VSS01359	EPA TO-15 (M) Full List	R	N/A	GC/MS II	*1	180403L02
VSS01359	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180403D02	180403L02
VSS01359	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180403L01
VSS01357	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180404L01
VSS01357	EPA TO-15 (M) Full List		N/A	GC/MS ZZ	*2	180404L02
VSS01357	EPA TO-15 (M) Full List	R	N/A	GC/MS ZZ	*1	180405L02
VSS01357	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180403D02	180403L02
VSS01357	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180404L01
VSS01356	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180404L01
VSS01356	EPA TO-15 (M) Full List		N/A	GC/MS ZZ	*2	180404L02
VSS01356	EPA TO-15 (M) Full List	R	N/A	GC/MS ZZ	*1	180405L02
VSS01356	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180403D02	180403L02
VSS01356	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180404L01
VSS01355	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180404L01
VSS01355	EPA TO-15 (M) Full List		N/A	GC/MS ZZ	*2	180404L02
VSS01355	EPA TO-15 (M) Full List	R	N/A	GC/MS ZZ	*1	180405L02

^{1 =} Dilution analysis performed, no associated matrix QC

^{2 =} Limited sample received, no MS/MSD performed

R = Rerun

QC Association Summary

Work Order: 18-04-0188						e 2 of 2
Client Sample ID	Method Name	<u>Туре</u>	Ext Name	Instrument	MS/MSD/SDP	LCS/LCSD
VSS01355	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180403D02	180403L02
VSS01355	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180404L01
VSS01354	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180404L01
VSS01354	EPA TO-15 (M) Full List		N/A	GC/MS ZZ	*2	180404L02
VSS01354	EPA TO-15 (M) Full List	R	N/A	GC/MS ZZ	*1	180405L02
VSS01354	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180403D02	180403L02
VSS01354	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180404L01
VSS01353	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180404L01
VSS01353	EPA TO-15 (M) Full List		N/A	GC/MS ZZ	*2	180404L02
VSS01353	EPA TO-15 (M) Full List	R	N/A	GC/MS ZZ	*1	180405L02
VSS01353	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180403D02	180403L02
VSS01353	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180404L01
VSS01352	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180404L01
VSS01352	EPA TO-15 (M) Full List		N/A	GC/MS ZZ	*2	180404L02
VSS01352	EPA TO-15 (M) Full List	R	N/A	GC/MS HH	*1	180405L02
VSS01352	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180403D02	180403L02
VSS01352	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180404L01
VSS01351	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180404L01
VSS01351	EPA TO-15 (M) Full List		N/A	GC/MS ZZ	*2	180404L02
VSS01351	EPA TO-15 (M) Full List	R	N/A	GC/MS HH	*1	180405L02
VSS01351	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180403D02	180403L02
VSS01351	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180404L01
VSS01350	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180404L01
VSS01350	EPA TO-15 (M) Full List		N/A	GC/MS ZZ	*2	180404L02
VSS01350	EPA TO-15 (M) Full List	R	N/A	GC/MS HH	*1	180405L02
VSS01350	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180403D02	180403L02
VSS01350	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180404L01

R = Rerun

^{1 =} Dilution analysis performed, no associated matrix QC

^{2 =} Limited sample received, no MS/MSD performed

Detections Summary

Client: AECOM Work Order: 18-04-0188

Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 130 Robin Hill Road, Suite 100 Project Name:

Received: 04/03/18

Page 1 of 5 Attn: Julie Doane-Allmon

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
VSS01361 (18-04-0188-1)						
Carbon Dioxide	8.16		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	3.86		0.500	%v	ASTM D-1946	N/A
Nitrogen	88.0		0.500	%v	ASTM D-1946	N/A
Acetone	12	J	2.9*	ppm (v/v)	EPA TO-15M	N/A
Benzene	4200		40	ppm (v/v)	EPA TO-15M	N/A
Dichlorodifluoromethane	1.5	J	0.60*	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	970		5.0	ppm (v/v)	EPA TO-15M	N/A
Styrene	0.94	J	0.64*	ppm (v/v)	EPA TO-15M	N/A
Toluene	62		50	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	15000		75	ppm (v/v)	EPA TO-3M	N/A
Methane	300		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01362 (18-04-0188-2)						
Acetone	0.021	J	0.0011*	ppm (v/v)	EPA TO-15M	N/A
Benzene	0.77		0.010	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	1.3		0.010	ppm (v/v)	EPA TO-15M	N/A
4-Ethyltoluene	0.00098	J	0.00064*	ppm (v/v)	EPA TO-15M	N/A
o-Xylene	0.00098	J	0.00063*	ppm (v/v)	EPA TO-15M	N/A
p/m-Xylene	0.0024	J	0.0013*	ppm (v/v)	EPA TO-15M	N/A
Styrene	0.0023	J	0.00025*	ppm (v/v)	EPA TO-15M	N/A
Toluene	0.029		0.020	ppm (v/v)	EPA TO-15M	N/A
1,2,4-Trimethylbenzene	0.0012	J	0.00061*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	12		1.5	ppm (v/v)	EPA TO-3M	N/A
VSS01363 (18-04-0188-3)						
Carbon Dioxide	0.506		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	20.4		0.500	%v	ASTM D-1946	N/A
Nitrogen	79.1		0.500	%v	ASTM D-1946	N/A
Benzene	330		5.0	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	83		5.0	ppm (v/v)	EPA TO-15M	N/A
Styrene	0.11	J	0.025*	ppm (v/v)	EPA TO-15M	N/A
Toluene	4.6		2.0	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	890		3.8	ppm (v/v)	EPA TO-3M	N/A
Methane	19		1.0	ppm (v/v)	SCAQMD 25.1M	N/A

^{*} MDL is shown

Detections Summary

Client: AECOM Work Order: 18-04-0188

Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 130 Robin Hill Road, Suite 100 Project Name:

Received: 04/03/18

Attn: Julie Doane-Allmon Page 2 of 5

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
VSS01360 (18-04-0188-4)						
Carbon Dioxide	0.204	J	0.139*	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	21.0		0.500	%v	ASTM D-1946	N/A
Nitrogen	78.8		0.500	%v	ASTM D-1946	N/A
Acetone	0.22	J	0.029*	ppm (v/v)	EPA TO-15M	N/A
Benzene	81		1.0	ppm (v/v)	EPA TO-15M	N/A
Dichlorodifluoromethane	0.015	J	0.0060*	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	9.0		0.50	ppm (v/v)	EPA TO-15M	N/A
Styrene	0.0080	J	0.0064*	ppm (v/v)	EPA TO-15M	N/A
Toluene	1.3		0.50	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	260		1.5	ppm (v/v)	EPA TO-3M	N/A
Methane	10		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01358 (18-04-0188-5)						
Carbon Dioxide	0.559		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	20.1		0.500	%v	ASTM D-1946	N/A
Nitrogen	79.3		0.500	%v	ASTM D-1946	N/A
Benzene	580		5.0	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	180		5.0	ppm (v/v)	EPA TO-15M	N/A
Styrene	0.092	J	0.051*	ppm (v/v)	EPA TO-15M	N/A
Toluene	5.9		4.0	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	1000		7.5	ppm (v/v)	EPA TO-3M	N/A
Methane	24		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01359 (18-04-0188-6)						
Carbon Dioxide	7.17		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	4.54		0.500	%v	ASTM D-1946	N/A
Nitrogen	88.3		0.500	%v	ASTM D-1946	N/A
Benzene	3700		100	ppm (v/v)	EPA TO-15M	N/A
2-Butanone	0.048	J	0.043*	ppm (v/v)	EPA TO-15M	N/A
Carbon Disulfide	0.036	J	0.028*	ppm (v/v)	EPA TO-15M	N/A
Dichlorodifluoromethane	0.015	J	0.0060*	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	930		100	ppm (v/v)	EPA TO-15M	N/A
4-Ethyltoluene	0.11		0.050	ppm (v/v)	EPA TO-15M	N/A
o-Xylene	0.17		0.050	ppm (v/v)	EPA TO-15M	N/A
p/m-Xylene	0.50		0.20	ppm (v/v)	EPA TO-15M	N/A
Styrene	0.77		0.15	ppm (v/v)	EPA TO-15M	N/A
Toluene	25		10	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	12000		75	ppm (v/v)	EPA TO-3M	N/A
Methane	300		1.0	ppm (v/v)	SCAQMD 25.1M	N/A

^{*} MDL is shown

Detections Summary

Client: AECOM Work Order: 18-04-0188

Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 130 Robin Hill Road, Suite 100 Project Name:

Received: 04/03/18

Attn: Julie Doane-Allmon Page 3 of 5

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
VSS01357 (18-04-0188-7)						
Carbon Dioxide	6.52		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	4.33		0.500	%v	ASTM D-1946	N/A
Nitrogen	89.1		0.500	%v	ASTM D-1946	N/A
Acetone	34	J	14*	ppm (v/v)	EPA TO-15M	N/A
Benzene	7100		100	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	2700		25	ppm (v/v)	EPA TO-15M	N/A
Toluene	100	J	6.7*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	13000		75	ppm (v/v)	EPA TO-3M	N/A
Methane	310		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01356 (18-04-0188-8)						
Carbon Dioxide	0.747		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	19.7		0.500	%v	ASTM D-1946	N/A
Nitrogen	79.5		0.500	%v	ASTM D-1946	N/A
Benzene	710		10	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	300		2.0	ppm (v/v)	EPA TO-15M	N/A
Toluene	10	J	0.54*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	1400		7.5	ppm (v/v)	EPA TO-3M	N/A
Methane	29		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01355 (18-04-0188-9)						
Carbon Dioxide	5.52		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	6.91		0.500	%v	ASTM D-1946	N/A
Nitrogen	87.6		0.500	%v	ASTM D-1946	N/A
Acetone	34	J	11*	ppm (v/v)	EPA TO-15M	N/A
Benzene	5400		80	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	1700		20	ppm (v/v)	EPA TO-15M	N/A
Toluene	67	J	5.4*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	9100		75	ppm (v/v)	EPA TO-3M	N/A
Methane	270		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01354 (18-04-0188-10)						
Carbon Dioxide	0.434	J	0.139*	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	20.3		0.500	%v	ASTM D-1946	N/A
Nitrogen	79.2		0.500	%v	ASTM D-1946	N/A
Benzene	380		5.0	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	47		1.2	ppm (v/v)	EPA TO-15M	N/A
Toluene	3.2	J	0.34*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	630		3.8	ppm (v/v)	EPA TO-3M	N/A
Methane	20		1.0	ppm (v/v)	SCAQMD 25.1M	N/A

^{*} MDL is shown

Detections Summary

Client: AECOM Work Order: 18-04-0188

Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 130 Robin Hill Road, Suite 100 Project Name:

Received: 04/03/18

Attn: Julie Doane-Allmon Page 4 of 5

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
VSS01353 (18-04-0188-11)						
Carbon Dioxide	6.77		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	4.17		0.500	%v	ASTM D-1946	N/A
Nitrogen	89.1		0.500	%v	ASTM D-1946	N/A
Acetone	36	J	18*	ppm (v/v)	EPA TO-15M	N/A
Benzene	7800		120	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	3200		31	ppm (v/v)	EPA TO-15M	N/A
Toluene	110	J	8.4*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	14000		75	ppm (v/v)	EPA TO-3M	N/A
Methane	320		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01352 (18-04-0188-12)						
Carbon Dioxide	0.220	J	0.139*	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	20.9		0.500	%v	ASTM D-1946	N/A
Nitrogen	78.9		0.500	%v	ASTM D-1946	N/A
Acetone	0.42	J	0.092*	ppm (v/v)	EPA TO-15M	N/A
Benzene	120		1.2	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	11		0.16	ppm (v/v)	EPA TO-15M	N/A
Toluene	0.90	J	0.043*	ppm (v/v)	EPA TO-15M	N/A
1,2,4-Trimethylbenzene	0.060	J	0.049*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	170		1.5	ppm (v/v)	EPA TO-3M	N/A
Methane	9.0		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01351 (18-04-0188-13)						
Carbon Dioxide	7.48		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	3.47		0.500	%v	ASTM D-1946	N/A
Nitrogen	89.1		0.500	%v	ASTM D-1946	N/A
Acetone	40	J	14*	ppm (v/v)	EPA TO-15M	N/A
Benzene	6800		100	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	1700		25	ppm (v/v)	EPA TO-15M	N/A
Toluene	78	J	6.7*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	13000		75	ppm (v/v)	EPA TO-3M	N/A
Methane	290		1.0	ppm (v/v)	SCAQMD 25.1M	N/A

^{*} MDL is shown

Santa Barbara, CA 93117-3153

Detections Summary

Client: AECOM Work Order: 18-04-0188

Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 130 Robin Hill Road, Suite 100 Project Name:

Received: 04/03/18

Attn: Julie Doane-Allmon Page 5 of 5

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
VSS01350 (18-04-0188-14)						
Carbon Dioxide	15.5		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	2.62		0.500	%v	ASTM D-1946	N/A
Nitrogen	81.9		0.500	%v	ASTM D-1946	N/A
Acetone	51	J	14*	ppm (v/v)	EPA TO-15M	N/A
Benzene	7600		100	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	1900		25	ppm (v/v)	EPA TO-15M	N/A
Toluene	92	J	6.7*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	12000		75	ppm (v/v)	EPA TO-3M	N/A
Methane	360		1.0	ppm (v/v)	SCAQMD 25.1M	N/A

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: **ASTM D-1946** Units:

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01361	18-04-0188-1-A	04/03/18 09:24	Air	GC 65	N/A	04/03/18 19:25	180403L01
Comment(s): - Results were ev	valuated to the MDL (DL), con-	centrations >= t	o the MDL (I	DL) but < RL (LO	Q), if found, are	e qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Carbon Dioxide	8.16	(0.500	0.139	1.00		
Carbon Monoxide	ND	(0.500	0.183	1.00		
Oxygen (+ Argon)	3.86	(0.500	0.205	1.00		
Nitrogen	88.0	(0.500	0.477	1.00		

VSS01363	18-04-01	88-3-A	04/03/18 09:15	Air	GC 65	N/A	04/03/18 20:09	180403L01
Comment(s):	- Results were evaluated to the MDL (DL), conc	entrations >	= to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u>	ualifiers
Carbon Dioxide		0.506		0.500	0.139	1.00		
Carbon Monoxid	е	ND		0.500	0.183	1.00		
Oxygen (+ Argor	n)	20.4		0.500	0.205	1.00		
Nitrogen		79.1		0.500	0.477	1.00		

VSS01360	18-04-0188-4-A	04/02/18 13:35	Air	GC 65	N/A	04/03/18 20:28	180403L01
Comment(s): - Re	sults were evaluated to the MDL (DL), co	oncentrations >:	= to the MDL (D	DL) but < RL (LOC	Q), if found, are	qualified with a "J"	flag.
<u>Parameter</u>	Re	<u>sult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qua</u>	<u>lifiers</u>
Carbon Dioxide	0.2	204	0.500	0.139	1.00	J	
Carbon Monoxide	NE)	0.500	0.183	1.00		
Oxygen (+ Argon)	21.	.0	0.500	0.205	1.00		
Nitrogen	78.	.8	0.500	0.477	1.00		

VSS01358	18-04-0188-5-A 04/ 16:	02/18 Air 06	GC 65		4/03/18 180403L01 0:52
Comment(s): - Results were evaluated to	the MDL (DL), concentra	ations >= to the MDL	(DL) but < RL (LOQ), if found, are qua	lified with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Dioxide	0.559	0.500	0.139	1.00	
Carbon Monoxide	ND	0.500	0.183	1.00	
Oxygen (+ Argon)	20.1	0.500	0.205	1.00	
Nitrogen	79.3	0.500	0.477	1.00	

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: **ASTM D-1946** Units:

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 2 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01359	18-04-0188-6-A	04/02/18 17:07	Air	GC 65	N/A	04/03/18 21:14	180403L01
Comment(s): - Results were eva	aluated to the MDL (DL), cond	entrations >=	to the MDL ((DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Carbon Dioxide	7.17		0.500	0.139	1.00		
Carbon Monoxide	ND		0.500	0.183	1.00		
Oxygen (+ Argon)	4.54		0.500	0.205	1.00		
Nitrogen	88.3		0.500	0.477	1.00		
VSS01357	18-04-0188-7-A	04/02/18 13:39	Air	GC 65	N/A	04/04/18 12:01	180404L01

	13:39			12:0)1
Comment(s): - Results were evalua-	ated to the MDL (DL), concentrations	s >= to the MDL	(DL) but < RL (LOQ),	if found, are qualifi	ed with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Dioxide	6.52	0.500	0.139	1.00	
Carbon Monoxide	ND	0.500	0.183	1.00	
Oxygen (+ Argon)	4.33	0.500	0.205	1.00	
Nitrogen	89.1	0.500	0.477	1.00	

VSS01356	18-04-0188-8-A 04/0 17:0	02/18 Air 01	GC 65	N/A 04/0 12:	04/18 180404L01 20
Comment(s): - Results were evaluated to	the MDL (DL), concentra	tions >= to the MDL	(DL) but < RL (LOQ)	, if found, are qualif	ied with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Dioxide	0.747	0.500	0.139	1.00	
Carbon Monoxide	ND	0.500	0.183	1.00	
Oxygen (+ Argon)	19.7	0.500	0.205	1.00	
Nitrogen	79.5	0.500	0.477	1.00	

VSS01355		4/02/18 Air 2:55	GC 65	N/A	04/04/18 12:50	180404L01
Comment(s): - Results were evaluated to	the MDL (DL), concent	trations >= to the MI	DL (DL) but < RL (L	OQ), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Carbon Dioxide	5.52	0.500	0.139	1.00		
Carbon Monoxide	ND	0.500	0.183	1.00		
Oxygen (+ Argon)	6.91	0.500	0.205	1.00		
Nitrogen	87.6	0.500	0.477	1.00		

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: **ASTM D-1946** Units:

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 3 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01354	18-04-0188-10-A	04/02/18 14:53	Air	GC 65	N/A	04/04/18 13:08	180404L01
Comment(s): - Results were evaluate	ed to the MDL (DL), cond	entrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
Carbon Dioxide	0.434	ļ	0.500	0.139	1.00		J
Carbon Monoxide	ND		0.500	0.183	1.00		
Oxygen (+ Argon)	20.3		0.500	0.205	1.00		
Nitrogen	79.2		0.500	0.477	1.00		
VSS01353	18-04-0188-11-A	04/02/18 14:50	Air	GC 65	N/A	04/04/18 13:26	180404L01

Comment(s):	- Results were evaluated to the MDL (DI	L), concentrations >	= to the MDL (DL) b	ut < RL (LOQ), if fou	ınd, are qualified wit	h a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Dioxide		6.77	0.500	0.139	1.00	
Carbon Monoxid	le	ND	0.500	0.183	1.00	
Oxygen (+ Argo	n)	4.17	0.500	0.205	1.00	
Nitrogen		89.1	0.500	0.477	1.00	

VSS01352	18-04-0188-12-A	04/02/18 13:01	Air GC 65	N/A	04/04/18 13:45	180404L01
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >= to t	he MDL (DL) but <	RL (LOQ), if found, a	re qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt RL</u>	<u>M</u>	<u>DL</u> <u>DF</u>	<u>Q</u>	<u>ualifiers</u>
Carbon Dioxide	0.220	0.5	0.1	1.0	0 J	
Carbon Monoxide	ND	0.5	0.1	1.0	0	
Oxygen (+ Argon)	20.9	0.5	0.2	205 1.0	0	
Nitrogen	78.9	0.5	0.4	177 1.0	0	

VSS01351		/02/18 Air :35	GC 65	N/A 04/0 14:0	04/18 180404L01 05
Comment(s): - Results were evaluated to	the MDL (DL), concentr	ations >= to the MDI	L (DL) but < RL (LOQ)	, if found, are qualif	ed with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Carbon Dioxide	7.48	0.500	0.139	1.00	
Carbon Monoxide	ND	0.500	0.183	1.00	
Oxygen (+ Argon)	3.47	0.500	0.205	1.00	
Nitrogen	89.1	0.500	0.477	1.00	

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: **ASTM D-1946** Units:

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 4 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01350	18-04-0188-14-A	04/02/18 10:28	Air	GC 65	N/A	04/04/18 14:28	180404L01
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	e qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	Qualifiers
Carbon Dioxide	15.5		0.500	0.139	1.00		
Carbon Monoxide	ND		0.500	0.183	1.00		
Oxygen (+ Argon)	2.62		0.500	0.205	1.00		
Nitrogen	81.9		0.500	0.477	1.00		

Method Blank	099-16-444-760	N/A	Air	GC 65	N/A	04/03/18 10:34	180403L01
Comment(s):	- Results were evaluated to the MDL (DL), con	centratio	ns >= to the MDL	(DL) but < RL (LOC	(a), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Carbon Dioxide	ND		0.500	0.139	1.00		
Carbon Monoxide	e ND		0.500	0.183	1.00		
Oxygen (+ Argon) ND		0.500	0.205	1.00		
Nitrogen	ND		0.500	0.477	1.00		

Method Blank	099-16-444-761	N/A	Air GC 65	N/A	04/04/18 180404L01 11:17
Comment(s): - Results were evaluate	ed to the MDL (DL), cond	entrations >= to t	ne MDL (DL) but < R	L (LOQ), if found, ar	e qualified with a "J" flag.
<u>Parameter</u>	Resul	<u>lt RL</u>	<u>MDI</u>	<u>DF</u>	Qualifiers
Carbon Dioxide	ND	0.5	00 0.13	1.00)
Carbon Monoxide	ND	0.5	00 0.18	33 1.00)
Oxygen (+ Argon)	ND	0.5	00 0.20	05 1.00)
Nitrogen	ND	0.5	00 0.47	77 1.00)

Page 1 of 35

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01361	18-04-0188-1-A	04/03/18 09:24	Air	GC/MS II	N/A	04/03/18 22:41	180403L02
Comment(s): - Results were evaluated to	o the MDL (DL), cond	centrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	!	<u>Qualifiers</u>
Acetone	12		500	2.9	10000		J
Benzyl Chloride	ND		15	0.49	10000		
Bromodichloromethane	ND		5.0	0.62	10000		
Bromoform	ND		5.0	0.81	10000		
Bromomethane	ND		5.0	1.4	10000		
2-Butanone	ND		15	4.3	10000		
Carbon Disulfide	ND		100	2.8	10000		
Carbon Tetrachloride	ND		5.0	0.62	10000	ı	
Chlorobenzene	ND		5.0	0.68	10000	ı	
Chloroethane	ND		5.0	2.4	10000		
Chloroform	ND		5.0	0.69	10000		
Chloromethane	ND		5.0	2.4	10000		
Dibromochloromethane	ND		5.0	0.55	10000		
Dichlorodifluoromethane	1.5		5.0	0.60	10000		J
1,1-Dichloroethane	ND		5.0	0.63	10000		
1,1-Dichloroethene	ND		5.0	2.0	10000		
1,2-Dibromoethane	ND		5.0	0.69	10000		
Dichlorotetrafluoroethane	ND		20	2.7	10000		
1,2-Dichlorobenzene	ND		5.0	0.53	10000		
1,2-Dichloroethane	ND		5.0	0.69	10000		
1,2-Dichloropropane	ND		5.0	1.9	10000		
1,3-Dichlorobenzene	ND		5.0	1.6	10000		
1,4-Dichlorobenzene	ND		5.0	0.67	10000		
c-1,3-Dichloropropene	ND		5.0	0.65	10000		
c-1,2-Dichloroethene	ND		5.0	0.87	10000		
t-1,2-Dichloroethene	ND		5.0	1.3	10000		
t-1,3-Dichloropropene	ND		10	0.69	10000		
Ethylbenzene	970		5.0	1.4	10000		
4-Ethyltoluene	ND		5.0	1.6	10000		
Hexachloro-1,3-Butadiene	ND		15	1.0	10000	ı	
2-Hexanone	ND		15	4.4	10000	ı	
Methyl-t-Butyl Ether (MTBE)	ND		20	1.5	10000	ı	
Methylene Chloride	ND		50	2.5	10000		
4-Methyl-2-Pentanone	ND		15	3.7	10000		

AECOM Date Received: 04/03/18 Work Order: 130 Robin Hill Road, Suite 100 18-04-0188 N/A Santa Barbara, CA 93117-3153 Preparation: Method: EPA TO-15M Units: ppm (v/v)

Pr 60

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601	Page 2 of 35
60566446.2018.1.0601	_

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
o-Xylene	ND	5.0	1.6	10000	
p/m-Xylene	ND	20	3.3	10000	
Styrene	0.94	15	0.64	10000	J
Tetrachloroethene	ND	5.0	0.67	10000	
Toluene	62	50	1.3	10000	
Trichloroethene	ND	5.0	0.69	10000	
Trichlorofluoromethane	ND	10	1.7	10000	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	15	0.70	10000	
1,1,1-Trichloroethane	ND	5.0	0.79	10000	
1,1,2-Trichloroethane	ND	5.0	1.8	10000	
1,3,5-Trimethylbenzene	ND	5.0	1.4	10000	
1,1,2,2-Tetrachloroethane	ND	10	1.4	10000	
1,2,4-Trimethylbenzene	ND	15	1.5	10000	
1,2,4-Trichlorobenzene	ND	20	1.2	10000	
Vinyl Acetate	ND	20	0.98	10000	
Vinyl Chloride	ND	5.0	2.2	10000	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	100	57-129			
1,2-Dichloroethane-d4	93	47-137			
Toluene-d8	102	78-156			

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01361	18-04-0188-1-A	04/03/18 09:24	Air	GC/MS II	N/A	04/04/18 19:48	180404L02

Comment(s):	- Results were evaluated to the MD	L (DL), concentration	s >= to the MDL (DL)	but < RL (LOQ),	f found, are qualifie	ed with a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Benzene		4200	40	6.8	80000	
<u>Surrogate</u>		Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluor	obenzene	97	57-129			
1,2-Dichloroeth	ane-d4	95	47-137			
Toluene-d8		101	78-156			

Santa Barbara, CA 93117-3153

Analytical Report

 AECOM
 Date Received:
 04/03/18

 130 Robin Hill Road, Suite 100
 Work Order:
 18-04-0188

Preparation: N/A

Method: EPA TO-15M

Units: ppm (v/v)

Units: ppm (v/v)
Amo Superfund Site, Los Angeles / Page 3 of 35

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Date/Time Collected Date/Time Analyzed Lab Sample Number Date Prepared QC Batch ID Client Sample Number Matrix Instrument 04/03/18 09:18 04/03/18 21:02 VSS01362 18-04-0188-2-A Air GC/MS II N/A 180403L02

Comment(s): - Results were evaluated to the MDL (D	L), concentrations >	= to the MDL (DL) bu	ut < RL (LOQ), if fou	nd, are qualified with	n a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Acetone	0.021	0.20	0.0011	4.00	J
Benzyl Chloride	ND	0.0060	0.00020	4.00	
Bromodichloromethane	ND	0.0020	0.00025	4.00	
Bromoform	ND	0.0020	0.00032	4.00	
Bromomethane	ND	0.0020	0.00055	4.00	
2-Butanone	ND	0.0060	0.0017	4.00	
Carbon Disulfide	ND	0.040	0.0011	4.00	
Carbon Tetrachloride	ND	0.0020	0.00025	4.00	
Chlorobenzene	ND	0.0020	0.00027	4.00	
Chloroethane	ND	0.0020	0.00096	4.00	
Chloroform	ND	0.0020	0.00028	4.00	
Chloromethane	ND	0.0020	0.00096	4.00	
Dibromochloromethane	ND	0.0020	0.00022	4.00	
Dichlorodifluoromethane	ND	0.0020	0.00024	4.00	
1,1-Dichloroethane	ND	0.0020	0.00025	4.00	
1,1-Dichloroethene	ND	0.0020	0.00080	4.00	
1,2-Dibromoethane	ND	0.0020	0.00028	4.00	
Dichlorotetrafluoroethane	ND	0.0080	0.0011	4.00	
1,2-Dichlorobenzene	ND	0.0020	0.00021	4.00	
1,2-Dichloroethane	ND	0.0020	0.00027	4.00	
1,2-Dichloropropane	ND	0.0020	0.00076	4.00	
1,3-Dichlorobenzene	ND	0.0020	0.00065	4.00	
1,4-Dichlorobenzene	ND	0.0020	0.00027	4.00	
c-1,3-Dichloropropene	ND	0.0020	0.00026	4.00	
c-1,2-Dichloroethene	ND	0.0020	0.00035	4.00	
t-1,2-Dichloroethene	ND	0.0020	0.00051	4.00	
t-1,3-Dichloropropene	ND	0.0040	0.00028	4.00	
4-Ethyltoluene	0.00098	0.0020	0.00064	4.00	J
Hexachloro-1,3-Butadiene	ND	0.0060	0.00041	4.00	
2-Hexanone	ND	0.0060	0.0018	4.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.0080	0.00061	4.00	
Methylene Chloride	ND	0.020	0.00099	4.00	
4-Methyl-2-Pentanone	ND	0.0060	0.0015	4.00	
o-Xylene	0.00098	0.0020	0.00063	4.00	J

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 4 of 35

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Toluene-d8

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
p/m-Xylene	0.0024	0.0080	0.0013	4.00	J
Styrene	0.0023	0.0060	0.00025	4.00	J
Tetrachloroethene	ND	0.0020	0.00027	4.00	
Toluene	0.029	0.020	0.00054	4.00	
Trichloroethene	ND	0.0020	0.00028	4.00	
Trichlorofluoromethane	ND	0.0040	0.00068	4.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.0060	0.00028	4.00	
1,1,1-Trichloroethane	ND	0.0020	0.00032	4.00	
1,1,2-Trichloroethane	ND	0.0020	0.00073	4.00	
1,3,5-Trimethylbenzene	ND	0.0020	0.00058	4.00	
1,1,2,2-Tetrachloroethane	ND	0.0040	0.00055	4.00	
1,2,4-Trimethylbenzene	0.0012	0.0060	0.00061	4.00	J
1,2,4-Trichlorobenzene	ND	0.0080	0.00050	4.00	
Vinyl Acetate	ND	0.0080	0.00039	4.00	
Vinyl Chloride	ND	0.0020	0.00089	4.00	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	99	57-129			
1,2-Dichloroethane-d4	92	47-137			

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01362	18-04-0188-2-A	04/03/18 09:18	Air	GC/MS II	N/A	04/03/18 21:51	180403L02
Comment(s): - Results were evaluated to	to the MDL (DL), cond	centrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	ı <u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Benzene	0.77		0.010	0.0017	20.0		
Ethylbenzene	1.3		0.010	0.0029	20.0		
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	95		57-129				
1,2-Dichloroethane-d4	95		47-137				
Toluene-d8	106		78-156				

78-156

102

Page 5 of 35

Santa Barbara, CA 93117-3153

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188

> Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

o-Xylene

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II
VSS01363	18-04-0188-3-A	04/03/18 09:15	Air	GC/MS II	N/A	04/03/18 23:30	180403L02
Comment(s): - Results were evalu	uated to the MDL (DL), con-	centrations >=	to the MDL (DL) but < RL (LC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	MDL	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Acetone	ND		20	0.11	400		
Benzyl Chloride	ND		0.60	0.020	400		
Bromodichloromethane	ND		0.20	0.025	400		
Bromoform	ND		0.20	0.032	400		
Bromomethane	ND		0.20	0.055	400		
2-Butanone	ND		0.60	0.17	400		
Carbon Disulfide	ND		4.0	0.11	400		
Carbon Tetrachloride	ND		0.20	0.025	400		
Chlorobenzene	ND		0.20	0.027	400		
Chloroethane	ND		0.20	0.096	400		
Chloroform	ND		0.20	0.028	400		
Chloromethane	ND		0.20	0.096	400		
Dibromochloromethane	ND		0.20	0.022	400		
Dichlorodifluoromethane	ND		0.20	0.024	400		
1,1-Dichloroethane	ND		0.20	0.025	400		
1,1-Dichloroethene	ND		0.20	0.080	400		
1,2-Dibromoethane	ND		0.20	0.028	400		
Dichlorotetrafluoroethane	ND		0.80	0.11	400		
1,2-Dichlorobenzene	ND		0.20	0.021	400		
1,2-Dichloroethane	ND		0.20	0.027	400		
1,2-Dichloropropane	ND		0.20	0.076	400		
1,3-Dichlorobenzene	ND		0.20	0.065	400		
1,4-Dichlorobenzene	ND		0.20	0.027	400		
c-1,3-Dichloropropene	ND		0.20	0.026	400		
c-1,2-Dichloroethene	ND		0.20	0.035	400		
t-1,2-Dichloroethene	ND		0.20	0.051	400		
t-1,3-Dichloropropene	ND		0.40	0.028	400		
4-Ethyltoluene	ND		0.20	0.064	400		
Hexachloro-1,3-Butadiene	ND		0.60	0.041	400		
2-Hexanone	ND		0.60	0.18	400		
Methyl-t-Butyl Ether (MTBE)	ND		0.80	0.061	400		
Methylene Chloride	ND		2.0	0.099	400		
4-Methyl-2-Pentanone	ND		0.60	0.15	400		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

ND

0.20

0.063

400

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 6 of 35

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Parameter	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
					Qualifiers
p/m-Xylene	ND	0.80	0.13	400	
Styrene	0.11	0.60	0.025	400	J
Tetrachloroethene	ND	0.20	0.027	400	
Toluene	4.6	2.0	0.054	400	
Trichloroethene	ND	0.20	0.028	400	
Trichlorofluoromethane	ND	0.40	0.068	400	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.60	0.028	400	
1,1,1-Trichloroethane	ND	0.20	0.032	400	
1,1,2-Trichloroethane	ND	0.20	0.073	400	
1,3,5-Trimethylbenzene	ND	0.20	0.058	400	
1,1,2,2-Tetrachloroethane	ND	0.40	0.055	400	
1,2,4-Trimethylbenzene	ND	0.60	0.061	400	
1,2,4-Trichlorobenzene	ND	0.80	0.050	400	
Vinyl Acetate	ND	0.80	0.039	400	
Vinyl Chloride	ND	0.20	0.089	400	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	98	57-129			
1,2-Dichloroethane-d4	95	47-137			
Toluene-d8	104	78-156			

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01363	18-04-0188-3-A	04/03/18 09:15	Air	GC/MS II	N/A	04/04/18 20:39	180404L02
Comment(s): - Results were eval	luated to the MDL (DL), con-	centrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Benzene	330		5.0	0.85	10000)	
Ethylbenzene	83		5.0	1.4	10000)	
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	99		57-129				
1,2-Dichloroethane-d4	96		47-137				
Toluene-d8	101		78-156				

Page 7 of 35

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153

Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Methyl-t-Butyl Ether (MTBE)

Methylene Chloride

o-Xylene

4-Methyl-2-Pentanone

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II
VSS01360	18-04-0188-4-A	04/02/18 13:35	Air	GC/MS II	N/A	04/04/18 00:22	180403L02
Comment(s): - Results were eval	uated to the MDL (DL), con-	centrations >=	to the MDL (I	DL) but < RL (LC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Acetone	0.22		5.0	0.029	100	J	
Benzyl Chloride	ND		0.15	0.0049	100		
Bromodichloromethane	ND		0.050	0.0062	100		
Bromoform	ND		0.050	0.0081	100		
Bromomethane	ND		0.050	0.014	100		
2-Butanone	ND		0.15	0.043	100		
Carbon Disulfide	ND		1.0	0.028	100		
Carbon Tetrachloride	ND		0.050	0.0062	100		
Chlorobenzene	ND		0.050	0.0068	100		
Chloroethane	ND		0.050	0.024	100		
Chloroform	ND		0.050	0.0069	100		
Chloromethane	ND		0.050	0.024	100		
Dibromochloromethane	ND		0.050	0.0055	100		
Dichlorodifluoromethane	0.01	5	0.050	0.0060	100	J	
1,1-Dichloroethane	ND		0.050	0.0063	100		
1,1-Dichloroethene	ND		0.050	0.020	100		
1,2-Dibromoethane	ND		0.050	0.0069	100		
Dichlorotetrafluoroethane	ND		0.20	0.027	100		
1,2-Dichlorobenzene	ND		0.050	0.0053	100		
I,2-Dichloroethane	ND		0.050	0.0069	100		
1,2-Dichloropropane	ND		0.050	0.019	100		
1,3-Dichlorobenzene	ND		0.050	0.016	100		
1,4-Dichlorobenzene	ND		0.050	0.0067	100		
c-1,3-Dichloropropene	ND		0.050	0.0065	100		
c-1,2-Dichloroethene	ND		0.050	0.0087	100		
-1,2-Dichloroethene	ND		0.050	0.013	100		
-1,3-Dichloropropene	ND		0.10	0.0069	100		
1-Ethyltoluene	ND		0.050	0.016	100		
Hexachloro-1,3-Butadiene	ND		0.15	0.010	100		
2-Hexanone	ND		0.15	0.044	100		

MDL: Method Detection Limit. RL: Reporting Limit. DF: Dilution Factor.

ND

ND

ND

ND

0.20

0.50

0.15

0.050

0.015

0.025

0.037

0.016

100

100

100

100

 AECOM
 Date Received:
 04/03/18

 130 Robin Hill Road, Suite 100
 Work Order:
 18-04-0188

 Santa Barbara, CA 93117-3153
 Preparation:
 N/A

 Method:
 EPA TO-15M

 Units:
 ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 8 of 35

Description	December	D.	MDI	DE	0
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
p/m-Xylene	ND	0.20	0.033	100	
Styrene	0.0080	0.15	0.0064	100	J
Tetrachloroethene	ND	0.050	0.0067	100	
Toluene	1.3	0.50	0.013	100	
Trichloroethene	ND	0.050	0.0069	100	
Trichlorofluoromethane	ND	0.10	0.017	100	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.15	0.0070	100	
1,1,1-Trichloroethane	ND	0.050	0.0079	100	
1,1,2-Trichloroethane	ND	0.050	0.018	100	
1,3,5-Trimethylbenzene	ND	0.050	0.014	100	
1,1,2,2-Tetrachloroethane	ND	0.10	0.014	100	
1,2,4-Trimethylbenzene	ND	0.15	0.015	100	
1,2,4-Trichlorobenzene	ND	0.20	0.012	100	
Vinyl Acetate	ND	0.20	0.0098	100	
Vinyl Chloride	ND	0.050	0.022	100	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	98	57-129			
1,2-Dichloroethane-d4	94	47-137			
Toluene-d8	103	78-156			

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
VSS01360	18-04-0188-4-A	04/02/18 13:35	Air	GC/MS II	N/A	04/04/18 17:21	180404L02	
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>	
Ethylbenzene	9.0		0.50	0.14	1000			
<u>Surrogate</u>	Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>				
1,4-Bromofluorobenzene	99		57-129					
1,2-Dichloroethane-d4	92		47-137					
Toluene-d8	104		78-156					

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153

Date Received: Work Order: Preparation: Method:

04/03/18 18-04-0188 N/A

EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 9 of 35

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
VSS01360	18-04-0188-4-A	04/02/18 13:35	Air	GC/MS II	N/A	04/04/18 18:10	180404L02	
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
<u>Parameter</u>	<u>Resu</u>	ı <u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>	
Benzene	81		1.0	0.17	2000			
Surrogate	Rec.	(%)	Control Limits	<u>Qualifiers</u>				
1,4-Bromofluorobenzene	98	:	57-129					
1,2-Dichloroethane-d4	93		47-137					
Toluene-d8	99		78-156					

Santa Barbara, CA 93117-3153

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188

> Preparation: N/A Method: EPA TO-15M

> Units: ppm (v/v) Page 10 of 35

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01358	18-04-0188-5-A	04/02/18 16:06	Air	GC/MS II	N/A	04/04/18 01:11	180403L02
Comment(s): - Results were evaluated to	o the MDL (DL), conc	entrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resul</u>	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Acetone	ND		40	0.23	800		
Benzyl Chloride	ND		1.2	0.039	800		
Bromodichloromethane	ND		0.40	0.050	800		
Bromoform	ND		0.40	0.065	800		
Bromomethane	ND		0.40	0.11	800		
2-Butanone	ND		1.2	0.35	800		
Carbon Disulfide	ND		8.0	0.22	800		
Carbon Tetrachloride	ND		0.40	0.049	800		
Chlorobenzene	ND		0.40	0.054	800		
Chloroethane	ND		0.40	0.19	800		
Chloroform	ND		0.40	0.055	800		
Chloromethane	ND		0.40	0.19	800		
Dibromochloromethane	ND		0.40	0.044	800		
Dichlorodifluoromethane	ND		0.40	0.048	800		
1,1-Dichloroethane	ND		0.40	0.050	800		
1,1-Dichloroethene	ND		0.40	0.16	800		
1,2-Dibromoethane	ND		0.40	0.055	800		
Dichlorotetrafluoroethane	ND		1.6	0.21	800		
1,2-Dichlorobenzene	ND		0.40	0.042	800		
1,2-Dichloroethane	ND		0.40	0.055	800		
1,2-Dichloropropane	ND		0.40	0.15	800		
1,3-Dichlorobenzene	ND		0.40	0.13	800		
1,4-Dichlorobenzene	ND		0.40	0.054	800		
c-1,3-Dichloropropene	ND		0.40	0.052	800		
c-1,2-Dichloroethene	ND		0.40	0.070	800		
t-1,2-Dichloroethene	ND		0.40	0.10	800		
t-1,3-Dichloropropene	ND		0.80	0.055	800		
4-Ethyltoluene	ND		0.40	0.13	800		
Hexachloro-1,3-Butadiene	ND		1.2	0.082	800		
2-Hexanone	ND		1.2	0.35	800		
Methyl-t-Butyl Ether (MTBE)	ND		1.6	0.12	800		
Methylene Chloride	ND		4.0	0.20	800		
4-Methyl-2-Pentanone	ND		1.2	0.30	800		
o-Xylene	ND		0.40	0.13	800		

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 11 of 35

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
p/m-Xylene	ND	1.6	0.27	800	
Styrene	0.092	1.2	0.051	800	J
Tetrachloroethene	ND	0.40	0.054	800	
Toluene	5.9	4.0	0.11	800	
Trichloroethene	ND	0.40	0.056	800	
Trichlorofluoromethane	ND	0.80	0.14	800	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	1.2	0.056	800	
1,1,1-Trichloroethane	ND	0.40	0.063	800	
1,1,2-Trichloroethane	ND	0.40	0.15	800	
1,3,5-Trimethylbenzene	ND	0.40	0.12	800	
1,1,2,2-Tetrachloroethane	ND	0.80	0.11	800	
1,2,4-Trimethylbenzene	ND	1.2	0.12	800	
1,2,4-Trichlorobenzene	ND	1.6	0.099	800	
Vinyl Acetate	ND	1.6	0.078	800	
Vinyl Chloride	ND	0.40	0.18	800	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	99	57-129			
1,2-Dichloroethane-d4	94	47-137			
Toluene-d8	104	78-156			

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01358	18-04-0188-5-A	04/02/18 16:06	Air	GC/MS II	N/A	04/04/18 19:00	180404L02
Comment(s): - Results were eval	uated to the MDL (DL), con-	centrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Benzene	580		5.0	0.85	10000)	
Ethylbenzene	180		5.0	1.4	10000)	
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	97		57-129				
1,2-Dichloroethane-d4	94		47-137				
Toluene-d8	101		78-156				

04/03/18 **AECOM** Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153

Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 Page 12 of 35

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01359	18-04-0188-6-A	04/02/18 17:07	Air	GC/MS II	N/A	04/04/18 02:48	180403L02
Comment(s): - Results were evaluated to	the MDL (DL), cond	entrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u>	<u>ualifiers</u>
Acetone	ND		5.0	0.029	100		
Benzyl Chloride	ND		0.15	0.0049	100		
Bromodichloromethane	ND		0.050	0.0062	100		
Bromoform	ND		0.050	0.0081	100		
Bromomethane	ND		0.050	0.014	100		
2-Butanone	0.048	}	0.15	0.043	100	J	
Carbon Disulfide	0.036	;	1.0	0.028	100	J	
Carbon Tetrachloride	ND		0.050	0.0062	100		
Chlorobenzene	ND		0.050	0.0068	100		
Chloroethane	ND		0.050	0.024	100		
Chloroform	ND		0.050	0.0069	100		
Chloromethane	ND		0.050	0.024	100		
Dibromochloromethane	ND		0.050	0.0055	100		
Dichlorodifluoromethane	0.015	;	0.050	0.0060	100	J	
1,1-Dichloroethane	ND		0.050	0.0063	100		
1,1-Dichloroethene	ND		0.050	0.020	100		
1,2-Dibromoethane	ND		0.050	0.0069	100		
Dichlorotetrafluoroethane	ND		0.20	0.027	100		
1,2-Dichlorobenzene	ND		0.050	0.0053	100		
1,2-Dichloroethane	ND		0.050	0.0069	100		
1,2-Dichloropropane	ND		0.050	0.019	100		
1,3-Dichlorobenzene	ND		0.050	0.016	100		
1,4-Dichlorobenzene	ND		0.050	0.0067	100		
c-1,3-Dichloropropene	ND		0.050	0.0065	100		
c-1,2-Dichloroethene	ND		0.050	0.0087	100		
t-1,2-Dichloroethene	ND		0.050	0.013	100		
t-1,3-Dichloropropene	ND		0.10	0.0069	100		
4-Ethyltoluene	0.11		0.050	0.016	100		
Hexachloro-1,3-Butadiene	ND		0.15	0.010	100		
2-Hexanone	ND		0.15	0.044	100		
Methyl-t-Butyl Ether (MTBE)	ND		0.20	0.015	100		
Methylene Chloride	ND		0.50	0.025	100		
4-Methyl-2-Pentanone	ND		0.15	0.037	100		
o-Xylene	0.17		0.050	0.016	100		

Date/Time

Analyzed

QC Batch ID

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 13 of 35

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
p/m-Xylene	0.50	0.20	0.033	100	
Styrene	0.77	0.15	0.0064	100	
Tetrachloroethene	ND	0.050	0.0067	100	
Trichloroethene	ND	0.050	0.0069	100	
Trichlorofluoromethane	ND	0.10	0.017	100	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.15	0.0070	100	
1,1,1-Trichloroethane	ND	0.050	0.0079	100	
1,1,2-Trichloroethane	ND	0.050	0.018	100	
1,3,5-Trimethylbenzene	ND	0.050	0.014	100	
1,1,2,2-Tetrachloroethane	ND	0.10	0.014	100	
1,2,4-Trimethylbenzene	ND	0.15	0.015	100	
1,2,4-Trichlorobenzene	ND	0.20	0.012	100	
Vinyl Acetate	ND	0.20	0.0098	100	
Vinyl Chloride	ND	0.050	0.022	100	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	103	57-129			
1,2-Dichloroethane-d4	94	47-137			
Toluene-d8	112	78-156			

VSS01359		18-04-0188-6-A	04/02/18 17:07	Air	GC/MS II	N/A	04/04/18 23:16	180404L02
Comment(s):	- Results were evaluated	to the MDL (DL), cond	centrations >	= to the MDL (DL) but < RL (LC	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Toluene		25		10	0.27	2000		
<u>Surrogate</u>		Rec.	<u>(%)</u>	Control Limits	Qualifier	<u>S</u>		
1,4-Bromofluor	obenzene	100		57-129				
1,2-Dichloroeth	ane-d4	97		47-137				
Toluene-d8		103		78-156				

Matrix

Instrument

Date

Prepared

Date/Time

Collected

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

Lab Sample

Number

04/03/18 **AECOM** Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 Page 14 of 35

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01359	18-04-0188-6-A	04/02/18 17:07	Air	GC/MS II	N/A	04/04/18 01:58	180403L02
Comment(s): - Results were evaluated	to the MDL (DL), con-	centrations >=	to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
Benzene	3700		100	17	2000	00	
Ethylbenzene	930		100	29	2000	00	
Surrogate	Rec.	(%)	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	97		57-129				
1,2-Dichloroethane-d4	94		47-137				
Toluene-d8	100		78-156				

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

18-04-0188 N/A

04/03/18

Method: Units:

EPA TO-15M ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 15 of 35

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01357	18-04-0188-7-A	04/02/18 13:39	Air	GC/MS ZZ	N/A	04/04/18 23:44	180404L02
Comment(s): - Results were evaluated t	o the MDL (DL), cond	centrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Acetone	34		2500	14	50000		J
Benzyl Chloride	ND		75	2.5	50000		
Bromodichloromethane	ND		25	3.1	50000		
Bromoform	ND		25	4.0	50000		
Bromomethane	ND		25	6.9	50000		
2-Butanone	ND		75	22	50000		
Carbon Disulfide	ND		500	14	50000		
Carbon Tetrachloride	ND		25	3.1	50000		
Chlorobenzene	ND		25	3.4	50000		
Chloroethane	ND		25	12	50000		
Chloroform	ND		25	3.5	50000		
Chloromethane	ND		25	12	50000		
Dibromochloromethane	ND		25	2.7	50000		
Dichlorodifluoromethane	ND		25	3.0	50000		
1,1-Dichloroethane	ND		25	3.2	50000		
1,1-Dichloroethene	ND		25	9.9	50000		
1,2-Dibromoethane	ND		25	3.4	50000		
Dichlorotetrafluoroethane	ND		100	13	50000		
1,2-Dichlorobenzene	ND		25	2.7	50000		
1,2-Dichloroethane	ND		25	3.4	50000		
1,2-Dichloropropane	ND		25	9.5	50000		
1,3-Dichlorobenzene	ND		25	8.1	50000		
1,4-Dichlorobenzene	ND		25	3.4	50000		
c-1,3-Dichloropropene	ND		25	3.3	50000		
c-1,2-Dichloroethene	ND		25	4.4	50000		
t-1,2-Dichloroethene	ND		25	6.4	50000		
t-1,3-Dichloropropene	ND		50	3.5	50000		
Ethylbenzene	2700		25	7.2	50000		
4-Ethyltoluene	ND		25	7.9	50000		
Hexachloro-1,3-Butadiene	ND		75	5.1	50000		
2-Hexanone	ND		75	22	50000		
Methyl-t-Butyl Ether (MTBE)	ND		100	7.6	50000		
Methylene Chloride	ND		250	12	50000		
4-Methyl-2-Pentanone	ND		75	19	50000		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Page 16 of 35

Analytical Report

04/03/18 **AECOM** Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Parameter	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
o-Xylene	ND	25	7.8	50000	
p/m-Xylene	ND	100	17	50000	
Styrene	ND	75	3.2	50000	
Tetrachloroethene	ND	25	3.4	50000	
Toluene	100	250	6.7	50000	J
Trichloroethene	ND	25	3.5	50000	
Trichlorofluoromethane	ND	50	8.5	50000	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	75	3.5	50000	
1,1,1-Trichloroethane	ND	25	3.9	50000	
1,1,2-Trichloroethane	ND	25	9.1	50000	
1,3,5-Trimethylbenzene	ND	25	7.2	50000	
1,1,2,2-Tetrachloroethane	ND	50	6.9	50000	
1,2,4-Trimethylbenzene	ND	75	7.7	50000	
1,2,4-Trichlorobenzene	ND	100	6.2	50000	
Vinyl Acetate	ND	100	4.9	50000	
Vinyl Chloride	ND	25	11	50000	
_					
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	100	57-129			
1,2-Dichloroethane-d4	101	47-137			
Toluene-d8	99	78-156			

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01357	18-04-0188-7-A	04/02/18 13:39	Air	GC/MS ZZ	N/A	04/05/18 15:15	180405L02

Comment(s): - Re	esults were evaluated to the MDL (D	L), concentrations >	= to the MDL (DL) be	ut < RL (LOQ), if for	und, are qualified wi	th a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Benzene		7100	100	17	200000	
<u>Surrogate</u>		Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenze	ene	100	57-129			
1,2-Dichloroethane-de	4	100	47-137			
Toluene-d8		96	78-156			

Page 17 of 35

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01356	18-04-0188-8-A	04/02/18 17:01	Air	GC/MS ZZ	N/A	04/05/18 00:28	180404L02
Comment(s): - Results were evaluated t	o the MDL (DL), cond	centrations >= to	o the MDL	(DL) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u> <u>F</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
Acetone	ND	2	200	1.1	4000		
Benzyl Chloride	ND	6	6.0	0.20	4000		
Bromodichloromethane	ND	2	2.0	0.25	4000		
Bromoform	ND	2	2.0	0.32	4000		
Bromomethane	ND	2	2.0	0.55	4000		
2-Butanone	ND	6	6.0	1.7	4000		
Carbon Disulfide	ND	2	40	1.1	4000		
Carbon Tetrachloride	ND	2	2.0	0.25	4000		
Chlorobenzene	ND	2	2.0	0.27	4000		
Chloroethane	ND	2	2.0	0.96	4000		
Chloroform	ND	2	2.0	0.28	4000		
Chloromethane	ND	2	2.0	0.96	4000		
Dibromochloromethane	ND	2	2.0	0.22	4000		
Dichlorodifluoromethane	ND	2	2.0	0.24	4000		
1,1-Dichloroethane	ND	2	2.0	0.25	4000		
1,1-Dichloroethene	ND	2	2.0	0.80	4000		
1,2-Dibromoethane	ND	2	2.0	0.28	4000		
Dichlorotetrafluoroethane	ND	8	3.0	1.1	4000		
1,2-Dichlorobenzene	ND	2	2.0	0.21	4000		
1,2-Dichloroethane	ND	2	2.0	0.27	4000		
1,2-Dichloropropane	ND	2	2.0	0.76	4000		
1,3-Dichlorobenzene	ND	2	2.0	0.65	4000		
1,4-Dichlorobenzene	ND	2	2.0	0.27	4000		
c-1,3-Dichloropropene	ND	2	2.0	0.26	4000		
c-1,2-Dichloroethene	ND	2	2.0	0.35	4000		
t-1,2-Dichloroethene	ND	2	2.0	0.51	4000		
t-1,3-Dichloropropene	ND	2	4.0	0.28	4000		
Ethylbenzene	300	2	2.0	0.58	4000		
4-Ethyltoluene	ND	2	2.0	0.64	4000		
Hexachloro-1,3-Butadiene	ND	6	6.0	0.41	4000		
2-Hexanone	ND	6	6.0	1.8	4000		
Methyl-t-Butyl Ether (MTBE)	ND	8	3.0	0.61	4000		
Methylene Chloride	ND	2	20	0.99	4000		
4-Methyl-2-Pentanone	ND	6	6.0	1.5	4000		

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

QC Batch ID

Date/Time

Analyzed

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 18 of 35

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number

Parameter	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
o-Xylene	ND	2.0	0.63	4000	
p/m-Xylene	ND	8.0	1.3	4000	
Styrene	ND	6.0	0.25	4000	
Tetrachloroethene	ND	2.0	0.27	4000	
Toluene	10	20	0.54	4000	J
Trichloroethene	ND	2.0	0.28	4000	
Trichlorofluoromethane	ND	4.0	0.68	4000	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	6.0	0.28	4000	
1,1,1-Trichloroethane	ND	2.0	0.32	4000	
1,1,2-Trichloroethane	ND	2.0	0.73	4000	
1,3,5-Trimethylbenzene	ND	2.0	0.58	4000	
1,1,2,2-Tetrachloroethane	ND	4.0	0.55	4000	
1,2,4-Trimethylbenzene	ND	6.0	0.61	4000	
1,2,4-Trichlorobenzene	ND	8.0	0.50	4000	
Vinyl Acetate	ND	8.0	0.39	4000	
Vinyl Chloride	ND	2.0	0.89	4000	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	100	57-129			
1,2-Dichloroethane-d4	102	47-137			
Toluene-d8	100	78-156			
TOIGOTIO GO	100	70-100			

VSS01356		18-04-0188-8-A	04/02/18 17:01	Air	GC/MS ZZ	N/A	04/05/18 16:00	180405L02
Comment(s):	- Results were evaluated to	the MDL (DL), cond	entrations >	= to the MDL (D	L) but < RL (LOC), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Resul	<u> t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Benzene		710		10	1.7	20000		
Curronata		Dec	(0/)	Control Limito	Qualifiara			
<u>Surrogate</u>		Rec.	<u>(%)</u>	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorol	benzene	101		57-129				
1,2-Dichloroetha	ne-d4	101		47-137				
Toluene-d8		95		78-156				

Matrix

Instrument

Date

Prepared

Date/Time

Collected

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

Lab Sample

Number

AECOM Date Received: 130 Robin Hill Road, Suite 100 Work Order: Santa Barbara, CA 93117-3153

18-04-0188 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 19 of 35

04/03/18

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01355	18-04-0188-9-A	04/02/18 12:55	Air	GC/MS ZZ	N/A	04/05/18 01:12	180404L02
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Acetone	34		2000	11	40000		J
Benzyl Chloride	ND		60	2.0	40000		
Bromodichloromethane	ND		20	2.5	40000		
Bromoform	ND		20	3.2	40000		
Bromomethane	ND		20	5.5	40000		
2-Butanone	ND		60	17	40000		
Carbon Disulfide	ND		400	11	40000		
Carbon Tetrachloride	ND		20	2.5	40000		
Chlorobenzene	ND		20	2.7	40000		
Chloroethane	ND		20	9.6	40000		
Chloroform	ND		20	2.8	40000		
Chloromethane	ND		20	9.6	40000		
Dibromochloromethane	ND		20	2.2	40000		
Dichlorodifluoromethane	ND		20	2.4	40000		
1,1-Dichloroethane	ND		20	2.5	40000		
1,1-Dichloroethene	ND		20	8.0	40000		
1,2-Dibromoethane	ND		20	2.8	40000		
Dichlorotetrafluoroethane	ND		80	11	40000		
1,2-Dichlorobenzene	ND		20	2.1	40000		
1,2-Dichloroethane	ND		20	2.7	40000		
1,2-Dichloropropane	ND		20	7.6	40000		
1,3-Dichlorobenzene	ND		20	6.5	40000		
1,4-Dichlorobenzene	ND		20	2.7	40000		
c-1,3-Dichloropropene	ND		20	2.6	40000		
c-1,2-Dichloroethene	ND		20	3.5	40000		
t-1,2-Dichloroethene	ND		20	5.1	40000		
t-1,3-Dichloropropene	ND		40	2.8	40000		
Ethylbenzene	1700		20	5.8	40000		
4-Ethyltoluene	ND		20	6.4	40000		
Hexachloro-1,3-Butadiene	ND		60	4.1	40000		
2-Hexanone	ND		60	18	40000		
Methyl-t-Butyl Ether (MTBE)	ND		80	6.1	40000		
Methylene Chloride	ND		200	9.9	40000		
4-Methyl-2-Pentanone	ND		60	15	40000		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Page 20 of 35

Analytical Report

04/03/18 **AECOM** Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
o-Xylene	ND	20	6.3	40000	
p/m-Xylene	ND	80	13	40000	
Styrene	ND	60	2.5	40000	
Tetrachloroethene	ND	20	2.7	40000	
Toluene	67	200	5.4	40000	J
Trichloroethene	ND	20	2.8	40000	
Trichlorofluoromethane	ND	40	6.8	40000	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	60	2.8	40000	
1,1,1-Trichloroethane	ND	20	3.2	40000	
1,1,2-Trichloroethane	ND	20	7.3	40000	
1,3,5-Trimethylbenzene	ND	20	5.8	40000	
1,1,2,2-Tetrachloroethane	ND	40	5.5	40000	
1,2,4-Trimethylbenzene	ND	60	6.1	40000	
1,2,4-Trichlorobenzene	ND	80	5.0	40000	
Vinyl Acetate	ND	80	3.9	40000	
Vinyl Chloride	ND	20	8.9	40000	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	101	57-129			
1,2-Dichloroethane-d4	103	47-137			
Toluene-d8	99	78-156			

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01355	18-04-0188-9-A	04/02/18 12:55	Air	GC/MS ZZ	N/A	04/05/18 16:44	180405L02

Comment(s):	 Results were evaluated to the MDL (I 	DL), concentrations	>= to the MDL (DL) b	out < RL (LOQ), if	found, are qualified	with a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Benzene		5400	80	14	160000	
<u>Surrogate</u>		Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluoro	bbenzene	100	57-129			
1,2-Dichloroetha	ane-d4	101	47-137			
Toluene-d8		94	78-156			

04/03/18

N/A

18-04-0188

Page 21 of 35

Analytical Report

AECOM Date Received: 130 Robin Hill Road, Suite 100 Work Order: Santa Barbara, CA 93117-3153 Preparation:

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01354	18-04-0188-10-A	04/02/18 14:53	Air	GC/MS ZZ	N/A	04/05/18 01:57	180404L02
Comment(s): - Results were evaluated t	to the MDL (DL), cond	entrations >=	to the MDL ((DL) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
Acetone	ND		120	0.72	2500		
Benzyl Chloride	ND		3.8	0.12	2500		
Bromodichloromethane	ND		1.2	0.15	2500		
Bromoform	ND		1.2	0.20	2500		
Bromomethane	ND		1.2	0.35	2500		
2-Butanone	ND		3.8	1.1	2500		
Carbon Disulfide	ND		25	0.70	2500		
Carbon Tetrachloride	ND		1.2	0.15	2500		
Chlorobenzene	ND		1.2	0.17	2500		
Chloroethane	ND		1.2	0.60	2500		
Chloroform	ND		1.2	0.17	2500		
Chloromethane	ND		1.2	0.60	2500		
Dibromochloromethane	ND		1.2	0.14	2500		
Dichlorodifluoromethane	ND		1.2	0.15	2500		
1,1-Dichloroethane	ND		1.2	0.16	2500		
1,1-Dichloroethene	ND		1.2	0.50	2500		
1,2-Dibromoethane	ND		1.2	0.17	2500		
Dichlorotetrafluoroethane	ND		5.0	0.66	2500		
1,2-Dichlorobenzene	ND		1.2	0.13	2500		
1,2-Dichloroethane	ND		1.2	0.17	2500		
1,2-Dichloropropane	ND		1.2	0.48	2500		
1,3-Dichlorobenzene	ND		1.2	0.40	2500		
1,4-Dichlorobenzene	ND		1.2	0.17	2500		
c-1,3-Dichloropropene	ND		1.2	0.16	2500		
c-1,2-Dichloroethene	ND		1.2	0.22	2500		
t-1,2-Dichloroethene	ND		1.2	0.32	2500		
t-1,3-Dichloropropene	ND		2.5	0.17	2500		
Ethylbenzene	47		1.2	0.36	2500		
4-Ethyltoluene	ND		1.2	0.40	2500		
Hexachloro-1,3-Butadiene	ND		3.8	0.26	2500		
2-Hexanone	ND		3.8	1.1	2500		
Methyl-t-Butyl Ether (MTBE)	ND		5.0	0.38	2500		
Methylene Chloride	ND		12	0.62	2500		
4-Methyl-2-Pentanone	ND		3.8	0.93	2500		

Page 22 of 35

Date/Time

Analyzed

QC Batch ID

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
o-Xylene	ND	1.2	0.39	2500	
p/m-Xylene	ND	5.0	0.83	2500	
Styrene	ND	3.8	0.16	2500	
Tetrachloroethene	ND	1.2	0.17	2500	
Toluene	3.2	12	0.34	2500	J
Trichloroethene	ND	1.2	0.17	2500	
Trichlorofluoromethane	ND	2.5	0.43	2500	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	3.8	0.18	2500	
1,1,1-Trichloroethane	ND	1.2	0.20	2500	
1,1,2-Trichloroethane	ND	1.2	0.46	2500	
1,3,5-Trimethylbenzene	ND	1.2	0.36	2500	
1,1,2,2-Tetrachloroethane	ND	2.5	0.34	2500	
1,2,4-Trimethylbenzene	ND	3.8	0.38	2500	
1,2,4-Trichlorobenzene	ND	5.0	0.31	2500	
Vinyl Acetate	ND	5.0	0.24	2500	
Vinyl Chloride	ND	1.2	0.56	2500	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	100	57-129			
1,2-Dichloroethane-d4	104	47-137			
Toluene-d8	99	78-156			

VSS01354		18-04-0188-10-A	04/02/18 14:53	Air	GC/MS ZZ	N/A	04/05/18 17:33	180405L02
Comment(s):	- Results were evaluated t	o the MDL (DL), cond	entrations >	= to the MDL (D	L) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>		Resul	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
Benzene		380		5.0	0.85	10000		
Surrogate		Rec.	<u>(%)</u>	Control Limits	Qualifiers			
1,4-Bromofluorob	penzene	110		57-129				
1,2-Dichloroethar	ne-d4	103		47-137				
Toluene-d8		97		78-156				

Matrix

Instrument

Date

Prepared

Date/Time

Collected

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

Lab Sample

Number

04/03/18

N/A

18-04-0188

Page 23 of 35

Analytical Report

AECOM Date Received: 130 Robin Hill Road, Suite 100 Work Order: Santa Barbara, CA 93117-3153 Preparation:

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

4-Methyl-2-Pentanone

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01353	18-04-0188-11-A	04/02/18 14:50	Air	GC/MS ZZ	N/A	04/05/18 02:41	180404L02
Comment(s): - Results were evalu	uated to the MDL (DL), cond	entrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	MDL	<u>DF</u>	2	<u>Qualifiers</u>
Acetone	36		3100	18	62500	J	
Benzyl Chloride	ND		94	3.1	62500		
Bromodichloromethane	ND		31	3.9	62500		
Bromoform	ND		31	5.1	62500		
Bromomethane	ND		31	8.7	62500		
2-Butanone	ND		94	27	62500		
Carbon Disulfide	ND		620	17	62500		
Carbon Tetrachloride	ND		31	3.9	62500		
Chlorobenzene	ND		31	4.2	62500		
Chloroethane	ND		31	15	62500		
Chloroform	ND		31	4.3	62500		
Chloromethane	ND		31	15	62500		
Dibromochloromethane	ND		31	3.4	62500		
Dichlorodifluoromethane	ND		31	3.7	62500		
1,1-Dichloroethane	ND		31	3.9	62500		
1,1-Dichloroethene	ND		31	12	62500		
1,2-Dibromoethane	ND		31	4.3	62500		
Dichlorotetrafluoroethane	ND		120	17	62500		
1,2-Dichlorobenzene	ND		31	3.3	62500		
1,2-Dichloroethane	ND		31	4.3	62500		
1,2-Dichloropropane	ND		31	12	62500		
1,3-Dichlorobenzene	ND		31	10	62500		
1,4-Dichlorobenzene	ND		31	4.2	62500		
c-1,3-Dichloropropene	ND		31	4.1	62500		
c-1,2-Dichloroethene	ND		31	5.5	62500		
t-1,2-Dichloroethene	ND		31	8.0	62500		
t-1,3-Dichloropropene	ND		62	4.3	62500		
Ethylbenzene	3200		31	9.1	62500		
4-Ethyltoluene	ND		31	9.9	62500		
Hexachloro-1,3-Butadiene	ND		94	6.4	62500		
2-Hexanone	ND		94	27	62500		
Methyl-t-Butyl Ether (MTBE)	ND		120	9.5	62500		
Methylene Chloride	ND		310	15	62500		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

ND

94

23

62500

Page 24 of 35

Analytical Report

04/03/18 **AECOM** Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Parameter	Result	<u>RL</u>	MDL	<u>DF</u>	Qualifiers
o-Xylene	ND	31	9.8	62500	Quainers
	ND	120	21	62500	
p/m-Xylene					
Styrene	ND	94	4.0	62500	
Tetrachloroethene	ND	31	4.2	62500	
Toluene	110	310	8.4	62500	J
Trichloroethene	ND	31	4.3	62500	
Trichlorofluoromethane	ND	62	11	62500	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	94	4.4	62500	
1,1,1-Trichloroethane	ND	31	4.9	62500	
1,1,2-Trichloroethane	ND	31	11	62500	
1,3,5-Trimethylbenzene	ND	31	9.1	62500	
1,1,2,2-Tetrachloroethane	ND	62	8.6	62500	
1,2,4-Trimethylbenzene	ND	94	9.6	62500	
1,2,4-Trichlorobenzene	ND	120	7.8	62500	
Vinyl Acetate	ND	120	6.1	62500	
Vinyl Chloride	ND	31	14	62500	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	101	57-129			
1,2-Dichloroethane-d4	104	47-137			
Toluene-d8	99	78-156			

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01353	18-04-0188-11-A	04/02/18 14:50	Air	GC/MS ZZ	N/A	04/05/18 18:17	180405L02

Comment(s):	Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.										
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers					
Benzene		7800	120	21	250000						
<u>Surrogate</u>		Rec. (%)	Control Limits	<u>Qualifiers</u>							
1,4-Bromofluoro	benzene	100	57-129								
1,2-Dichloroetha	ne-d4	102	47-137								
Toluene-d8		96	78-156								

Page 25 of 35

04/03/18

N/A

Analytical Report

AECOM Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation:

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01352	18-04-0188-12-A	04/02/18 13:01	Air	GC/MS ZZ	N/A	04/05/18 04:10	180404L02
Comment(s): - Results were evaluated to	o the MDL (DL), cond	entrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Acetone	0.42		16	0.092	320	J	
Benzyl Chloride	ND		0.48	0.016	320		
Bromodichloromethane	ND		0.16	0.020	320		
Bromoform	ND		0.16	0.026	320		
Bromomethane	ND		0.16	0.044	320		
2-Butanone	ND		0.48	0.14	320		
Carbon Disulfide	ND		3.2	0.089	320		
Carbon Tetrachloride	ND		0.16	0.020	320		
Chlorobenzene	ND		0.16	0.022	320		
Chloroethane	ND		0.16	0.077	320		
Chloroform	ND		0.16	0.022	320		
Chloromethane	ND		0.16	0.077	320		
Dibromochloromethane	ND		0.16	0.018	320		
Dichlorodifluoromethane	ND		0.16	0.019	320		
1,1-Dichloroethane	ND		0.16	0.020	320		
1,1-Dichloroethene	ND		0.16	0.064	320		
1,2-Dibromoethane	ND		0.16	0.022	320		
Dichlorotetrafluoroethane	ND		0.64	0.085	320		
1,2-Dichlorobenzene	ND		0.16	0.017	320		
1,2-Dichloroethane	ND		0.16	0.022	320		
1,2-Dichloropropane	ND		0.16	0.061	320		
1,3-Dichlorobenzene	ND		0.16	0.052	320		
1,4-Dichlorobenzene	ND		0.16	0.022	320		
c-1,3-Dichloropropene	ND		0.16	0.021	320		
c-1,2-Dichloroethene	ND		0.16	0.028	320		
t-1,2-Dichloroethene	ND		0.16	0.041	320		
t-1,3-Dichloropropene	ND		0.32	0.022	320		
Ethylbenzene	11		0.16	0.046	320		
4-Ethyltoluene	ND		0.16	0.051	320		
Hexachloro-1,3-Butadiene	ND		0.48	0.033	320		
2-Hexanone	ND		0.48	0.14	320		
Methyl-t-Butyl Ether (MTBE)	ND		0.64	0.049	320		
Methylene Chloride	ND		1.6	0.079	320		
4-Methyl-2-Pentanone	ND		0.48	0.12	320		

Page 26 of 35

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Parameter	Result	<u>RL</u>	MDL	<u>DF</u>	<u>Qualifiers</u>
o-Xylene	ND	0.16	0.050	320	<u>Qualificio</u>
p/m-Xylene	ND	0.64	0.11	320	
Styrene	ND	0.48	0.020	320	
Tetrachloroethene	ND	0.16	0.022	320	
Toluene	0.90	1.6	0.043	320	J
Trichloroethene	ND	0.16	0.022	320	
Trichlorofluoromethane	ND	0.32	0.055	320	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.48	0.022	320	
1,1,1-Trichloroethane	ND	0.16	0.025	320	
1,1,2-Trichloroethane	ND	0.16	0.058	320	
1,3,5-Trimethylbenzene	ND	0.16	0.046	320	
1,1,2,2-Tetrachloroethane	ND	0.32	0.044	320	
1,2,4-Trimethylbenzene	0.060	0.48	0.049	320	J
1,2,4-Trichlorobenzene	ND	0.64	0.040	320	
Vinyl Acetate	ND	0.64	0.031	320	
Vinyl Chloride	ND	0.16	0.071	320	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	100	57-129			
1,2-Dichloroethane-d4	99	47-137			
Toluene-d8	99	78-156			

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01352		18-04-0188-12-A	04/02/18 13:01	Air	GC/MS HH	N/A	04/05/18 15:57	180405L02
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
5 .		Б.			MDI	5.5	_	1.6.

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Benzene	120	1.2	0.21	2500	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	111	57-129			
1,2-Dichloroethane-d4	92	47-137			
Toluene-d8	98	78-156			

04/03/18

N/A

18-04-0188

Page 27 of 35

Analytical Report

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Methylene Chloride

4-Methyl-2-Pentanone

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01351	18-04-0188-13-A	04/02/18 10:35	Air	GC/MS ZZ	N/A	04/05/18 04:53	180404L02
Comment(s): - Results were evaluated	uated to the MDL (DL), cond	centrations >=	to the MDL (DL) but < RL (LC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Acetone	40		2500	14	50000	J	J
Benzyl Chloride	ND		75	2.5	50000	1	
Bromodichloromethane	ND		25	3.1	50000	1	
Bromoform	ND		25	4.0	50000)	
Bromomethane	ND		25	6.9	50000	1	
2-Butanone	ND		75	22	50000)	
Carbon Disulfide	ND		500	14	50000)	
Carbon Tetrachloride	ND		25	3.1	50000)	
Chlorobenzene	ND		25	3.4	50000)	
Chloroethane	ND		25	12	50000)	
Chloroform	ND		25	3.5	50000)	
Chloromethane	ND		25	12	50000)	
Dibromochloromethane	ND		25	2.7	50000)	
Dichlorodifluoromethane	ND		25	3.0	50000)	
1,1-Dichloroethane	ND		25	3.2	50000)	
1,1-Dichloroethene	ND		25	9.9	50000	1	
1,2-Dibromoethane	ND		25	3.4	50000	1	
Dichlorotetrafluoroethane	ND		100	13	50000)	
1,2-Dichlorobenzene	ND		25	2.7	50000	1	
1,2-Dichloroethane	ND		25	3.4	50000	1	
1,2-Dichloropropane	ND		25	9.5	50000)	
1,3-Dichlorobenzene	ND		25	8.1	50000)	
1,4-Dichlorobenzene	ND		25	3.4	50000)	
c-1,3-Dichloropropene	ND		25	3.3	50000)	
c-1,2-Dichloroethene	ND		25	4.4	50000)	
-1,2-Dichloroethene	ND		25	6.4	50000)	
-1,3-Dichloropropene	ND		50	3.5	50000)	
Ethylbenzene	1700		25	7.2	50000)	
1-Ethyltoluene	ND		25	7.9	50000		
Hexachloro-1,3-Butadiene	ND		75	5.1	50000		
2-Hexanone	ND		75	22	50000		
Methyl-t-Butyl Ether (MTBE)	ND		100	7.6	50000		
, , , , ,	· · -			-			

MDL: Method Detection Limit. RL: Reporting Limit. DF: Dilution Factor.

ND

ND

250

75

12

19

50000

50000

Page 28 of 35

Analytical Report

04/03/18 **AECOM** Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

_	-	5.			0 117
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
o-Xylene	ND	25	7.8	50000	
p/m-Xylene	ND	100	17	50000	
Styrene	ND	75	3.2	50000	
Tetrachloroethene	ND	25	3.4	50000	
Toluene	78	250	6.7	50000	J
Trichloroethene	ND	25	3.5	50000	
Trichlorofluoromethane	ND	50	8.5	50000	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	75	3.5	50000	
1,1,1-Trichloroethane	ND	25	3.9	50000	
1,1,2-Trichloroethane	ND	25	9.1	50000	
1,3,5-Trimethylbenzene	ND	25	7.2	50000	
1,1,2,2-Tetrachloroethane	ND	50	6.9	50000	
1,2,4-Trimethylbenzene	ND	75	7.7	50000	
1,2,4-Trichlorobenzene	ND	100	6.2	50000	
Vinyl Acetate	ND	100	4.9	50000	
Vinyl Chloride	ND	25	11	50000	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	99	57-129			
1,2-Dichloroethane-d4	101	47-137			
Toluene-d8	98	78-156			

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01351	18-04-0188-13-A	04/02/18 10:35	Air	GC/MS HH	N/A	04/05/18 16:47	180405L02

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.									
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers				
Benzene	6800	100	17	200000					
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>						
1,4-Bromofluorobenzene	114	57-129							
1,2-Dichloroethane-d4	95	47-137							
Toluene-d8	98	78-156							

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

04/03/18 18-04-0188

Method:

EPA TO-15M

N/A

Units:

ppm (v/v) Page 29 of 35

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01350	18-04-0188-14-A	04/02/18 10:28	Air	GC/MS ZZ	N/A	04/05/18 05:37	180404L02
Comment(s): - Results were evaluated t	o the MDL (DL), cond	entrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Acetone	51		2500	14	50000		J
Benzyl Chloride	ND		75	2.5	50000		
Bromodichloromethane	ND		25	3.1	50000		
Bromoform	ND		25	4.0	50000		
Bromomethane	ND		25	6.9	50000		
2-Butanone	ND		75	22	50000		
Carbon Disulfide	ND		500	14	50000		
Carbon Tetrachloride	ND		25	3.1	50000		
Chlorobenzene	ND		25	3.4	50000		
Chloroethane	ND		25	12	50000		
Chloroform	ND		25	3.5	50000		
Chloromethane	ND		25	12	50000		
Dibromochloromethane	ND		25	2.7	50000		
Dichlorodifluoromethane	ND		25	3.0	50000		
1,1-Dichloroethane	ND		25	3.2	50000		
1,1-Dichloroethene	ND		25	9.9	50000		
1,2-Dibromoethane	ND		25	3.4	50000		
Dichlorotetrafluoroethane	ND		100	13	50000		
1,2-Dichlorobenzene	ND		25	2.7	50000		
1,2-Dichloroethane	ND		25	3.4	50000		
1,2-Dichloropropane	ND		25	9.5	50000		
1,3-Dichlorobenzene	ND		25	8.1	50000		
1,4-Dichlorobenzene	ND		25	3.4	50000		
c-1,3-Dichloropropene	ND		25	3.3	50000		
c-1,2-Dichloroethene	ND		25	4.4	50000		
t-1,2-Dichloroethene	ND		25	6.4	50000		
t-1,3-Dichloropropene	ND		50	3.5	50000		
Ethylbenzene	1900		25	7.2	50000		
4-Ethyltoluene	ND		25	7.9	50000		
Hexachloro-1,3-Butadiene	ND		75	5.1	50000		
2-Hexanone	ND		75	22	50000		
Methyl-t-Butyl Ether (MTBE)	ND		100	7.6	50000		
Methylene Chloride	ND		250	12	50000		
4-Methyl-2-Pentanone	ND		75	19	50000		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

Page 30 of 35

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
o-Xylene	ND	25	7.8	50000	
p/m-Xylene	ND	100	17	50000	
Styrene	ND	75	3.2	50000	
Tetrachloroethene	ND	25	3.4	50000	
Toluene	92	250	6.7	50000	J
Trichloroethene	ND	25	3.5	50000	
Trichlorofluoromethane	ND	50	8.5	50000	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	75	3.5	50000	
1,1,1-Trichloroethane	ND	25	3.9	50000	
1,1,2-Trichloroethane	ND	25	9.1	50000	
1,3,5-Trimethylbenzene	ND	25	7.2	50000	
1,1,2,2-Tetrachloroethane	ND	50	6.9	50000	
1,2,4-Trimethylbenzene	ND	75	7.7	50000	
1,2,4-Trichlorobenzene	ND	100	6.2	50000	
Vinyl Acetate	ND	100	4.9	50000	
Vinyl Chloride	ND	25	11	50000	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	100	57-129			
1,2-Dichloroethane-d4	102	47-137			
Toluene-d8	99	78-156			

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01350	18-04-0188-14-A	04/02/18 10:28	Air	GC/MS HH	N/A	04/05/18 17:36	180405L02

Comment(s):	- Results were evaluated to the MDL (D	L), concentrations >	= to the MDL (DL) b	ut < RL (LOQ), if fol	ind, are qualified wit	n a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Benzene		7600	100	17	200000	
<u>Surrogate</u>		Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorol	benzene	116	57-129			
1,2-Dichloroetha	nne-d4	100	47-137			
Toluene-d8		96	78-156			

04/03/18 **AECOM** Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 Page 31 of 35

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID			
Method Blank	099-12-981-8420	N/A	Air	GC/MS II	N/A	04/03/18 13:45	180403L02			
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.										
<u>Parameter</u>	Resul	<u> t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>			
Acetone	ND		0.050	0.00029	1.00					
Benzene	ND		0.00050	0.000085	1.00					
Benzyl Chloride	ND		0.0015	0.000049	1.00					
Bromodichloromethane	ND		0.00050	0.000062	1.00					
Bromoform	ND		0.00050	0.000081	1.00					
Bromomethane	ND		0.00050	0.00014	1.00					
2-Butanone	ND		0.0015	0.00043	1.00					
Carbon Disulfide	ND		0.010	0.00028	1.00					
Carbon Tetrachloride	ND		0.00050	0.000062	1.00					
Chlorobenzene	ND		0.00050	0.000068	1.00					
Chloroethane	ND		0.00050	0.00024	1.00					
Chloroform	ND		0.00050	0.000069	1.00					
Chloromethane	ND		0.00050	0.00024	1.00					
Dibromochloromethane	ND		0.00050	0.000055	1.00					
Dichlorodifluoromethane	ND		0.00050	0.000060	1.00					
1,1-Dichloroethane	ND		0.00050	0.000063	1.00					
1,1-Dichloroethene	ND		0.00050	0.00020	1.00					
1,2-Dibromoethane	ND		0.00050	0.000069	1.00					
Dichlorotetrafluoroethane	ND		0.0020	0.00027	1.00					
1,2-Dichlorobenzene	ND		0.00050	0.000053	1.00					
1,2-Dichloroethane	ND		0.00050	0.000069	1.00					
1,2-Dichloropropane	ND		0.00050	0.00019	1.00					
1,3-Dichlorobenzene	ND		0.00050	0.00016	1.00					
1,4-Dichlorobenzene	ND		0.00050	0.000067	1.00					
c-1,3-Dichloropropene	ND		0.00050	0.000065	1.00					
c-1,2-Dichloroethene	ND		0.00050	0.000087	1.00					
t-1,2-Dichloroethene	ND		0.00050	0.00013	1.00					
t-1,3-Dichloropropene	ND		0.0010	0.000069	1.00					
Ethylbenzene	ND		0.00050	0.00014	1.00					
4-Ethyltoluene	ND		0.00050	0.00016	1.00					
Hexachloro-1,3-Butadiene	ND		0.0015	0.00010	1.00					
2-Hexanone	ND		0.0015	0.00044	1.00					
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	0.00015	1.00					
Methylene Chloride	ND		0.0050	0.00025	1.00					

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Method Blank

Page 32 of 35

<u>Parameter</u>	<u> </u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
4-Methyl-2-Pentanone	N	ND	0.0015	0.00037	1.00		
o-Xylene	N	ND	0.00050	0.00016	1.00		
p/m-Xylene	N	ND	0.0020	0.00033	1.00		
Styrene	N	ND	0.0015	0.000064	1.00		
Tetrachloroethene	N	ND	0.00050	0.000067	1.00		
Toluene	Ņ	ND	0.0050	0.00013	1.00		
Trichloroethene	N	ND	0.00050	0.000069	1.00		
Trichlorofluoromethane	١	ND	0.0010	0.00017	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane	N	ND	0.0015	0.000070	1.00		
1,1,1-Trichloroethane	N	ND	0.00050	0.000079	1.00		
1,1,2-Trichloroethane	N	ND	0.00050	0.00018	1.00		
1,3,5-Trimethylbenzene	N	ND	0.00050	0.00014	1.00		
1,1,2,2-Tetrachloroethane	Ņ	ND	0.0010	0.00014	1.00		
1,2,4-Trimethylbenzene	N	ND	0.0015	0.00015	1.00		
1,2,4-Trichlorobenzene	N	ND	0.0020	0.00012	1.00		
Vinyl Acetate	N	ND	0.0020	0.000098	1.00		
Vinyl Chloride	N	ND	0.00050	0.00022	1.00		
<u>Surrogate</u>	<u>F</u>	Rec. (%)	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	9	94	57-129				
1,2-Dichloroethane-d4	8	88	47-137				
Toluene-d8	9	98	78-156				
Client Sample Number	Lab Sample	Date/Time	Matrix	Instrument	Date	Date/Time	QC Batch II

					14.11	
Comment(s):	- Results were evaluated to the MDL (D	L), concentrations >	= to the MDL (DL) b	ut < RL (LOQ), if fo	und, are qualified wit	h a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Benzene		ND	0.00050	0.000085	1.00	
Ethylbenzene		ND	0.00050	0.00014	1.00	
Toluene		ND	0.0050	0.00013	1.00	
<u>Surrogate</u>		Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluoro	benzene	96	57-129			
1,2-Dichloroetha	ne-d4	88	47-137			
Toluene-d8		97	78-156			

Air

Prepared

N/A

GC/MS II

Analyzed 04/04/18

180404L02

Collected

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

Number

099-12-981-8423

Santa Barbara, CA 93117-3153

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188

> Preparation: N/A Method: EPA TO-15M

Units: ppm (v/v) Page 33 of 35

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-981-8422	N/A	Air	GC/MS ZZ	N/A	04/04/18 14:17	180404L02
Comment(s): - Results were evaluated t	o the MDL (DL), cond	entrations >=	to the MDL (DL) but < RL (LOC	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>
Acetone	ND		0.050	0.00029	1.00		
Benzyl Chloride	ND		0.0015	0.000049	1.00		
Bromodichloromethane	ND		0.00050	0.000062	1.00		
Bromoform	ND		0.00050	0.000081	1.00		
Bromomethane	ND		0.00050	0.00014	1.00		
2-Butanone	ND		0.0015	0.00043	1.00		
Carbon Disulfide	ND		0.010	0.00028	1.00		
Carbon Tetrachloride	ND		0.00050	0.000062	1.00		
Chlorobenzene	ND		0.00050	0.000068	1.00		
Chloroethane	ND		0.00050	0.00024	1.00		
Chloroform	ND		0.00050	0.000069	1.00		
Chloromethane	ND		0.00050	0.00024	1.00		
Dibromochloromethane	ND		0.00050	0.000055	1.00		
Dichlorodifluoromethane	ND		0.00050	0.000060	1.00		
1,1-Dichloroethane	ND		0.00050	0.000063	1.00		
1,1-Dichloroethene	ND		0.00050	0.00020	1.00		
1,2-Dibromoethane	ND		0.00050	0.000069	1.00		
Dichlorotetrafluoroethane	ND		0.0020	0.00027	1.00		
1,2-Dichlorobenzene	ND		0.00050	0.000053	1.00		
1,2-Dichloroethane	ND		0.00050	0.000069	1.00		
1,2-Dichloropropane	ND		0.00050	0.00019	1.00		
1,3-Dichlorobenzene	ND		0.00050	0.00016	1.00		
1,4-Dichlorobenzene	ND		0.00050	0.000067	1.00		
c-1,3-Dichloropropene	ND		0.00050	0.000065	1.00		
c-1,2-Dichloroethene	ND		0.00050	0.000087	1.00		
t-1,2-Dichloroethene	ND		0.00050	0.00013	1.00		
t-1,3-Dichloropropene	ND		0.0010	0.000069	1.00		
Ethylbenzene	ND		0.00050	0.00014	1.00		
4-Ethyltoluene	ND		0.00050	0.00016	1.00		
Hexachloro-1,3-Butadiene	ND		0.0015	0.00010	1.00		
2-Hexanone	ND		0.0015	0.00044	1.00		
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	0.00015	1.00		
Methylene Chloride	ND		0.0050	0.00025	1.00		
4-Methyl-2-Pentanone	ND		0.0015	0.00037	1.00		

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

Page 34 of 35

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
o-Xylene	ND	0.00050	0.00016	1.00	
p/m-Xylene	ND	0.0020	0.00033	1.00	
Styrene	ND	0.0015	0.000064	1.00	
Tetrachloroethene	ND	0.00050	0.000067	1.00	
Toluene	ND	0.0050	0.00013	1.00	
Trichloroethene	ND	0.00050	0.000069	1.00	
Trichlorofluoromethane	ND	0.0010	0.00017	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.0015	0.000070	1.00	
1,1,1-Trichloroethane	ND	0.00050	0.000079	1.00	
1,1,2-Trichloroethane	ND	0.00050	0.00018	1.00	
1,3,5-Trimethylbenzene	ND	0.00050	0.00014	1.00	
1,1,2,2-Tetrachloroethane	ND	0.0010	0.00014	1.00	
1,2,4-Trimethylbenzene	ND	0.0015	0.00015	1.00	
1,2,4-Trichlorobenzene	ND	0.0020	0.00012	1.00	
Vinyl Acetate	ND	0.0020	0.000098	1.00	
Vinyl Chloride	ND	0.00050	0.00022	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	97	57-129			
1,2-Dichloroethane-d4	96	47-137			
Toluene-d8	97	78-156			

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-981-8425	N/A	Air	GC/MS HH	N/A	04/05/18 15:07	180405L02
Comment(s): - Results were evaluated to	o the MDL (DL), cond	centrations >= to	the MDL (D	L) but < RL (LO	Q), if found, are	e qualified with a	"J" flag.

Tresume were evaluated to the MBE (BE	.,, 00110011114110110 =	to the MBL (BL) bu	(LOQ), II loui	na, aro quannou ma	ra o nag.
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Benzene	ND	0.00050	0.000085	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	97	57-129			
1,2-Dichloroethane-d4	94	47-137			
Toluene-d8	97	78-156			

Page 35 of 35

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

1,4-Bromofluorobenzene

1,2-Dichloroethane-d4

Toluene-d8

Client Sample Number		Lab Sample Number			Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		099-12-981-8426	N/A	Air	GC/MS ZZ	N/A	04/05/18 14:29	180405L02
Comment(s):	- Results were evaluated t	o the MDL (DL), cond	centrations >=	to the MDL (DI) but < RL (LO	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>		<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>0</u>	Qualifiers
Benzene		ND		0.00050	0.000085	1.00		
Surrogate		Rec.	(%)	Control Limits	Qualifiers			

57-129

47-137

78-156

98

100

97

180403L02

180403L02

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-3M Units: ppm (v/v) Page 1 of 3

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

VSS01363

VSS01360

TPH as Gasoline

Client Sample Nu	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01361		18-04-0188-1-A	04/03/18 09:24	Air	GC 13	N/A	04/03/18 19:34	180403L02
Comment(s):	- Results were evaluated to	the MDL (DL), conc	entrations >= t	o the MDL ([DL) but < RL (LO	Q), if found, are	e qualified with a	ı "J" flag.
<u>Parameter</u>		<u>Resul</u>	<u>t</u> <u>I</u>	<u> </u>	<u>MDL</u>	<u>DF</u>	<u>Q</u>	<u>Qualifiers</u>
TPH as Gasoline	;	15000) 7	75	21	50.0		

VSS01362	18-04-0188-2-A	04/03/18 09:18	Air	GC 13	N/A	04/03/18 19:48	180403L02
Comment(s):	- Results were evaluated to the MDL (DL), c	oncentrations >:	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Re</u>	<u>esult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
TPH as Gasoline	12		1.5	0.43	1.00		

Air

Air

GC 13

GC 13

21

N/A

N/A

50.0

04/03/18

04/03/18

		09:1	5		20:	13
Comment(s):	- Results were evaluated to the MDL (DI	L), concentrat	ions >= to the MDL	(DL) but < RL (LOQ),	if found, are qualif	ied with a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
TPH as Gasolin	е	890	3.8	1.1	2.50	

04/03/18

04/02/18

18-04-0188-3-A

18-04-0188-4-A

		13:35			20:	25
Comment(s):	- Results were evaluated to the MD	L (DL), concentration	ons >= to the MDL	L (DL) but < RL (LOQ),	if found, are qualif	ied with a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
TPH as Gasolin	ne	260	1.5	0.43	1.00	

VSS01358	18-04-0188-5-A	04/02/18 16:06	Air	GC 13	N/A	04/03/18 20:54	180403L02
Comment(s):	- Results were evaluated to the MDL (DL), con-	centrations >=	to the MDL	(DL) but < RL (L	OQ), if found,	are qualified with	a "J" flag.
D	D	.14	DI	MDI	DI	_	O !: f:

<u>Parameter</u> <u>DF</u> **Qualifiers** <u>Result</u> <u>RL</u> <u>MDL</u> 1000 7.5 5.00 TPH as Gasoline 2.1

12000

VSS01359	18-04-0188-6-A	04/02/18 17:07	Air	GC 13	N/A	04/03/18 21:20	180403L02
Comment(s):	- Results were evaluated to the MDL (DL), con	centrations >=	to the MDL	(DL) but < RL (LC	DQ), if found, are	e qualified with a	"J" flag.
Parameter	Res	ult	RI	MDI	DE	(Qualifiers

75

180403L02

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-3M Units: ppm (v/v) Page 2 of 3

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

VSS01355

.

Client Sample No	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01357		18-04-0188-7-A	04/02/18 13:39	Air	GC 13	N/A	04/04/18 09:10	180403L02
Comment(s):	- Results were evaluated to	the MDL (DL), conce	entrations >= to	o the MDL ([DL) but < RL (LO	Q), if found, are	e qualified with a	"J" flag.
<u>Parameter</u>		Result	<u> </u>	<u> </u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
TPH as Gasoline	;	13000	, 7	75	21	50.0		

VSS01356	18-04-0188-8- <i>l</i> -	04/02/18 17:01	Air	GC 13	N/A	04/04/18 09:57	180403L02
Comment(s):	- Results were evaluated to the MDL (DL), of	concentrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	J" flag.
<u>Parameter</u>	<u>R</u>	<u>esult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qı</u>	<u>ualifiers</u>
TPH as Gasoline	14	400	7.5	2.1	5.00		

Air

GC 13

N/A

04/04/18

		12:55			10:	40
Comment(s):	- Results were evaluated to the MD	DL (DL), concentration	ons >= to the MDI	L (DL) but < RL (LOQ),	if found, are qualif	ied with a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
TPH as Gasolin	ie	9100	75	21	50.0	

04/02/18

18-04-0188-9-A

VSS01354	18-04-0188-10-A	04/02/18 14:53	Air	GC 13	N/A	04/04/18 11:10	180403L02
Comment(s):	- Results were evaluated to the MDL (DL), cond	centrations >=	to the MDL	(DL) but < RL (LO	Q), if found, a	re qualified with a	'J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	MDL	<u>DF</u>	Q	<u>ualifiers</u>

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
TPH as Gasoline	630	3.8	1.1	2.50	

V3301333	10-04-0108-11-A	14:50	Air	GC 13	N/A	11:47	160403L02	ı
Comment(s):	- Results were evaluated to the MDL (DL), con-	centrations >= t	to the MDL	(DL) but < RL (LO	Q), if found, are	e qualified with a	"J" flag.	
Parameter	Resi	ılt	RI	MDI	DF	C	Qualifiers	

VSS01352	18-04-0188-12-A	04/02/18 13:01	Air	GC 13	N/A	04/04/18 12:02	180403L02
IPH as Gasoline	1400	0	/5	21	50.0		

Comment(s):	- Results were evaluated to the MDL (DI	_), concentrations >	= to the MDL (DL) b	ut < RL (LOQ), if for	ınd, are qualified wit	h a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
TPH as Gasolin	e	170	1.5	0.43	1.00	

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

Page 3 of 3

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-3M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01351		18-04-0188-13-A	04/02/18 10:35	Air	GC 13	N/A	04/04/18 12:30	180403L02
Comment(s):	- Results were evaluated to	the MDL (DL), cond	entrations >= t	o the MDL ([DL) but < RL (LO	Q), if found, are	e qualified with a	ı "J" flag.
<u>Parameter</u>		Resul	<u> t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u>	<u>Qualifiers</u>
TPH as Gasoline	е	13000) .	75	21	50.0		

VSS01350	18-04-0188-14-2	A 04/02/18 10:28	Air	GC 13	N/A	04/04/18 12:43	180403L02
Comment(s):	- Results were evaluated to the MDL (DL), co	oncentrations >=	to the MDL (DL) but < RL (LC	OQ), if found, are	e qualified with a	a "J" flag.
<u>Parameter</u>	<u>Re</u>	<u>sult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
TPH as Gasoline	12	000	75	21	50.0		

Method Blank	098-01-005-8393	N/A	Air	GC 13	N/A	04/03/18 19:11	180403L02
Comment(s):	- Results were evaluated to the MDL (DL), con-	centrations	s >= to the MDL (DL) but < RL (LC	DQ), if found, are	e qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
TPH as Gasoline	ND ND		1.5	0.43	1.00		

Page 1 of 3

180403L01

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation: N/A Method: SCAQMD 25.1M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles /

60566446.2018.1.0601

VSS01358

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01361		18-04-0188-1-A	04/03/18 09:24	Air	GC 14	N/A	04/03/18 19:09	180403L01
Comment(s):	- Results were evaluated t	o the MDL (DL), cond	centrations >=	to the MDL	(DL) but < RL (LC	Q), if found, are	e qualified with	a "J" flag.
<u>Parameter</u>		Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Methane		300		1.0	0.21	1.00		
VSS01363		18-04-0188-3-A	04/03/18 09:15	Air	GC 14	N/A	04/03/18 19:55	180403L01
Comment(s):	- Results were evaluated t	o the MDL (DL), cond	centrations >=	to the MDL	(DL) but < RL (LC	Q), if found, are	e qualified with	a "J" flag.
<u>Parameter</u>		Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Methane		19		1.0	0.21	1.00		

VSS01360	18-04-0188-4-A	04/02/18 13:35	Air	GC 14	N/A	04/03/18 20:15	180403L0
Comment(s):	- Results were evaluated to the MDL (DL), con-	centrations >=	to the MD	L (DL) but < RL (LOQ), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Methane	10		1.0	0.21	1.00		

		16:00)		20:	35
Comment(s):	- Results were evaluated to the MDL (DL), concentration	ons >= to the MDL	(DL) but < RL (LOQ),	if found, are qualif	ied with a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Methane		24	1.0	0.21	1.00	

Air

04/02/18

GC 14

N/A

04/03/18

VSS01359	18-04-0188-6-A	04/02/18 17:07	Air	GC 14	N/A	04/03/18 20:56	180403L01
Comment(s):	- Results were evaluated to the MDL (DL), cond	centrations >=	to the MDL	(DL) but < RL (L	OQ), if found,	are qualified with a	"J" flag.

<u>Parameter</u> <u>Result</u> <u>RL</u> <u>MDL</u> <u>DF</u> **Qualifiers** Methane 300 1.0 0.21 1.00

VSS01357	18-04-0188-7-A	04/02/18 13:39	Air	GC 14	N/A	04/04/18 12:16	180404L01
Comment(s)	- Results were evaluated to the MDL (DL) con-	centrations >	- to the MDI	(DL) but < RL (I	OO) if found	are qualified with a	" l" flan

Parameter <u>RL</u> <u>MDL</u> <u>DF</u> Qualifiers <u>Result</u> 1.0 0.21 1.00 Methane 310

MDL: Method Detection Limit. RL: Reporting Limit. DF: Dilution Factor.

18-04-0188-5-A

Methane

Analytical Report

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 N/A Santa Barbara, CA 93117-3153 Preparation: Method: SCAQMD 25.1M Units: ppm (v/v) Page 2 of 3

Project: Del Amo Superfund Site, Los Angeles /

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II
/SS01356		18-04-0188-8-A	04/02/18 17:01	Air	GC 14	N/A	04/04/18 13:11	180404L01
Comment(s):	- Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL ((DL) but < RL (LC	Q), if found, are	e qualified with	a "J" flag.
<u>Parameter</u>		Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Methane		29		1.0	0.21	1.00		
/SS01355		18-04-0188-9-A	04/02/18 12:55	Air	GC 14	N/A	04/04/18 13:39	180404L01
Comment(s):	- Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL ((DL) but < RL (LC	Q), if found, are	e qualified with	a "J" flag.
Parameter Parameter		Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Methane		270		1.0	0.21	1.00		
/SS01354		18-04-0188-10-A	04/02/18 14:53	Air	GC 14	N/A	04/04/18 14:56	180404L01
Comment(s):	- Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL ((DL) but < RL (LC	Q), if found, are	e qualified with	a "J" flag.
Parameter Parameter		Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Methane		20		1.0	0.21	1.00		
/SS01353		18-04-0188-11-A	04/02/18 14:50	Air	GC 14	N/A	04/04/18 15:45	180404L01
Comment(s):	- Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL ((DL) but < RL (LC	Q), if found, are	e qualified with	a "J" flag.
<u>Parameter</u>		Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Methane		320		1.0	0.21	1.00		
/SS01352		18-04-0188-12-A	04/02/18 13:01	Air	GC 14	N/A	04/04/18 16:27	180404L01
Comment(s):	- Results were evaluated	d to the MDL (DL), cond	centrations >=	to the MDL ((DL) but < RL (LC	Q), if found, are	e qualified with	a "J" flag.
<u>Parameter</u>		Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Methane		9.0		1.0	0.21	1.00		
VCC042E4		10.04.0400.43.4	04/02/40	Λ:	CC 14	NI/A	04/04/49	1904041.04

VSS01351	18-04-0188-13-A	04/02/18 10:35	Air	GC 14	N/A	04/04/18 16:59	180404L01
Comment(s):	- Results were evaluated to the MDL (DL), cond	entrations >= to	the MDL (DL	_) but < RL (LOC	Q), if found, are	qualified with a "J	" flag.
<u>Parameter</u>	Resul	<u>t</u> R	<u>L</u>	<u>MDL</u>	<u>DF</u>	<u>Qua</u>	alifiers

1.0

0.21

1.00

290

Analytical Report

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153

Work Order: Preparation:

Date Received:

N/A SCAQMD 25.1M

04/03/18

18-04-0188

Units:

Method:

ppm (v/v) Page 3 of 3

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Date/Time Collected Lab Sample Number Date Prepared Client Sample Number Matrix Instrument Date/Time QC Batch ID Analyzed 04/02/18 10:28 04/04/18 17:44 VSS01350 18-04-0188-14-A Air GC 14 N/A 180404L01 - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s): **Parameter** Result <u>RL</u> <u>MDL</u> <u>DF</u> Qualifiers Methane 360 1.0 0.21 1.00

Method Blank	099-07-024-1538	N/A	Air	GC 14	N/A	04/03/18 11:33	180403L01
Comment(s):	- Results were evaluated to the MDL (DL), cond	centrations >=	to the MDL (DI	L) but < RL (LO	Q), if found, are	qualified with a '	'J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u> ı	<u>ualifiers</u>
Methane	ND		1.0	0.21	1.00		

Method Blank	099-07-024-1537	N/A	Air	GC 14	N/A	04/04/18 11:49	180404L01
Comment(s):	- Results were evaluated to the MDL (DL), cor	ncentratio	ns >= to the MDL	(DL) but < RL (L	OQ), if found, ar	e qualified with	a "J" flag.
<u>Parameter</u>	Res	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	!	<u>Qualifiers</u>
Methane	ND		1.0	0.21	1.00)	

Quality Control - Sample Duplicate

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153

Date Received: Work Order: Preparation: Method:

18-04-0188 N/A

Page 1 of 1

04/03/18

EPA TO-3M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
VSS01359	Sample	Air	GC 13	N/A	04/03/18 21:20	180403D02
VSS01359	Sample Duplicate	Air	GC 13	N/A	04/03/18 21:33	180403D02
<u>Parameter</u>		Sample Conc.	DUP Conc.	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline		11570	11540	0	0-20	

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

04/03/18 18-04-0188 N/A

Method: **ASTM D-1946** Page 1 of 20

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре	Mat	trix	Instrument	Date P	repared Date	e Analyzed	LCS/LCSD B	atch Number
099-16-444-760	LCS	Air		GC 65	N/A	04/0	3/18 09:54	180403L01	
099-16-444-760	LCSD	Air		GC 65	N/A	04/0	3/18 10:13	180403L01	
Parameter	Spike Adde	ed LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
Carbon Dioxide	15.01	15.02	100	15.23	101	80-120	1	0-30	
Carbon Monoxide	7.020	6.722	96	6.743	96	80-120	0	0-30	
Oxygen (+ Argon)	3.990	3.913	98	3.835	96	80-120	2	0-30	
Nitrogen	69.45	64.51	93	64.33	93	80-120	0	0-30	

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/03/18 18-04-0188 N/A

ASTM D-1946 Page 2 of 20

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре	Ma	trix	Instrument	Date Pr	repared Dat	e Analyzed	LCS/LCSD B	atch Number
099-16-444-761	LCS	Air		GC 65	N/A	04/0	04/18 10:29	180404L01	
099-16-444-761	LCSD	Air		GC 65	N/A	04/0	04/18 10:48	180404L01	
Parameter	Spike Adde	ed LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
Carbon Dioxide	15.01	14.88	99	15.10	101	80-120	1	0-30	
Carbon Monoxide	7.020	6.717	96	6.719	96	80-120	0	0-30	
Oxygen (+ Argon)	3.990	3.934	99	3.853	97	80-120	2	0-30	
Nitrogen	69.45	64.67	93	64.32	93	80-120	1	0-30	

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/03/18 18-04-0188 N/A EPA TO-15M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 3 of 20

Quality Control Sample ID	Туре		Matrix	Instru	ument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
099-12-981-8425	LCS		Air	GC/I	NS HH	N/A	04/05/	18 12:27	180405L02	
099-12-981-8425	LCSD		Air	GC/I	NS HH	N/A	04/05/	18 13:20	180405L02	
Parameter	<u>Spike</u> Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Acetone	0.02500	0.02624	105	0.02657	106	50-150	33-167	1	0-35	
Benzene	0.02500	0.02625	105	0.02668	107	60-156	44-172	2	0-40	
Benzyl Chloride	0.02500	0.03020	121	0.02984	119	50-150	33-167	1	0-35	
Bromodichloromethane	0.02500	0.02692	108	0.02684	107	50-150	33-167	0	0-35	
Bromoform	0.02500	0.02781	111	0.02760	110	50-150	33-167	1	0-38	
Bromomethane	0.02500	0.02454	98	0.02467	99	50-150	33-167	1	0-35	
2-Butanone	0.02500	0.02741	110	0.02755	110	50-150	33-167	1	0-35	
Carbon Disulfide	0.02500	0.02742	110	0.02764	111	50-150	33-167	1	0-35	
Carbon Tetrachloride	0.02500	0.02716	109	0.02726	109	64-154	49-169	0	0-32	
Chlorobenzene	0.02500	0.02774	111	0.02785	111	50-150	33-167	0	0-35	
Chloroethane	0.02500	0.02632	105	0.02600	104	50-150	33-167	1	0-35	
Chloroform	0.02500	0.02659	106	0.02653	106	50-150	33-167	0	0-35	
Chloromethane	0.02500	0.02646	106	0.02679	107	50-150	33-167	1	0-35	
Dibromochloromethane	0.02500	0.02740	110	0.02740	110	50-150	33-167	0	0-35	
Dichlorodifluoromethane	0.02500	0.02621	105	0.02609	104	50-150	33-167	0	0-35	
1,1-Dichloroethane	0.02500	0.02667	107	0.02681	107	50-150	33-167	1	0-35	
1,1-Dichloroethene	0.02500	0.02933	117	0.02946	118	50-150	33-167	0	0-35	
1,2-Dibromoethane	0.02500	0.02766	111	0.02775	111	54-144	39-159	0	0-36	
Dichlorotetrafluoroethane	0.02500	0.02550	102	0.02543	102	50-150	33-167	0	0-35	
1,2-Dichlorobenzene	0.02500	0.02762	110	0.02759	110	34-160	13-181	0	0-47	
1,2-Dichloroethane	0.02500	0.02583	103	0.02577	103	69-153	55-167	0	0-35	
1,2-Dichloropropane	0.02500	0.02690	108	0.02720	109	67-157	52-172	1	0-35	
1,3-Dichlorobenzene	0.02500	0.02810	112	0.02794	112	50-150	33-167	1	0-35	
1,4-Dichlorobenzene	0.02500	0.02820	113	0.02804	112	36-156	16-176	1	0-47	
c-1,3-Dichloropropene	0.02500	0.02849	114	0.02882	115	61-157	45-173	1	0-35	
c-1,2-Dichloroethene	0.02500	0.02671	107	0.02688	108	50-150	33-167	1	0-35	
t-1,2-Dichloroethene	0.02500	0.02634	105	0.02674	107	50-150	33-167	1	0-35	
t-1,3-Dichloropropene	0.02500	0.02913	117	0.02949	118	50-150	33-167	1	0-35	
Ethylbenzene	0.02500	0.02812	112	0.02806	112	52-154	35-171	0	0-38	
4-Ethyltoluene	0.02500	0.02828	113	0.02825	113	50-150	33-167	0	0-35	
Hexachloro-1,3-Butadiene	0.02500	0.02728	109	0.02770	111	50-150	33-167	2	0-35	
2-Hexanone	0.02500	0.02637	105	0.02799	112	50-150	33-167	6	0-35	
Methyl-t-Butyl Ether (MTBE)	0.02500	0.02740	110	0.02742	110	50-150	33-167	0	0-35	
Methylene Chloride	0.02500	0.02807	112	0.02822	113	50-150	33-167	1	0-35	
4-Methyl-2-Pentanone	0.02500	0.02733	109	0.02775	111	50-150	33-167	2	0-35	
. ,					•					

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/03/18 18-04-0188 N/A EPA TO-15M

Page 4 of 20

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Cond	c. <u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
o-Xylene	0.02500	0.02701	108	0.02690	108	52-148	36-164	0	0-38	
p/m-Xylene	0.05000	0.05578	112	0.05552	111	42-156	23-175	0	0-41	
Styrene	0.02500	0.02776	111	0.02755	110	50-150	33-167	1	0-35	
Tetrachloroethene	0.02500	0.02720	109	0.02725	109	56-152	40-168	0	0-40	
Toluene	0.02500	0.02680	107	0.02670	107	56-146	41-161	0	0-43	
Trichloroethene	0.02500	0.02679	107	0.02692	108	63-159	47-175	1	0-34	
Trichlorofluoromethane	0.02500	0.02451	98	0.02447	98	50-150	33-167	0	0-35	
1,1,2-Trichloro-1,2,2- Trifluoroethane	0.02500	0.02862	114	0.02873	115	50-150	33-167	0	0-35	
1,1,1-Trichloroethane	0.02500	0.02585	103	0.02604	104	50-150	33-167	1	0-35	
1,1,2-Trichloroethane	0.02500	0.02692	108	0.02709	108	65-149	51-163	1	0-37	
1,3,5-Trimethylbenzene	0.02500	0.02873	115	0.02858	114	50-150	33-167	1	0-35	
1,1,2,2-Tetrachloroethane	0.02500	0.02701	108	0.02692	108	50-150	33-167	0	0-35	
1,2,4-Trimethylbenzene	0.02500	0.02871	115	0.02866	115	50-150	33-167	0	0-35	
1,2,4-Trichlorobenzene	0.02500	0.02809	112	0.02848	114	50-150	33-167	1	0-35	
Vinyl Acetate	0.02500	0.02726	109	0.02743	110	50-150	33-167	1	0-35	
Vinvl Chloride	0.02500	0.02647	106	0.02648	106	45-177	23-199	0	0-36	

Total number of LCS compounds: 51 Total number of ME compounds: 0 Total number of ME compounds allowed: 3 LCS ME CL validation result: Pass

LCS/LCSD - Surrogate

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153

Date Received: Work Order: Preparation: Method:

18-04-0188 N/A

04/03/18

EPA TO-15M

Page 5 of 20

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре		Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD B	atch Number
099-12-981-8425	LCS		Air	GC/MS HH	N/A	04/05/18 12:27	180405L02	
099-12-981-8425	LCSD		Air	GC/MS HH	N/A	04/05/18 13:20	180405L02	
Parameter		Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	Qualifiers
1,4-Bromofluorobenzene		0.02500	0.02562	102	0.02527	101	57-129	
1,2-Dichloroethane-d4		0.02500	0.02310	92	0.02299	92	47-137	
Toluene-d8		0.02500	0.02465	99	0.02468	99	78-156	

Method:

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

04/03/18 18-04-0188 N/A EPA TO-15M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 6 of 20

Quality Control Sample ID	Туре		Matrix		ument	Date Prepare			LCS/LCSD Ba	ttori i varribo
099-12-981-8420	LCS		Air	GC/I		N/A			180403L02	
099-12-981-8420	LCSD		Air	GC/I		N/A			180403L02	
<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Acetone	0.02500	0.02489	100	0.02489	100	50-150	33-167	0	0-35	
Benzene	0.02500	0.02350	94	0.02303	92	60-156	44-172	2	0-40	
Benzyl Chloride	0.02500	0.02398	96	0.02382	95	50-150	33-167	1	0-35	
Bromodichloromethane	0.02500	0.02289	92	0.02264	91	50-150	33-167	1	0-35	
Bromoform	0.02500	0.02521	101	0.02498	100	50-150	33-167	1	0-38	
Bromomethane	0.02500	0.02492	100	0.02471	99	50-150	33-167	1	0-35	
2-Butanone	0.02500	0.01967	79	0.01958	78	50-150	33-167	0	0-35	
Carbon Disulfide	0.02500	0.02160	86	0.02131	85	50-150	33-167	1	0-35	
Carbon Tetrachloride	0.02500	0.02360	94	0.02318	93	64-154	49-169	2	0-32	
Chlorobenzene	0.02500	0.02528	101	0.02516	101	50-150	33-167	0	0-35	
Chloroethane	0.02500	0.02497	100	0.02479	99	50-150	33-167	1	0-35	
Chloroform	0.02500	0.02200	88	0.02171	87	50-150	33-167	1	0-35	
Chloromethane	0.02500	0.02015	81	0.02003	80	50-150	33-167	1	0-35	
Dibromochloromethane	0.02500	0.02446	98	0.02431	97	50-150	33-167	1	0-35	
Dichlorodifluoromethane	0.02500	0.02181	87	0.02172	87	50-150	33-167	0	0-35	
1,1-Dichloroethane	0.02500	0.02156	86	0.02124	85	50-150	33-167	1	0-35	
1,1-Dichloroethene	0.02500	0.02366	95	0.02337	93	50-150	33-167	1	0-35	
1,2-Dibromoethane	0.02500	0.02454	98	0.02445	98	54-144	39-159	0	0-36	
Dichlorotetrafluoroethane	0.02500	0.02373	95	0.02363	95	50-150	33-167	0	0-35	
1,2-Dichlorobenzene	0.02500	0.02512	100	0.02495	100	34-160	13-181	1	0-47	
1,2-Dichloroethane	0.02500	0.02137	85	0.02112	84	69-153	55-167	1	0-35	
1,2-Dichloropropane	0.02500	0.02243	90	0.02237	89	67-157	52-172	0	0-35	
1,3-Dichlorobenzene	0.02500	0.02489	100	0.02462	98	50-150	33-167	1	0-35	
1,4-Dichlorobenzene	0.02500	0.02513	101	0.02500	100	36-156	16-176	1	0-47	
c-1,3-Dichloropropene	0.02500	0.02534	101	0.02488	100	61-157	45-173	2	0-35	
c-1,2-Dichloroethene	0.02500	0.02445	98	0.02412	96	50-150	33-167	1	0-35	
t-1,2-Dichloroethene	0.02500	0.02419	97	0.02392	96	50-150	33-167	1	0-35	
t-1,3-Dichloropropene	0.02500	0.02532	101	0.02512	100	50-150	33-167	1	0-35	
Ethylbenzene	0.02500	0.02495	100	0.02469	99	52-154	35-171	1	0-38	
4-Ethyltoluene	0.02500	0.02480	99	0.02457	98	50-150	33-167	1	0-35	
Hexachloro-1,3-Butadiene	0.02500	0.02562	102	0.02555	102	50-150	33-167	0	0-35	
2-Hexanone	0.02500	0.02303	92	0.02294	92	50-150	33-167	0	0-35	
Methyl-t-Butyl Ether (MTBE)	0.02500	0.02359	94	0.02346	94	50-150	33-167	1	0-35	
Methylene Chloride	0.02500	0.02564	103	0.02525	101	50-150	33-167	1	0-35	
4-Methyl-2-Pentanone	0.02500	0.02310	92	0.02274	91	50-150	33-167	2	0-35	

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/03/18 18-04-0188 N/A EPA TO-15M

Page 7 of 20

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Cond	<u>. LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
o-Xylene	0.02500	0.02317	93	0.02309	92	52-148	36-164	0	0-38	
p/m-Xylene	0.05000	0.04721	94	0.04672	93	42-156	23-175	1	0-41	
Styrene	0.02500	0.02516	101	0.02487	99	50-150	33-167	1	0-35	
Tetrachloroethene	0.02500	0.02568	103	0.02537	101	56-152	40-168	1	0-40	
Toluene	0.02500	0.02353	94	0.02334	93	56-146	41-161	1	0-43	
Trichloroethene	0.02500	0.02445	98	0.02423	97	63-159	47-175	1	0-34	
Trichlorofluoromethane	0.02500	0.02289	92	0.02262	90	50-150	33-167	1	0-35	
1,1,2-Trichloro-1,2,2- Trifluoroethane	0.02500	0.02305	92	0.02272	91	50-150	33-167	1	0-35	
1,1,1-Trichloroethane	0.02500	0.02277	91	0.02256	90	50-150	33-167	1	0-35	
1,1,2-Trichloroethane	0.02500	0.02393	96	0.02370	95	65-149	51-163	1	0-37	
1,3,5-Trimethylbenzene	0.02500	0.02488	100	0.02479	99	50-150	33-167	0	0-35	
1,1,2,2-Tetrachloroethane	0.02500	0.02295	92	0.02286	91	50-150	33-167	0	0-35	
1,2,4-Trimethylbenzene	0.02500	0.02417	97	0.02403	96	50-150	33-167	1	0-35	
1,2,4-Trichlorobenzene	0.02500	0.02852	114	0.02857	114	50-150	33-167	0	0-35	
Vinyl Acetate	0.02500	0.01907	76	0.01893	76	50-150	33-167	1	0-35	
Vinyl Chloride	0.02500	0.02374	95	0.02346	94	45-177	23-199	1	0-36	

Total number of LCS compounds: 51 Total number of ME compounds: 0 Total number of ME compounds allowed: 3 LCS ME CL validation result: Pass

LCS/LCSD - Surrogate

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153

Date Received: Work Order: Preparation: Method:

18-04-0188 N/A

04/03/18

EPA TO-15M

Page 8 of 20

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Type		Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Ba	atch Number
099-12-981-8420	LCS		Air	GC/MS II	N/A	04/03/18 11:08	180403L02	
099-12-981-8420	LCSD		Air	GC/MS II	N/A	04/03/18 11:58	180403L02	
Parameter		Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	Qualifiers
1,4-Bromofluorobenzene		0.02500	0.02340	94	0.02392	96	57-129	
1,2-Dichloroethane-d4		0.02500	0.02167	87	0.02165	87	47-137	
Toluene-d8		0.02500	0.02449	98	0.02441	98	78-156	

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/03/18 18-04-0188 N/A EPA TO-15M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 9 of 20

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
099-12-981-8423	LCS		Air	GC/I	MS II	N/A	04/04/1	18 11:20	180404L02	
099-12-981-8423	LCSD		Air	GC/N	VIS II	N/A	04/04/1	18 12:09	180404L02	
<u>Parameter</u>	<u>Spike</u> Added	LCS Conc.	LCS <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	<u>Qualifiers</u>
Acetone	0.02500	0.02521	101	0.02569	103	50-150	33-167	2	0-35	
Benzene	0.02500	0.02372	95	0.02372	95	60-156	44-172	0	0-40	
Benzyl Chloride	0.02500	0.02412	96	0.02421	97	50-150	33-167	0	0-35	
Bromodichloromethane	0.02500	0.02321	93	0.02334	93	50-150	33-167	1	0-35	
Bromoform	0.02500	0.02502	100	0.02501	100	50-150	33-167	0	0-38	
Bromomethane	0.02500	0.02504	100	0.02528	101	50-150	33-167	1	0-35	
2-Butanone	0.02500	0.02034	81	0.02040	82	50-150	33-167	0	0-35	
Carbon Disulfide	0.02500	0.02173	87	0.02182	87	50-150	33-167	0	0-35	
Carbon Tetrachloride	0.02500	0.02382	95	0.02386	95	64-154	49-169	0	0-32	
Chlorobenzene	0.02500	0.02538	102	0.02537	101	50-150	33-167	0	0-35	
Chloroethane	0.02500	0.02543	102	0.02542	102	50-150	33-167	0	0-35	
Chloroform	0.02500	0.02238	90	0.02226	89	50-150	33-167	1	0-35	
Chloromethane	0.02500	0.02134	85	0.02138	86	50-150	33-167	0	0-35	
Dibromochloromethane	0.02500	0.02446	98	0.02451	98	50-150	33-167	0	0-35	
Dichlorodifluoromethane	0.02500	0.02267	91	0.02264	91	50-150	33-167	0	0-35	
1,1-Dichloroethane	0.02500	0.02205	88	0.02200	88	50-150	33-167	0	0-35	
1,1-Dichloroethene	0.02500	0.02401	96	0.02426	97	50-150	33-167	1	0-35	
1,2-Dibromoethane	0.02500	0.02463	99	0.02469	99	54-144	39-159	0	0-36	
Dichlorotetrafluoroethane	0.02500	0.02443	98	0.02436	97	50-150	33-167	0	0-35	
1,2-Dichlorobenzene	0.02500	0.02504	100	0.02524	101	34-160	13-181	1	0-47	
1,2-Dichloroethane	0.02500	0.02179	87	0.02175	87	69-153	55-167	0	0-35	
1,2-Dichloropropane	0.02500	0.02297	92	0.02309	92	67-157	52-172	1	0-35	
1,3-Dichlorobenzene	0.02500	0.02469	99	0.02485	99	50-150	33-167	1	0-35	
1,4-Dichlorobenzene	0.02500	0.02500	100	0.02527	101	36-156	16-176	1	0-47	
c-1,3-Dichloropropene	0.02500	0.02558	102	0.02570	103	61-157	45-173	0	0-35	
c-1,2-Dichloroethene	0.02500	0.02456	98	0.02452	98	50-150	33-167	0	0-35	
t-1,2-Dichloroethene	0.02500	0.02432	97	0.02407	96	50-150	33-167	1	0-35	
t-1,3-Dichloropropene	0.02500	0.02570	103	0.02590	104	50-150	33-167	1	0-35	
Ethylbenzene	0.02500	0.02523	101	0.02521	101	52-154	35-171	0	0-38	
4-Ethyltoluene	0.02500	0.02505	100	0.02517	101	50-150	33-167	0	0-35	
Hexachloro-1,3-Butadiene	0.02500	0.02493	100	0.02587	103	50-150	33-167	4	0-35	
2-Hexanone	0.02500	0.02373	95	0.02391	96	50-150	33-167	1	0-35	
Methyl-t-Butyl Ether (MTBE)	0.02500	0.02397	96	0.02370	95	50-150	33-167	1	0-35	
Methylene Chloride	0.02500	0.02507	100	0.02562	102	50-150	33-167	2	0-35	
4-Methyl-2-Pentanone	0.02500	0.02394	96	0.02401	96	50-150	33-167	0	0-35	
,				-			-			

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/03/18 18-04-0188 N/A EPA TO-15M

Page 10 of 20

0-36

Project: Del Amo Superfund Site, Los Angeles /

60566446.2018.1.0601

<u>Parameter</u>	<u>Spike</u> Added	LCS Conc	. <u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
o-Xylene	0.02500	0.02343	94	0.02351	94	52-148	36-164	0	0-38	
p/m-Xylene	0.05000	0.04759	95	0.04765	95	42-156	23-175	0	0-41	
Styrene	0.02500	0.02528	101	0.02519	101	50-150	33-167	0	0-35	
Tetrachloroethene	0.02500	0.02532	101	0.02546	102	56-152	40-168	1	0-40	
Toluene	0.02500	0.02355	94	0.02353	94	56-146	41-161	0	0-43	
Trichloroethene	0.02500	0.02452	98	0.02470	99	63-159	47-175	1	0-34	
Trichlorofluoromethane	0.02500	0.02312	92	0.02307	92	50-150	33-167	0	0-35	
1,1,2-Trichloro-1,2,2- Trifluoroethane	0.02500	0.02312	92	0.02317	93	50-150	33-167	0	0-35	
1,1,1-Trichloroethane	0.02500	0.02305	92	0.02316	93	50-150	33-167	0	0-35	
1,1,2-Trichloroethane	0.02500	0.02430	97	0.02445	98	65-149	51-163	1	0-37	
1,3,5-Trimethylbenzene	0.02500	0.02519	101	0.02532	101	50-150	33-167	1	0-35	
1,1,2,2-Tetrachloroethane	0.02500	0.02327	93	0.02335	93	50-150	33-167	0	0-35	
1,2,4-Trimethylbenzene	0.02500	0.02437	97	0.02449	98	50-150	33-167	0	0-35	
1,2,4-Trichlorobenzene	0.02500	0.02760	110	0.02917	117	50-150	33-167	6	0-35	
Vinyl Acetate	0.02500	0.01995	80	0.01985	79	50-150	33-167	1	0-35	

0.02445

98

45-177

23-199

Total number of LCS compounds: 51
Total number of ME compounds: 0
Total number of ME compounds allowed: 3
LCS ME CL validation result: Pass

Vinyl Chloride

0.02500

0.02442

98

LCS/LCSD - Surrogate

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153

Date Received: Work Order: Preparation: Method:

18-04-0188 N/A

04/03/18

EPA TO-15M

Page 11 of 20

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре		Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Ba	atch Number
099-12-981-8423	LCS		Air	GC/MS II	N/A	04/04/18 11:20	180404L02	
099-12-981-8423	LCSD		Air	GC/MS II	N/A	04/04/18 12:09	180404L02	
Parameter		Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	Qualifiers
1,4-Bromofluorobenzene		0.02500	0.02386	95	0.02373	95	57-129	
1,2-Dichloroethane-d4		0.02500	0.02214	89	0.02192	88	47-137	
Toluene-d8		0.02500	0.02487	99	0.02466	99	78-156	

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

04/03/18 18-04-0188 N/A

Method:

EPA TO-15M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 12 of 20

Quality Control Sample ID	Туре		Matrix		ument	Date Prepare			LCS/LCSD Ba	tch Numbe
099-12-981-8422	LCS		Air	GC/I	IS ZZ	N/A	04/04/1	18 11:43	180404L02	
099-12-981-8422	LCSD		Air	GC/I	VIS ZZ	N/A	04/04/1	18 12:32	180404L02	
<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Acetone	0.02500	0.02468	99	0.02514	101	50-150	33-167	2	0-35	
Benzene	0.02500	0.02352	94	0.02387	95	60-156	44-172	2	0-40	
Benzyl Chloride	0.02500	0.02848	114	0.02880	115	50-150	33-167	1	0-35	
Bromodichloromethane	0.02500	0.02534	101	0.02568	103	50-150	33-167	1	0-35	
Bromoform	0.02500	0.02847	114	0.02884	115	50-150	33-167	1	0-38	
Bromomethane	0.02500	0.02745	110	0.02757	110	50-150	33-167	0	0-35	
2-Butanone	0.02500	0.02322	93	0.02355	94	50-150	33-167	1	0-35	
Carbon Disulfide	0.02500	0.02387	95	0.02415	97	50-150	33-167	1	0-35	
Carbon Tetrachloride	0.02500	0.02720	109	0.02742	110	64-154	49-169	1	0-32	
Chlorobenzene	0.02500	0.02567	103	0.02626	105	50-150	33-167	2	0-35	
Chloroethane	0.02500	0.02763	111	0.02741	110	50-150	33-167	1	0-35	
Chloroform	0.02500	0.02398	96	0.02429	97	50-150	33-167	1	0-35	
Chloromethane	0.02500	0.02728	109	0.02713	109	50-150	33-167	1	0-35	
Dibromochloromethane	0.02500	0.02686	107	0.02723	109	50-150	33-167	1	0-35	
Dichlorodifluoromethane	0.02500	0.02762	110	0.02752	110	50-150	33-167	0	0-35	
1,1-Dichloroethane	0.02500	0.02356	94	0.02395	96	50-150	33-167	2	0-35	
1,1-Dichloroethene	0.02500	0.02424	97	0.02437	97	50-150	33-167	1	0-35	
1,2-Dibromoethane	0.02500	0.02564	103	0.02611	104	54-144	39-159	2	0-36	
Dichlorotetrafluoroethane	0.02500	0.02889	116	0.02869	115	50-150	33-167	1	0-35	
1,2-Dichlorobenzene	0.02500	0.02804	112	0.02865	115	34-160	13-181	2	0-47	
1,2-Dichloroethane	0.02500	0.02416	97	0.02440	98	69-153	55-167	1	0-35	
1,2-Dichloropropane	0.02500	0.02412	96	0.02442	98	67-157	52-172	1	0-35	
1,3-Dichlorobenzene	0.02500	0.02861	114	0.02909	116	50-150	33-167	2	0-35	
1,4-Dichlorobenzene	0.02500	0.02882	115	0.02917	117	36-156	16-176	1	0-47	
c-1,3-Dichloropropene	0.02500	0.02531	101	0.02568	103	61-157	45-173	1	0-35	
c-1,2-Dichloroethene	0.02500	0.02381	95	0.02434	97	50-150	33-167	2	0-35	
t-1,2-Dichloroethene	0.02500	0.02392	96	0.02443	98	50-150	33-167	2	0-35	
t-1,3-Dichloropropene	0.02500	0.02600	104	0.02636	105	50-150	33-167	1	0-35	
Ethylbenzene	0.02500	0.02586	103	0.02638	106	52-154	35-171	2	0-38	
4-Ethyltoluene	0.02500	0.02701	108	0.02741	110	50-150	33-167	1	0-35	
Hexachloro-1,3-Butadiene	0.02500	0.03324	133	0.03370	135	50-150	33-167	1	0-35	
2-Hexanone	0.02500	0.02472	99	0.02529	101	50-150	33-167	2	0-35	
Methyl-t-Butyl Ether (MTBE)	0.02500	0.02264	91	0.02332	93	50-150	33-167	3	0-35	
Methylene Chloride	0.02500	0.02429	97	0.02479	99	50-150	33-167	2	0-35	
4-Methyl-2-Pentanone	0.02500	0.02427	97	0.02482	99	50-150	33-167	2	0-35	

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/03/18 18-04-0188 N/A EPA TO-15M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 13 of 20

<u>Parameter</u>	<u>Spike</u> Added	LCS Conc	<u>. LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	<u>Qualifiers</u>
o-Xylene	0.02500	0.02509	100	0.02547	102	52-148	36-164	2	0-38	
p/m-Xylene	0.05000	0.05312	106	0.05386	108	42-156	23-175	1	0-41	
Styrene	0.02500	0.02491	100	0.02543	102	50-150	33-167	2	0-35	
Tetrachloroethene	0.02500	0.02725	109	0.02777	111	56-152	40-168	2	0-40	
Toluene	0.02500	0.02419	97	0.02465	99	56-146	41-161	2	0-43	
Trichloroethene	0.02500	0.02542	102	0.02582	103	63-159	47-175	2	0-34	
Trichlorofluoromethane	0.02500	0.02435	97	0.02459	98	50-150	33-167	1	0-35	
1,1,2-Trichloro-1,2,2- Trifluoroethane	0.02500	0.02549	102	0.02584	103	50-150	33-167	1	0-35	
1,1,1-Trichloroethane	0.02500	0.02475	99	0.02513	101	50-150	33-167	2	0-35	
1,1,2-Trichloroethane	0.02500	0.02496	100	0.02525	101	65-149	51-163	1	0-37	
1,3,5-Trimethylbenzene	0.02500	0.02752	110	0.02795	112	50-150	33-167	2	0-35	
1,1,2,2-Tetrachloroethane	0.02500	0.02490	100	0.02537	101	50-150	33-167	2	0-35	
1,2,4-Trimethylbenzene	0.02500	0.02833	113	0.02888	116	50-150	33-167	2	0-35	
1,2,4-Trichlorobenzene	0.02500	0.03137	125	0.03197	128	50-150	33-167	2	0-35	
Vinyl Acetate	0.02500	0.02259	90	0.02291	92	50-150	33-167	1	0-35	
Vinyl Chloride	0.02500	0.02765	111	0.02762	110	45-177	23-199	0	0-36	

Total number of LCS compounds: 51 Total number of ME compounds: 0 Total number of ME compounds allowed: 3 LCS ME CL validation result: Pass

LCS/LCSD - Surrogate

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153

Date Received: Work Order: Preparation: Method:

18-04-0188 N/A

04/03/18

EPA TO-15M

Page 14 of 20

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре		Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Ba	atch Number
099-12-981-8422	LCS		Air	GC/MS ZZ	N/A	04/04/18 11:43	180404L02	
099-12-981-8422	LCSD		Air	GC/MS ZZ	N/A	04/04/18 12:32	180404L02	
Parameter		Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	Qualifiers
1,4-Bromofluorobenzene		0.02500	0.02467	99	0.02430	97	57-129	
1,2-Dichloroethane-d4		0.02500	0.02395	96	0.02377	95	47-137	
Toluene-d8		0.02500	0.02473	99	0.02457	98	78-156	

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/03/18 18-04-0188 N/A EPA TO-15M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 15 of 20

Quality Control Sample ID	Туре		Matrix		ument	Date Prepare			LCS/LCSD Ba	tch Numbe
099-12-981-8426	LCS		Air	GC/I	VIS ZZ	N/A	04/05/1	18 11:56	180405L02	
099-12-981-8426	LCSD		Air	GC/I	VIS ZZ	N/A	04/05/	18 12:44	180405L02	
<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Acetone	0.02500	0.02439	98	0.02472	99	50-150	33-167	1	0-35	
Benzene	0.02500	0.02309	92	0.02370	95	60-156	44-172	3	0-40	
Benzyl Chloride	0.02500	0.03044	122	0.03094	124	50-150	33-167	2	0-35	
Bromodichloromethane	0.02500	0.02612	104	0.02615	105	50-150	33-167	0	0-35	
Bromoform	0.02500	0.03094	124	0.03148	126	50-150	33-167	2	0-38	
Bromomethane	0.02500	0.02818	113	0.02784	111	50-150	33-167	1	0-35	
2-Butanone	0.02500	0.02318	93	0.02356	94	50-150	33-167	2	0-35	
Carbon Disulfide	0.02500	0.02387	95	0.02409	96	50-150	33-167	1	0-35	
Carbon Tetrachloride	0.02500	0.02747	110	0.02771	111	64-154	49-169	1	0-32	
Chlorobenzene	0.02500	0.02587	103	0.02664	107	50-150	33-167	3	0-35	
Chloroethane	0.02500	0.02812	112	0.02785	111	50-150	33-167	1	0-35	
Chloroform	0.02500	0.02416	97	0.02447	98	50-150	33-167	1	0-35	
Chloromethane	0.02500	0.02805	112	0.02776	111	50-150	33-167	1	0-35	
Dibromochloromethane	0.02500	0.02781	111	0.02820	113	50-150	33-167	1	0-35	
Dichlorodifluoromethane	0.02500	0.02896	116	0.02872	115	50-150	33-167	1	0-35	
1,1-Dichloroethane	0.02500	0.02355	94	0.02384	95	50-150	33-167	1	0-35	
1,1-Dichloroethene	0.02500	0.02440	98	0.02453	98	50-150	33-167	1	0-35	
1,2-Dibromoethane	0.02500	0.02642	106	0.02693	108	54-144	39-159	2	0-36	
Dichlorotetrafluoroethane	0.02500	0.03004	120	0.02950	118	50-150	33-167	2	0-35	
1,2-Dichlorobenzene	0.02500	0.02926	117	0.03001	120	34-160	13-181	3	0-47	
1,2-Dichloroethane	0.02500	0.02466	99	0.02493	100	69-153	55-167	1	0-35	
1,2-Dichloropropane	0.02500	0.02402	96	0.02435	97	67-157	52-172	1	0-35	
1,3-Dichlorobenzene	0.02500	0.02981	119	0.03047	122	50-150	33-167	2	0-35	
1,4-Dichlorobenzene	0.02500	0.03014	121	0.03069	123	36-156	16-176	2	0-47	
c-1,3-Dichloropropene	0.02500	0.02583	103	0.02581	103	61-157	45-173	0	0-35	
c-1,2-Dichloroethene	0.02500	0.02359	94	0.02409	96	50-150	33-167	2	0-35	
t-1,2-Dichloroethene	0.02500	0.02363	95	0.02406	96	50-150	33-167	2	0-35	
t-1,3-Dichloropropene	0.02500	0.02683	107	0.02679	107	50-150	33-167	0	0-35	
Ethylbenzene	0.02500	0.02589	104	0.02669	107	52-154	35-171	3	0-38	
4-Ethyltoluene	0.02500	0.02735	109	0.02789	112	50-150	33-167	2	0-35	
Hexachloro-1,3-Butadiene	0.02500	0.03713	149	0.03778	151	50-150	33-167	2	0-35	ME
2-Hexanone	0.02500	0.02482	99	0.02529	101	50-150	33-167	2	0-35	
Methyl-t-Butyl Ether (MTBE)	0.02500	0.02180	87	0.02248	90	50-150	33-167	3	0-35	
Methylene Chloride	0.02500	0.02398	96	0.02435	97	50-150	33-167	1	0-35	
4-Methyl-2-Pentanone	0.02500	0.02464	99	0.02497	100	50-150	33-167	1	0-35	

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/03/18 18-04-0188 N/A EPA TO-15M

Page 16 of 20

0-36

Project: Del Amo Superfund Site, Los Angeles /

60566446.2018.1.0601

<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Cond	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
o-Xylene	0.02500	0.02525	101	0.02594	104	52-148	36-164	3	0-38	
p/m-Xylene	0.05000	0.05425	108	0.05534	111	42-156	23-175	2	0-41	
Styrene	0.02500	0.02515	101	0.02597	104	50-150	33-167	3	0-35	
Tetrachloroethene	0.02500	0.02708	108	0.02780	111	56-152	40-168	3	0-40	
Toluene	0.02500	0.02410	96	0.02451	98	56-146	41-161	2	0-43	
Trichloroethene	0.02500	0.02594	104	0.02601	104	63-159	47-175	0	0-34	
Trichlorofluoromethane	0.02500	0.02481	99	0.02484	99	50-150	33-167	0	0-35	
1,1,2-Trichloro-1,2,2- Trifluoroethane	0.02500	0.02562	102	0.02570	103	50-150	33-167	0	0-35	
1,1,1-Trichloroethane	0.02500	0.02496	100	0.02526	101	50-150	33-167	1	0-35	
1,1,2-Trichloroethane	0.02500	0.02556	102	0.02562	102	65-149	51-163	0	0-37	
1,3,5-Trimethylbenzene	0.02500	0.02790	112	0.02843	114	50-150	33-167	2	0-35	
1,1,2,2-Tetrachloroethane	0.02500	0.02631	105	0.02698	108	50-150	33-167	3	0-35	
1,2,4-Trimethylbenzene	0.02500	0.02903	116	0.02968	119	50-150	33-167	2	0-35	
1,2,4-Trichlorobenzene	0.02500	0.03547	142	0.03650	146	50-150	33-167	3	0-35	
Vinyl Acetate	0.02500	0.02269	91	0.02288	92	50-150	33-167	1	0-35	

0.02798

112

45-177

23-199

1

Total number of LCS compounds: 51
Total number of ME compounds: 1
Total number of ME compounds allowed: 3
LCS ME CL validation result: Pass

0.02500

0.02829

113

Vinyl Chloride

LCS/LCSD - Surrogate

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

18-04-0188 N/A

04/03/18

Method:

EPA TO-15M

Page 17 of 20

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре		Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Ba	atch Number
099-12-981-8426	LCS		Air	GC/MS ZZ	N/A	04/05/18 11:56	180405L02	
099-12-981-8426	LCSD		Air	GC/MS ZZ	N/A	04/05/18 12:44	180405L02	
Parameter		Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	Qualifiers
1,4-Bromofluorobenzene		0.02500	0.02490	100	0.02446	98	57-129	
1,2-Dichloroethane-d4		0.02500	0.02483	99	0.02444	98	47-137	
Toluene-d8		0.02500	0.02513	101	0.02472	99	78-156	

Quality Control - LCS

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153

Date Received: Work Order: Preparation: Method:

04/03/18 18-04-0188 N/A

EPA TO-3M

Page 18 of 20

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре	Matrix	Instrument	Date	e Prepared D	Date Analyzed	LCS Batch	Number
098-01-005-8393	LCS	Air	GC 13	N/A	0	04/03/18 18:55	180403L02	
Parameter		Spike Added	Conc. Recov	<u>rered</u>	LCS %Rec	<u>. %Rec.</u>	CL	<u>Qualifiers</u>
TPH as Gasoline		200.0	196.2		98	80-120)	

04/03/18

N/A

18-04-0188

Page 19 of 20

Quality Control - LCS/LCSD

AECOM Date Received: 130 Robin Hill Road, Suite 100 Work Order: Santa Barbara, CA 93117-3153 Preparation:

> Method: SCAQMD 25.1M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pr	epared	Date	Analyzed	LCS/LCSD B	atch Number
099-07-024-1538	LCS	Air		GC 14	N/A		04/03	/18 10:50	180403L01	
099-07-024-1538	LCSD	Air		GC 14	N/A		04/03	/18 11:13	180403L01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec	. CL	RPD	RPD CL	Qualifiers
Methane	101.0	105.6	105	102.6	102	80-120	0	3	0-20	

Page 20 of 20

N/A

Quality Control - LCS/LCSD

AECOM Date Received: 04/03/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0188 Santa Barbara, CA 93117-3153 Preparation:

> Method: SCAQMD 25.1M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pr	epared D	ate Analyzed	LCS/LCSD B	atch Number
099-07-024-1537	LCS	Air		GC 14	N/A	04	4/04/18 10:57	180404L01	
099-07-024-1537	LCSD	Air		GC 14	N/A	04	4/04/18 11:17	180404L01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. C	CL RPD	RPD CL	<u>Qualifiers</u>
Methane	101.0	106.1	105	104.5	104	80-120	1	0-20	

Sample Analysis Summary Report

Work Order: 18-04-0188				Page 1 of 1
Method	Extraction	Chemist ID	Instrument	Analytical Location
ASTM D-1946	N/A	1144	GC 65	2
ASTM D-1946	N/A	1145	GC 65	2
EPA TO-15M	N/A	866	GC/MS II	2
EPA TO-15M	N/A	1087	GC/MS HH	2
EPA TO-15M	N/A	1087	GC/MS ZZ	2
EPA TO-3M	N/A	748	GC 13	2
ЕРА ТО-3М	N/A	1144	GC 13	2
EPA TO-3M	N/A	1145	GC 13	2
SCAQMD 25.1M	N/A	748	GC 14	2
SCAQMD 25.1M	N/A	1144	GC 14	2
SCAOMD 25 1M	N/A	1145	GC 14	2

Glossary of Terms and Qualifiers

Work Order: 18-04-0188 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Calscience

WORK ORDER NUMBER: $\frac{18-04-6182}{18-04-6182}$

SAMPLE RECEIPT CHECKLIST

COOLER O OF

CLIENT: ARCOM	DATE	: 04/3	² / 2018
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue)			
Thermometer ID: SC6 (CF: +0.1°C); Temperature (w/o CF):°C (w/ CF):	°C·	□ Blank	☐ Sample
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)		- Diam	- Campie
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day o	f sampling		
☐ Sample(s) received at ambient temperature; placed on ice for transport by courier	rsamping		
Ambient Temperature: Air Filter		Checked	1091
Table 16 (Shiporatal 6, La Yan La Yang)		Checked	by. <u>/ 0 1/</u>
CUSTODY SEAL:			.001
Cooler ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present	Q N/A	Checked	by: 1071
Sample(s) ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present	□ N/A	Checked	
SAMPLE CONDITION:			
		_	No N/A
Chain-of-Custody (COC) document(s) received with samples			
COC document(s) received complete			
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers			
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relin	•	_	
Sampler's name indicated on COC			
Sample container label(s) consistent with COC		T	
Sample container(s) intact and in good condition			
Proper containers for analyses requested			
Sufficient volume/mass for analyses requested			
Samples received within holding time	,	D	
Aqueous samples for certain analyses received within 15-minute holding time			
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfide ☐ Dissolved Oxygen			
Proper preservation chemical(s) noted on COC and/or sample container			
Unpreserved aqueous sample(s) received for certain analyses			
☐ Volatile Organics ☐ Total Metals ☐ Dissolved Metals			
Acid/base preserved samples - pH within acceptable range			
Container(s) for certain analysis free of headspace			
☐ Volatile Organics ☐ Dissolved Gases (RSK-175) ☐ Dissolved Oxygen (SM 450			
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Ha	•		
Tedlar™ bag(s) free of condensation	•	M	
	k Lot Numbe		
Aqueous: UVOA UVOAna2 U100PJ U100PJna2 U125AGB U125AGBh U			
□ 250AGB □ 250CGB □ 250CGBs (pH_2) □ 250PB □ 250PBn (pH_2) □ 500AGB □ 500AGB	*		" /
□ 1AGB □ 1AGBna₂ □ 1AGBs (pH_2) □ 1AGBs (O&G) □ 1PB □ 1PBna (pH_12) □			
Solid: 🗆 4ozCGJ 🗆 8ozCGJ 🗆 16ozCGJ 🗆 Sleeve () 🗀 EnCores® () 🗀 TerraCores® ()			
Air: ☑ Tedlar™ ☐ Canister ☐ Sorbent Tube ☐ PUF ☐ Other Matrix ()			
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and	Z = Ziploc/Rese	ealable Bag	
Preservative: $b = buffered$, $f = filtered$, $h = HCl$, $n = HNO_3$, $na = NaOH$, $na_2 = Na_2S_2O_3$, $p = H_3PO_3$	D₄, Labeled	/Checked	by: <u>3500</u>
$s = H_2SO_4$, $u = ultra-pure$, $x = Na_2SO_3+NaHSO_4$, H_2O_1 , $znna = Zn (CH_3CO_2)_2 + NaO_2$		Reviewed	

Calscience

Supplemental Report 3

The original report has been revised/corrected.

WORK ORDER NUMBER: 18-04-0574

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AECOM

Client Project Name: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Attention: Julie Doane-Allmon

130 Robin Hill Road

Suite 100

Santa Barbara, CA 93117-3153

Vikas Patel

Approved for release on 06/20/2018 by:

Vikas Patel **Project Manager**

ResultLink >

Email your PM >

Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.06	Client Project Name:	Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601
---	----------------------	--

Work Order Number: 18-04-0574

1	Work Order Narrative	3
2	Sample Summary	4
3	QC Association Summary	5
4	Detections Summary	6
5	Client Sample Data. 5.1 ASTM D-1946 Fixed Gases (Air). 5.2 EPA TO-15 (M) Full List (Air). 5.3 EPA TO-15 (M) Full List + Oxygenates (Air). 5.4 EPA TO-3 (M) TPH Gasoline (Air). 5.5 SCAQMD 25.1 TGNMO and CH4 (Air).	8 10 24 30 32
6	Quality Control Sample Data. 6.1 Sample Duplicate. 6.2 LCS/LCSD.	33 33 34
7	Sample Analysis Summary	43
8	Glossary of Terms and Qualifiers	44
9	Chain-of-Custody/Sample Receipt Form	45

Work Order Narrative

Work Order: 18-04-0574 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/06/18. They were assigned to Work Order 18-04-0574.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

DoD Projects:

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.

Sample Summary

Client: AECOM Work Order: 18-04-0574

Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 130 Robin Hill Road, Suite 100 Project Name: Santa Barbara, CA 93117-3153

PO Number: 100067

04/06/18 18:10 Date/Time

Received:

8 Number of

Containers:

Attn: Julie Doane-Allmon

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
VSS01366	18-04-0574-1	04/05/18 12:00	1	Air
VSS01365	18-04-0574-2	04/05/18 12:01	2	Air
VSS01367	18-04-0574-3	04/05/18 12:05	1	Air
VSS01368	18-04-0574-4	04/06/18 14:55	2	Air
VSS01369	18-04-0574-5	04/06/18 15:00	1	Air
VSS01370	18-04-0574-6	04/06/18 15:05	1	Air

QC Association Summary

Work Order: 18-0	4-0574				Pa	ge 1 of 1
Client Sample ID	Method Name	<u>Type</u>	Ext Name	Instrument	MS/MSD/SDF	LCS/LCSD
VSS01366	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180407L01
VSS01366	EPA TO-15 (M) Full List		N/A	GC/MS II	*2	180406L02
VSS01366	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180406D01	180406L01
VSS01366	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180407L02
VSS01365	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180407L01
VSS01365	EPA TO-15 (M) Full List		N/A	GC/MS II	*2	180406L02
VSS01365	EPA TO-15 (M) Full List	R	N/A	GC/MS II	*1	180406L02
VSS01365	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180406D01	180406L01
VSS01365	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180407L02
VSS01367	EPA TO-15 (M) Full List		N/A	GC/MS II	*2	180409L02
VSS01367	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180406D01	180406L01
VSS01368	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180407L01
VSS01368	EPA TO-15 (M) Full List + Oxygenates		N/A	GC/MS II	*2	180406L02
VSS01368	EPA TO-15 (M) Full List + Oxygenates	R	N/A	GC/MS II	*1	180406L02
VSS01368	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180406D01	180406L01
VSS01368	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180407L02
VSS01369	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180407L01
VSS01369	EPA TO-15 (M) Full List		N/A	GC/MS II	*2	180406L02
VSS01369	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180406D01	180406L01
VSS01369	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180407L02
VSS01370	EPA TO-15 (M) Full List		N/A	GC/MS II	*2	180409L02
VSS01370	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180406D01	180406L01

^{1 =} Dilution analysis performed, no associated matrix QC

^{2 =} Limited sample received, no MS/MSD performed

R = Rerun

Santa Barbara, CA 93117-3153

Detections Summary

Client: AECOM Work Order: 18-04-0574

Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 130 Robin Hill Road, Suite 100 Project Name:

Received: 04/06/18

Page 1 of 2 Attn: Julie Doane-Allmon

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	Method	Extraction
VSS01366 (18-04-0574-1)						
Carbon Dioxide	1.19		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	19.8		0.500	%v	ASTM D-1946	N/A
Nitrogen	79.0		0.500	%v	ASTM D-1946	N/A
Acetone	16	J	2.9*	ppm (v/v)	EPA TO-15M	N/A
Benzene	980		5.0	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	670		5.0	ppm (v/v)	EPA TO-15M	N/A
Styrene	0.97	J	0.64*	ppm (v/v)	EPA TO-15M	N/A
Toluene	20	J	1.3*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	1700		10	ppm (v/v)	EPA TO-3M	N/A
Methane	26		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01365 (18-04-0574-2)						
Carbon Dioxide	11.0		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	5.63		0.500	%v	ASTM D-1946	N/A
Nitrogen	83.4		0.500	%v	ASTM D-1946	N/A
Benzene	7600		80	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	1900		40	ppm (v/v)	EPA TO-15M	N/A
Toluene	87	J	11*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	13000		100	ppm (v/v)	EPA TO-3M	N/A
Methane	260		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01367 (18-04-0574-3)						
Acetone	0.042	J,BU	0.0072*	ppm (v/v)	EPA TO-15M	N/A
Benzene	1.3	BU	0.012	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	2.2	BU	0.012	ppm (v/v)	EPA TO-15M	N/A
Toluene	0.033	J,BU	0.0034*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	6.7		2.0	ppm (v/v)	EPA TO-3M	N/A

^{*} MDL is shown

Santa Barbara, CA 93117-3153

Detections Summary

Client: AECOM Work Order: 18-04-0574

Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 Project Name: 130 Robin Hill Road, Suite 100

Received: 04/06/18

Julie Doane-Allmon Page 2 of 2 Attn:

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
VSS01368 (18-04-0574-4)						
Carbon Dioxide	12.4		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	4.93		0.500	%v	ASTM D-1946	N/A
Nitrogen	82.7		0.500	%v	ASTM D-1946	N/A
Benzene	7600		100	ppm (v/v)	EPA TO-15M	N/A
Cyclohexane	87		40	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	3000		40	ppm (v/v)	EPA TO-15M	N/A
Heptane	710		160	ppm (v/v)	EPA TO-15M	N/A
Hexane	25	J	13*	ppm (v/v)	EPA TO-15M	N/A
Toluene	110	J	11*	ppm (v/v)	EPA TO-15M	N/A
Methanol	220	J	110*	ppm (v/v)	EPA TO-15M	N/A
Isopropanol	25	J	20*	ppm (v/v)	EPA TO-15M	N/A
Isopropylbenzene	19	J	17*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	19000		200	ppm (v/v)	EPA TO-3M	N/A
Methane	250		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01369 (18-04-0574-5)						
Carbon Dioxide	1.18		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	19.9		0.500	%v	ASTM D-1946	N/A
Nitrogen	78.9		0.500	%v	ASTM D-1946	N/A
Acetone	31	J	2.9*	ppm (v/v)	EPA TO-15M	N/A
Benzene	660		5.0	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	320		5.0	ppm (v/v)	EPA TO-15M	N/A
Toluene	13	J	1.3*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	1600		20	ppm (v/v)	EPA TO-3M	N/A
Methane	23		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01370 (18-04-0574-6)						
Acetone	0.0059	J	0.0057*	ppm (v/v)	EPA TO-15M	N/A
Benzene	0.88		0.010	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	1.6		0.010	ppm (v/v)	EPA TO-15M	N/A
Toluene	0.027	J	0.0027*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	8.4		2.0	ppm (v/v)	EPA TO-3M	N/A

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Page 1 of 2

Analytical Report

AECOM Date Received: 04/06/18 18-04-0574 130 Robin Hill Road, Suite 100 Work Order: Santa Barbara, CA 93117-3153 Preparation: N/A Method: **ASTM D-1946** Units:

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01366	18-04-0574-1-A	04/05/18 12:00	Air	GC 65	N/A	04/07/18 11:02	180407L01
Comment(s): - Results were evaluated t	o the MDL (DL), cond	centrations >= 1	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Carbon Dioxide	1.19		0.500	0.139	1.00		
Carbon Monoxide	ND		0.500	0.183	1.00		
Oxygen (+ Argon)	19.8		0.500	0.205	1.00		
Nitrogen	79.0		0.500	0.477	1.00		

VSS01365	18-04-0574-2-A	04/05/18 12:01	Air GC 65	N/A	04/07/18 180407L01 11:26
Comment(s): - Results were evaluated to	the MDL (DL), cond	entrations >= to	the MDL (DL) but < R	L (LOQ), if found, ar	e qualified with a "J" flag.
<u>Parameter</u>	Resul	<u>lt RL</u>	<u>MD</u>	<u>L</u> <u>DF</u>	<u>Qualifiers</u>
Carbon Dioxide	11.0	0.5	500 0.13	39 1.00	
Carbon Monoxide	ND	0.5	500 0.1	1.00	
Oxygen (+ Argon)	5.63	0.5	500 0.2	05 1.00	
Nitrogen	83.4	0.5	500 0.4	77 1.00)

VSS01368	18-04-0574-4-A	04/06/18 Air 14:55	GC 65		04/07/18 180407L01 11:46
Comment(s): - Results were evaluated to	the MDL (DL), conce	entrations >= to the I	MDL (DL) but < RL (LOQ), if found, are qu	ualified with a "J" flag.
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Dioxide	12.4	0.500	0.139	1.00	
Carbon Monoxide	ND	0.500	0.183	1.00	
Oxygen (+ Argon)	4.93	0.500	0.205	1.00	
Nitrogen	82.7	0.500	0.477	1.00	

VSS01369		04/06/18 Air 15:00	GC 65		04/07/18 180407L01 12:12
Comment(s): - Results were evaluated to	the MDL (DL), concer	ntrations >= to the M	DL (DL) but < RL (LC	OQ), if found, are qu	alified with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Dioxide	1.18	0.500	0.139	1.00	
Carbon Monoxide	ND	0.500	0.183	1.00	
Oxygen (+ Argon)	19.9	0.500	0.205	1.00	
Nitrogen	78.9	0.500	0.477	1.00	

04/06/18 **AECOM** Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: **ASTM D-1946** Units:

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 Page 2 of 2

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-16-444-762	N/A	Air	GC 65	N/A	04/07/18 10:23	180407L01
Comment(s): - Results were evaluated to	o the MDL (DL), cond	centrations >= t	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u> .	<u>RL</u>	<u>MDL</u>	<u>DF</u>	2	<u>Qualifiers</u>
Carbon Dioxide	ND		0.500	0.139	1.00		
Carbon Monoxide	ND		0.500	0.183	1.00		
Oxygen (+ Argon)	ND		0.500	0.205	1.00		
Nitrogen	ND		0.500	0.477	1.00		

04/06/18

N/A

18-04-0574

Page 1 of 14

Analytical Report

AECOM Date Received: 130 Robin Hill Road, Suite 100 Work Order: Santa Barbara, CA 93117-3153 Preparation:

> Method: EPA TO-15M Units: ppm (v/v)

> > 10000

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Methylene Chloride

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II
VSS01366	18-04-0574-1-A	04/05/18 12:00	Air	GC/MS II	N/A	04/07/18 03:03	180406L02
Comment(s): - Results were evalu	uated to the MDL (DL), con-	centrations >=	to the MDL (DL) but < RL (LC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Acetone	16		500	2.9	10000	J	J
Benzene	980		5.0	0.85	10000		
Benzyl Chloride	ND		15	0.49	10000		
Bromodichloromethane	ND		5.0	0.62	10000		
Bromoform	ND		5.0	0.81	10000		
Bromomethane	ND		5.0	1.4	10000		
2-Butanone	ND		15	4.3	10000		
Carbon Disulfide	ND		100	2.8	10000		
Carbon Tetrachloride	ND		5.0	0.62	10000		
Chlorobenzene	ND		5.0	0.68	10000		
Chloroethane	ND		5.0	2.4	10000		
Chloroform	ND		5.0	0.69	10000		
Chloromethane	ND		5.0	2.4	10000		
Dibromochloromethane	ND		5.0	0.55	10000		
Dichlorodifluoromethane	ND		5.0	0.60	10000		
1,1-Dichloroethane	ND		5.0	0.63	10000		
1,1-Dichloroethene	ND		5.0	2.0	10000		
1,2-Dibromoethane	ND		5.0	0.69	10000		
Dichlorotetrafluoroethane	ND		20	2.7	10000		
1,2-Dichlorobenzene	ND		5.0	0.53	10000		
1,2-Dichloroethane	ND		5.0	0.69	10000		
1,2-Dichloropropane	ND		5.0	1.9	10000		
1,3-Dichlorobenzene	ND		5.0	1.6	10000		
1,4-Dichlorobenzene	ND		5.0	0.67	10000		
c-1,3-Dichloropropene	ND		5.0	0.65	10000		
c-1,2-Dichloroethene	ND		5.0	0.87	10000		
t-1,2-Dichloroethene	ND		5.0	1.3	10000		
t-1,3-Dichloropropene	ND		10	0.69	10000		
Ethylbenzene	670		5.0	1.4	10000		
4-Ethyltoluene	ND		5.0	1.6	10000		
Hexachloro-1,3-Butadiene	ND		15	1.0	10000		
2-Hexanone	ND		15	4.4	10000		
Methyl-t-Butyl Ether (MTBE)	ND		20	1.5	10000		

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

ND

50

2.5

AECOM Date Received: 04/06/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 2 of 14

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Toluene-d8

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers	
4-Methyl-2-Pentanone	ND	15	3.7	10000		
o-Xylene	ND	5.0	1.6	10000		
p/m-Xylene	ND	20	3.3	10000		
Styrene	0.97	15	0.64	10000	J	
Tetrachloroethene	ND	5.0	0.67	10000		
Toluene	20	50	1.3	10000	J	
Trichloroethene	ND	5.0	0.69	10000		
Trichlorofluoromethane	ND	10	1.7	10000		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	15	0.70	10000		
1,1,1-Trichloroethane	ND	5.0	0.79	10000		
1,1,2-Trichloroethane	ND	5.0	1.8	10000		4
1,3,5-Trimethylbenzene	ND	5.0	1.4	10000		
1,1,2,2-Tetrachloroethane	ND	10	1.4	10000		
1,2,4-Trimethylbenzene	ND	15	1.5	10000		
1,2,4-Trichlorobenzene	ND	20	1.2	10000		
Vinyl Acetate	ND	20	0.98	10000		
Vinyl Chloride	ND	5.0	2.2	10000		
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	98	57-129				
1,2-Dichloroethane-d4	98	47-137				

78-156

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

102

Page 3 of 14

Analytical Report

AECOM Date Received: 04/06/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01365	18-04-0574-2-A	04/05/18 12:01	Air	GC/MS II	N/A	04/07/18 04:41	180406L02
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >=	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
Acetone	ND		4000	23	80000		
Benzyl Chloride	ND		120	3.9	80000		
Bromodichloromethane	ND		40	5.0	80000		
Bromoform	ND		40	6.5	80000		
Bromomethane	ND		40	11	80000		
2-Butanone	ND		120	35	80000		
Carbon Disulfide	ND		800	22	80000		
Carbon Tetrachloride	ND		40	4.9	80000		
Chlorobenzene	ND		40	5.4	80000		
Chloroethane	ND		40	19	80000		
Chloroform	ND		40	5.5	80000		
Chloromethane	ND		40	19	80000		
Dibromochloromethane	ND		40	4.4	80000		
Dichlorodifluoromethane	ND		40	4.8	80000		
1,1-Dichloroethane	ND		40	5.0	80000		
1,1-Dichloroethene	ND		40	16	80000		
1,2-Dibromoethane	ND		40	5.5	80000		
Dichlorotetrafluoroethane	ND		160	21	80000		
1,2-Dichlorobenzene	ND		40	4.2	80000		
1,2-Dichloroethane	ND		40	5.5	80000		
1,2-Dichloropropane	ND		40	15	80000		
1,3-Dichlorobenzene	ND		40	13	80000		
1,4-Dichlorobenzene	ND		40	5.4	80000		
c-1,3-Dichloropropene	ND		40	5.2	80000		
c-1,2-Dichloroethene	ND		40	7.0	80000		
t-1,2-Dichloroethene	ND		40	10	80000		
t-1,3-Dichloropropene	ND		80	5.5	80000		
Ethylbenzene	1900		40	12	80000		
4-Ethyltoluene	ND		40	13	80000		
Hexachloro-1,3-Butadiene	ND		120	8.2	80000		
2-Hexanone	ND		120	35	80000		
Methyl-t-Butyl Ether (MTBE)	ND		160	12	80000		
Methylene Chloride	ND		400	20	80000		
4-Methyl-2-Pentanone	ND		120	30	80000		

AECOM Date Received: 04/06/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 4 of 14

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
o-Xylene	ND	40	13	80000	
p/m-Xylene	ND	160	27	80000	
Styrene	ND	120	5.1	80000	
Tetrachloroethene	ND	40	5.4	80000	
Toluene	87	400	11	80000	J
Trichloroethene	ND	40	5.6	80000	
Trichlorofluoromethane	ND	80	14	80000	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	120	5.6	80000	
1,1,1-Trichloroethane	ND	40	6.3	80000	
1,1,2-Trichloroethane	ND	40	15	80000	
1,3,5-Trimethylbenzene	ND	40	12	80000	
1,1,2,2-Tetrachloroethane	ND	80	11	80000	
1,2,4-Trimethylbenzene	ND	120	12	80000	
1,2,4-Trichlorobenzene	ND	160	9.9	80000	
Vinyl Acetate	ND	160	7.8	80000	
Vinyl Chloride	ND	40	18	80000	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	98	57-129			
1,2-Dichloroethane-d4	100	47-137			
Toluene-d8	102	78-156			

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01365	18-04-0574-2-A	04/05/18 12:01	Air	GC/MS II	N/A	04/07/18 05:36	180406L02

Comment(s): - Results were	e evaluated to the MDL (DL), concentration	s >= to the MDL (DL) I	but < RL (LOQ), i	if found, are qualified	d with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Benzene	7600	80	14	160000	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	99	57-129			
1,2-Dichloroethane-d4	100	47-137			
Toluene-d8	101	78-156			

Page 5 of 14

Ouglifiers

Santa Barbara, CA 93117-3153

Analytical Report

AECOM Date Received: 04/06/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Preparation: N/A

> Method: EPA TO-15M

Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01367	18-04-0574-3-A	04/05/18 12:05	Air	GC/MS II	N/A	04/09/18 18:01	180409L02

- Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. Comment(s):

- Sample analysis requested after recommended holding time.

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Acetone	0.042	1.2	0.0072	25.0	J,BU
Benzene	1.3	0.012	0.0021	25.0	BU
Benzyl Chloride	ND	0.038	0.0012	25.0	BU
Bromodichloromethane	ND	0.012	0.0015	25.0	BU
Bromoform	ND	0.012	0.0020	25.0	BU
Bromomethane	ND	0.012	0.0035	25.0	BU
2-Butanone	ND	0.038	0.011	25.0	BU
Carbon Disulfide	ND	0.25	0.0070	25.0	BU
Carbon Tetrachloride	ND	0.012	0.0015	25.0	BU
Chlorobenzene	ND	0.012	0.0017	25.0	BU
Chloroethane	ND	0.012	0.0060	25.0	BU
Chloroform	ND	0.012	0.0017	25.0	BU
Chloromethane	ND	0.012	0.0060	25.0	BU
Dibromochloromethane	ND	0.012	0.0014	25.0	BU
Dichlorodifluoromethane	ND	0.012	0.0015	25.0	BU
1,1-Dichloroethane	ND	0.012	0.0016	25.0	BU
1,1-Dichloroethene	ND	0.012	0.0050	25.0	BU
1,2-Dibromoethane	ND	0.012	0.0017	25.0	BU
Dichlorotetrafluoroethane	ND	0.050	0.0066	25.0	BU
1,2-Dichlorobenzene	ND	0.012	0.0013	25.0	BU
1,2-Dichloroethane	ND	0.012	0.0017	25.0	BU
1,2-Dichloropropane	ND	0.012	0.0048	25.0	BU
1,3-Dichlorobenzene	ND	0.012	0.0040	25.0	BU
1,4-Dichlorobenzene	ND	0.012	0.0017	25.0	BU
c-1,3-Dichloropropene	ND	0.012	0.0016	25.0	BU
c-1,2-Dichloroethene	ND	0.012	0.0022	25.0	BU
t-1,2-Dichloroethene	ND	0.012	0.0032	25.0	BU
t-1,3-Dichloropropene	ND	0.025	0.0017	25.0	BU
Ethylbenzene	2.2	0.012	0.0036	25.0	BU
4-Ethyltoluene	ND	0.012	0.0040	25.0	BU
Hexachloro-1,3-Butadiene	ND	0.038	0.0026	25.0	BU
2-Hexanone	ND	0.038	0.011	25.0	BU
Methyl-t-Butyl Ether (MTBE)	ND	0.050	0.0038	25.0	BU

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

AECOM Date Received: 04/06/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 6 of 14

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Toluene-d8

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Methylene Chloride	ND	0.12	0.0062	25.0	BU
4-Methyl-2-Pentanone	ND	0.038	0.0093	25.0	BU
o-Xylene	ND	0.012	0.0039	25.0	BU
p/m-Xylene	ND	0.050	0.0083	25.0	BU
Styrene	ND	0.038	0.0016	25.0	BU
Tetrachloroethene	ND	0.012	0.0017	25.0	BU
Toluene	0.033	0.12	0.0034	25.0	J,BU
Trichloroethene	ND	0.012	0.0017	25.0	BU
Trichlorofluoromethane	ND	0.025	0.0043	25.0	BU
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.038	0.0018	25.0	BU
1,1,1-Trichloroethane	ND	0.012	0.0020	25.0	BU
1,1,2-Trichloroethane	ND	0.012	0.0046	25.0	BU
1,3,5-Trimethylbenzene	ND	0.012	0.0036	25.0	BU
1,1,2,2-Tetrachloroethane	ND	0.025	0.0034	25.0	BU
1,2,4-Trimethylbenzene	ND	0.038	0.0038	25.0	BU
1,2,4-Trichlorobenzene	ND	0.050	0.0031	25.0	BU
Vinyl Acetate	ND	0.050	0.0024	25.0	BU
Vinyl Chloride	ND	0.012	0.0056	25.0	BU
Surrogate	Rec. (%)	Control Limits	Qualifiers		
	100	·	Quaillers		
1,4-Bromofluorobenzene		57-129			
1,2-Dichloroethane-d4	106	47-137			

78-156

106

04/06/18

N/A

18-04-0574

Page 7 of 14

Analytical Report

AECOM Date Received: 130 Robin Hill Road, Suite 100 Work Order: Santa Barbara, CA 93117-3153 Preparation:

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
VSS01369	18-04-0574-5-A	04/06/18 15:00	Air	GC/MS II	N/A	04/07/18 08:12	180406L02	
Comment(s): - Results were evaluated to	Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.							
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>	
Acetone	31		500	2.9	10000		J	
Benzene	660		5.0	0.85	10000			
Benzyl Chloride	ND		15	0.49	10000			
Bromodichloromethane	ND		5.0	0.62	10000			
Bromoform	ND		5.0	0.81	10000			
Bromomethane	ND		5.0	1.4	10000			
2-Butanone	ND		15	4.3	10000			
Carbon Disulfide	ND		100	2.8	10000			
Carbon Tetrachloride	ND		5.0	0.62	10000			
Chlorobenzene	ND		5.0	0.68	10000			
Chloroethane	ND		5.0	2.4	10000			
Chloroform	ND		5.0	0.69	10000			
Chloromethane	ND		5.0	2.4	10000			
Dibromochloromethane	ND		5.0	0.55	10000			
Dichlorodifluoromethane	ND		5.0	0.60	10000			
1,1-Dichloroethane	ND		5.0	0.63	10000			
1,1-Dichloroethene	ND		5.0	2.0	10000			
1,2-Dibromoethane	ND		5.0	0.69	10000			
Dichlorotetrafluoroethane	ND		20	2.7	10000			
1,2-Dichlorobenzene	ND		5.0	0.53	10000			
1,2-Dichloroethane	ND		5.0	0.69	10000			
1,2-Dichloropropane	ND		5.0	1.9	10000			
1,3-Dichlorobenzene	ND		5.0	1.6	10000			
1,4-Dichlorobenzene	ND		5.0	0.67	10000			
c-1,3-Dichloropropene	ND		5.0	0.65	10000			
c-1,2-Dichloroethene	ND		5.0	0.87	10000			
t-1,2-Dichloroethene	ND		5.0	1.3	10000			
t-1,3-Dichloropropene	ND		10	0.69	10000			
Ethylbenzene	320		5.0	1.4	10000			
4-Ethyltoluene	ND		5.0	1.6	10000			
Hexachloro-1,3-Butadiene	ND		15	1.0	10000			
2-Hexanone	ND		15	4.4	10000			
Methyl-t-Butyl Ether (MTBE)	ND		20	1.5	10000			
Methylene Chloride	ND		50	2.5	10000			

04/06/18 **AECOM** Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Santa Barbara, CA 93117-3153 Preparation: N/A EPA TO-15M Method: Units: ppm (v/v) Page 8 of 14

Project: Del Amo Superfund Site, Los Angeles /

	- 0	- 0. p - 0	
605664	46.2018.1	.0601	

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
4-Methyl-2-Pentanone	ND	15	3.7	10000	
o-Xylene	ND	5.0	1.6	10000	
p/m-Xylene	ND	20	3.3	10000	
Styrene	ND	15	0.64	10000	
Tetrachloroethene	ND	5.0	0.67	10000	
Toluene	13	50	1.3	10000	J
Trichloroethene	ND	5.0	0.69	10000	
Trichlorofluoromethane	ND	10	1.7	10000	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	15	0.70	10000	
1,1,1-Trichloroethane	ND	5.0	0.79	10000	
1,1,2-Trichloroethane	ND	5.0	1.8	10000	
1,3,5-Trimethylbenzene	ND	5.0	1.4	10000	
1,1,2,2-Tetrachloroethane	ND	10	1.4	10000	
1,2,4-Trimethylbenzene	ND	15	1.5	10000	
1,2,4-Trichlorobenzene	ND	20	1.2	10000	
Vinyl Acetate	ND	20	0.98	10000	
Vinyl Chloride	ND	5.0	2.2	10000	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	99	57-129			
1,2-Dichloroethane-d4	104	47-137			
Toluene-d8	100	78-156			

Page 9 of 14

Analytical Report

04/06/18 **AECOM** Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574

Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M

> Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01370	18-04-0574-6-A	04/06/18 15:05	Air	GC/MS II	N/A	04/09/18 16:26	180409L02
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	ı <u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Acetone	0.005	59	1.0	0.0057	20.0	J	
Benzene	0.88		0.010	0.0017	20.0		
Benzyl Chloride	ND		0.030	0.00098	20.0		
Bromodichloromethane	ND		0.010	0.0012	20.0		
Bromoform	ND		0.010	0.0016	20.0		
Bromomethane	ND		0.010	0.0028	20.0		
2-Butanone	ND		0.030	0.0086	20.0		
Carbon Disulfide	ND		0.20	0.0056	20.0		
Carbon Tetrachloride	ND		0.010	0.0012	20.0		
Chlorobenzene	ND		0.010	0.0014	20.0		
Chloroethane	ND		0.010	0.0048	20.0		
Chloroform	ND		0.010	0.0014	20.0		
Chloromethane	ND		0.010	0.0048	20.0		
Dibromochloromethane	ND		0.010	0.0011	20.0		
Dichlorodifluoromethane	ND		0.010	0.0012	20.0		
1,1-Dichloroethane	ND		0.010	0.0013	20.0		
1,1-Dichloroethene	ND		0.010	0.0040	20.0		
1,2-Dibromoethane	ND		0.010	0.0014	20.0		
Dichlorotetrafluoroethane	ND		0.040	0.0053	20.0		
1,2-Dichlorobenzene	ND		0.010	0.0011	20.0		
1,2-Dichloroethane	ND		0.010	0.0014	20.0		
1,2-Dichloropropane	ND		0.010	0.0038	20.0		
1,3-Dichlorobenzene	ND		0.010	0.0032	20.0		
1,4-Dichlorobenzene	ND		0.010	0.0013	20.0		
c-1,3-Dichloropropene	ND		0.010	0.0013	20.0		
c-1,2-Dichloroethene	ND		0.010	0.0017	20.0		
t-1,2-Dichloroethene	ND		0.010	0.0025	20.0		
t-1,3-Dichloropropene	ND		0.020	0.0014	20.0		
Ethylbenzene	1.6		0.010	0.0029	20.0		
4-Ethyltoluene	ND		0.010	0.0032	20.0		
Hexachloro-1,3-Butadiene	ND		0.030	0.0020	20.0		
2-Hexanone	ND		0.030	0.0088	20.0		
Methyl-t-Butyl Ether (MTBE)	ND		0.040	0.0031	20.0		
Methylene Chloride	ND		0.10	0.0050	20.0		

AECOM Date Received: 04/06/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 10 of 14

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Toluene-d8

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers	
4-Methyl-2-Pentanone	ND	0.030	0.0074	20.0		
o-Xylene	ND	0.010	0.0031	20.0		
p/m-Xylene	ND	0.040	0.0067	20.0		
Styrene	ND	0.030	0.0013	20.0		
Tetrachloroethene	ND	0.010	0.0013	20.0		
Toluene	0.027	0.10	0.0027	20.0	J	
Trichloroethene	ND	0.010	0.0014	20.0		
Trichlorofluoromethane	ND	0.020	0.0034	20.0		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.030	0.0014	20.0		
1,1,1-Trichloroethane	ND	0.010	0.0016	20.0		
1,1,2-Trichloroethane	ND	0.010	0.0036	20.0		4
1,3,5-Trimethylbenzene	ND	0.010	0.0029	20.0		
1,1,2,2-Tetrachloroethane	ND	0.020	0.0028	20.0		
1,2,4-Trimethylbenzene	ND	0.030	0.0031	20.0		
1,2,4-Trichlorobenzene	ND	0.040	0.0025	20.0		
Vinyl Acetate	ND	0.040	0.0020	20.0		
Vinyl Chloride	ND	0.010	0.0044	20.0		
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	98	57-129				
1,2-Dichloroethane-d4	103	47-137				

78-156

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

100

Page 11 of 14

Santa Barbara, CA 93117-3153

Analytical Report

AECOM Date Received: 04/06/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574

Preparation: N/A Method: EPA TO-15M

> Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-981-8430	N/A	Air	GC/MS II	N/A	04/06/18 15:39	180406L02
Comment(s): - Results were evaluated to	o the MDL (DL), cond	entrations >=	to the MDL ((DL) but < RL (LOC	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
Acetone	ND		0.050	0.00029	1.00		
Benzene	ND		0.00050	0.000085	1.00		
Benzyl Chloride	ND		0.0015	0.000049	1.00		
Bromodichloromethane	ND		0.00050	0.000062	1.00		
Bromoform	ND		0.00050	0.000081	1.00		
Bromomethane	ND		0.00050	0.00014	1.00		
2-Butanone	ND		0.0015	0.00043	1.00		
Carbon Disulfide	ND		0.010	0.00028	1.00		
Carbon Tetrachloride	ND		0.00050	0.000062	1.00		
Chlorobenzene	ND		0.00050	0.000068	1.00		
Chloroethane	ND		0.00050	0.00024	1.00		
Chloroform	ND		0.00050	0.000069	1.00		
Chloromethane	ND		0.00050	0.00024	1.00		
Dibromochloromethane	ND		0.00050	0.000055	1.00		
Dichlorodifluoromethane	ND		0.00050	0.000060	1.00		
1,1-Dichloroethane	ND		0.00050	0.000063	1.00		
1,1-Dichloroethene	ND		0.00050	0.00020	1.00		
1,2-Dibromoethane	ND		0.00050	0.000069	1.00		
Dichlorotetrafluoroethane	ND		0.0020	0.00027	1.00		
1,2-Dichlorobenzene	ND		0.00050	0.000053	1.00		
1,2-Dichloroethane	ND		0.00050	0.000069	1.00		
1,2-Dichloropropane	ND		0.00050	0.00019	1.00		
1,3-Dichlorobenzene	ND		0.00050	0.00016	1.00		
1,4-Dichlorobenzene	ND		0.00050	0.000067	1.00		
c-1,3-Dichloropropene	ND		0.00050	0.000065	1.00		
c-1,2-Dichloroethene	ND		0.00050	0.000087	1.00		
t-1,2-Dichloroethene	ND		0.00050	0.00013	1.00		
t-1,3-Dichloropropene	ND		0.0010	0.000069	1.00		
Ethylbenzene	ND		0.00050	0.00014	1.00		
4-Ethyltoluene	ND		0.00050	0.00016	1.00		
Hexachloro-1,3-Butadiene	ND		0.0015	0.00010	1.00		
2-Hexanone	ND		0.0015	0.00044	1.00		
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	0.00015	1.00		
Methylene Chloride	ND		0.0050	0.00025	1.00		

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

Page 12 of 14

Analytical Report

AECOM Date Received: 04/06/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Toluene-d8

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	DF	<u>Qualifiers</u>
4-Methyl-2-Pentanone	ND	0.0015	0.00037	1.00	
o-Xylene	ND	0.00050	0.00016	1.00	
p/m-Xylene	ND	0.0020	0.00033	1.00	
Styrene	ND	0.0015	0.000064	1.00	
Tetrachloroethene	ND	0.00050	0.000067	1.00	
Toluene	ND	0.0050	0.00013	1.00	
Trichloroethene	ND	0.00050	0.000069	1.00	
Trichlorofluoromethane	ND	0.0010	0.00017	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.0015	0.000070	1.00	
1,1,1-Trichloroethane	ND	0.00050	0.000079	1.00	
1,1,2-Trichloroethane	ND	0.00050	0.00018	1.00	
1,3,5-Trimethylbenzene	ND	0.00050	0.00014	1.00	
1,1,2,2-Tetrachloroethane	ND	0.0010	0.00014	1.00	
1,2,4-Trimethylbenzene	ND	0.0015	0.00015	1.00	
1,2,4-Trichlorobenzene	ND	0.0020	0.00012	1.00	
Vinyl Acetate	ND	0.0020	0.000098	1.00	
Vinyl Chloride	ND	0.00050	0.00022	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	97	57-129			
1,2-Dichloroethane-d4	97	47-137			

78-156

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

98

AECOM Date Received: 04/06/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 Page 13 of 14

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-981-8431	N/A	Air	GC/MS II	N/A	04/09/18 15:38	180409L02
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL	(DL) but < RL (LOC	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>0</u>	<u>Qualifiers</u>
Acetone	ND		0.050	0.00029	1.00		
Benzene	ND		0.00050	0.000085	1.00		
Benzyl Chloride	ND		0.0015	0.000049	1.00		
Bromodichloromethane	ND		0.00050	0.000062	1.00		
Bromoform	ND		0.00050	0.000081	1.00		
Bromomethane	ND		0.00050	0.00014	1.00		
2-Butanone	ND		0.0015	0.00043	1.00		
Carbon Disulfide	ND		0.010	0.00028	1.00		
Carbon Tetrachloride	ND		0.00050	0.000062	1.00		
Chlorobenzene	ND		0.00050	0.000068	1.00		
Chloroethane	ND		0.00050	0.00024	1.00		
Chloroform	ND		0.00050	0.000069	1.00		
Chloromethane	ND		0.00050	0.00024	1.00		
Dibromochloromethane	ND		0.00050	0.000055	1.00		
Dichlorodifluoromethane	ND		0.00050	0.000060	1.00		
1,1-Dichloroethane	ND		0.00050	0.000063	1.00		
1,1-Dichloroethene	ND		0.00050	0.00020	1.00		
1,2-Dibromoethane	ND		0.00050	0.000069	1.00		
Dichlorotetrafluoroethane	ND		0.0020	0.00027	1.00		
1,2-Dichlorobenzene	ND		0.00050	0.000053	1.00		
1,2-Dichloroethane	ND		0.00050	0.000069	1.00		
1,2-Dichloropropane	ND		0.00050	0.00019	1.00		
1,3-Dichlorobenzene	ND		0.00050	0.00016	1.00		
1,4-Dichlorobenzene	ND		0.00050	0.000067	1.00		
c-1,3-Dichloropropene	ND		0.00050	0.000065	1.00		
c-1,2-Dichloroethene	ND		0.00050	0.000087	1.00		
t-1,2-Dichloroethene	ND		0.00050	0.00013	1.00		
t-1,3-Dichloropropene	ND		0.0010	0.000069	1.00		
Ethylbenzene	ND		0.00050	0.00014	1.00		
4-Ethyltoluene	ND		0.00050	0.00016	1.00		
Hexachloro-1,3-Butadiene	ND		0.0015	0.00010	1.00		
2-Hexanone	ND		0.0015	0.00044	1.00		
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	0.00015	1.00		
Methylene Chloride	ND		0.0050	0.00025	1.00		

Page 14 of 14

Analytical Report

AECOM Date Received: 04/06/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Toluene-d8

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
4-Methyl-2-Pentanone	ND	0.0015	0.00037	1.00	
o-Xylene	ND	0.00050	0.00016	1.00	
p/m-Xylene	ND	0.0020	0.00033	1.00	
Styrene	ND	0.0015	0.000064	1.00	
Tetrachloroethene	ND	0.00050	0.000067	1.00	
Toluene	ND	0.0050	0.00013	1.00	
Trichloroethene	ND	0.00050	0.000069	1.00	
Trichlorofluoromethane	ND	0.0010	0.00017	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.0015	0.000070	1.00	
1,1,1-Trichloroethane	ND	0.00050	0.000079	1.00	
1,1,2-Trichloroethane	ND	0.00050	0.00018	1.00	
1,3,5-Trimethylbenzene	ND	0.00050	0.00014	1.00	
1,1,2,2-Tetrachloroethane	ND	0.0010	0.00014	1.00	
1,2,4-Trimethylbenzene	ND	0.0015	0.00015	1.00	
1,2,4-Trichlorobenzene	ND	0.0020	0.00012	1.00	
Vinyl Acetate	ND	0.0020	0.000098	1.00	
Vinyl Chloride	ND	0.00050	0.00022	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	98	57-129			
1,2-Dichloroethane-d4	101	47-137			

78-156

97

04/06/18

N/A

18-04-0574

Page 1 of 6

Analytical Report

AECOM Date Received: 130 Robin Hill Road, Suite 100 Work Order: Santa Barbara, CA 93117-3153 Preparation:

> Method: EPA TO-15M Units: ppm (v/v)

> > 80000

80000

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Ethyl Acetate

Ethyl-t-Butyl Ether (ETBE)

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch II
VSS01368	18-04-0574-4-A	04/06/18 14:55	Air	GC/MS II	N/A	04/07/18 06:24	180406L02
Comment(s): - Results were eva	lluated to the MDL (DL), con-	centrations >= t	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u> <u> </u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Acetone	ND	•	4000	23	80000		
Benzyl Chloride	ND		120	3.9	80000		
Bromodichloromethane	ND	•	40	5.0	80000		
Bromoform	ND	•	40	6.5	80000		
Bromomethane	ND	•	40	11	80000		
1,3-Butadiene	ND		120	27	80000		
2-Butanone	ND		120	35	80000		
Carbon Disulfide	ND	;	800	22	80000		
Carbon Tetrachloride	ND	•	40	4.9	80000		
Chlorobenzene	ND		40	5.4	80000		
Chloroethane	ND	•	40	19	80000		
Chloroform	ND		40	5.5	80000		
Chloromethane	ND		40	19	80000		
Cyclohexane	87		40	13	80000		
Dibromochloromethane	ND		40	4.4	80000		
Dichlorodifluoromethane	ND		40	4.8	80000		
Diisopropyl Ether (DIPE)	ND		160	5.2	80000		
1,1-Dichloroethane	ND		40	5.0	80000		
1,1-Dichloroethene	ND		40	16	80000		
1,2-Dibromoethane	ND		40	5.5	80000		
Dichlorotetrafluoroethane	ND		160	21	80000		
1,2-Dichlorobenzene	ND		40	4.2	80000		
1,2-Dichloroethane	ND		40	5.5	80000		
1,2-Dichloropropane	ND		40	15	80000		
1,3-Dichlorobenzene	ND		40	13	80000		
1,4-Dichlorobenzene	ND	•	40	5.4	80000		
1,4-Dioxane	ND	;	800	34	80000		
c-1,3-Dichloropropene	ND		40	5.2	80000		
c-1,2-Dichloroethene	ND	•	40	7.0	80000		
t-1,2-Dichloroethene	ND		40	10	80000		
t-1,3-Dichloropropene	ND	:	80	5.5	80000		
Ethanol	ND		4000	69	80000		

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

ND

ND

800

160

49

4.6

 AECOM
 Date Received:
 04/06/18

 130 Robin Hill Road, Suite 100
 Work Order:
 18-04-0574

 Santa Barbara, CA 93117-3153
 Preparation:
 N/A

 Method:
 EPA TO-15M

 Units:
 ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 2 of 6

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Ethylbenzene	3000	40	12	80000	
4-Ethyltoluene	ND	40	13	80000	
Heptane	710	160	36	80000	
Hexachloro-1,3-Butadiene	ND	120	8.2	80000	
Hexane	25	160	13	80000	J
2-Hexanone	ND	120	35	80000	
Methyl-t-Butyl Ether (MTBE)	ND	160	12	80000	
Methylene Chloride	ND	400	20	80000	
4-Methyl-2-Pentanone	ND	120	30	80000	
o-Xylene	ND	40	13	80000	
p/m-Xylene	ND	160	27	80000	
Propene	ND	800	20	80000	
Styrene	ND	120	5.1	80000	
Tert-Amyl-Methyl Ether (TAME)	ND	160	3.9	80000	
Tert-Butyl Alcohol (TBA)	ND	400	14	80000	
Tetrachloroethene	ND	40	5.4	80000	
Tetrahydrofuran	ND	120	25	80000	
Toluene	110	400	11	80000	J
Trichloroethene	ND	40	5.6	80000	
Trichlorofluoromethane	ND	80	14	80000	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	120	5.6	80000	
1,1,1-Trichloroethane	ND	40	6.3	80000	
1,1,2-Trichloroethane	ND	40	15	80000	
1,2,3-Trichloropropane	ND	400	6.2	80000	
Acrolein	ND	400	22	80000	
Acrylonitrile	ND	80	32	80000	
Methyl Methacrylate	ND	40	8.8	80000	
Propane	ND	1200	38	80000	
Butane	ND	400	38	80000	
Methanol	220	4000	110	80000	J
2,2,4-Trimethyl Pentane	ND	40	5.3	80000	
sobutane	ND	400	48	80000	
1,1,1,2-Tetrafluoroethane	ND	160	5.8	80000	
1,3,5-Trimethylbenzene	ND	40	12	80000	
1,1,2,2-Tetrachloroethane	ND	80	11	80000	
1,2,4-Trimethylbenzene	ND	120	12	80000	
1,2,4-Trichlorobenzene	ND	160	9.9	80000	
Vinyl Acetate	ND	160	7.8	80000	

AECOM Date Received: 04/06/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 3 of 6

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Vinyl Chloride	ND	40	18	80000	
1,1-Difluoroethane	ND	160	7.5	80000	
Isopropanol	25	4000	20	80000	J
Isopropylbenzene	19	40	17	80000	J
Naphthalene	ND	400	13	80000	
n-Butylbenzene	ND	40	26	80000	
n-Propylbenzene	ND	40	21	80000	
p-Isopropyltoluene	ND	40	21	80000	
sec-Butylbenzene	ND	40	20	80000	
tert-Butylbenzene	ND	40	21	80000	
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	103	57-129			
1,2-Dichloroethane-d4	103	47-137			
Toluene-d8	102	78-156			

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
VSS01368		18-04-0574-4-A	04/06/18 14:55	Air	GC/MS II	N/A	04/07/18 07:15	180406L02	
Comment(s):	- Results were evaluated t	to the MDL (DL), cond	centrations >= t	o the MDL (I	DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.	
<u>Parameter</u>		<u>Resu</u>	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>	
Benzene		7600	ı	100	17	20000	00		

Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	97	57-129	
1,2-Dichloroethane-d4	102	47-137	
Toluene-d8	99	78-156	

Page 4 of 6

Analytical Report

AECOM Date Received: 04/06/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-981-8430	N/A	Air	GC/MS II	N/A	04/06/18 15:39	180406L02
Comment(s): - Results were evaluated	to the MDL (DL), cond	entrations >=	to the MDL (DL) but < RL (LOC	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>0</u>	Qualifiers
Acetone	ND		0.050	0.00029	1.00		
Benzene	ND		0.00050	0.000085	1.00		
Benzyl Chloride	ND		0.0015	0.000049	1.00		
Bromodichloromethane	ND		0.00050	0.000062	1.00		
Bromoform	ND		0.00050	0.000081	1.00		
Bromomethane	ND		0.00050	0.00014	1.00		
1,3-Butadiene	ND		0.0015	0.00033	1.00		
2-Butanone	ND		0.0015	0.00043	1.00		
Carbon Disulfide	ND		0.010	0.00028	1.00		
Carbon Tetrachloride	ND		0.00050	0.000062	1.00		
Chlorobenzene	ND		0.00050	0.000068	1.00		
Chloroethane	ND		0.00050	0.00024	1.00		
Chloroform	ND		0.00050	0.000069	1.00		
Chloromethane	ND		0.00050	0.00024	1.00		
Cyclohexane	ND		0.00050	0.00016	1.00		
Dibromochloromethane	ND		0.00050	0.000055	1.00		
Dichlorodifluoromethane	ND		0.00050	0.000060	1.00		
Diisopropyl Ether (DIPE)	ND		0.0020	0.000065	1.00		
1,1-Dichloroethane	ND		0.00050	0.000063	1.00		
1,1-Dichloroethene	ND		0.00050	0.00020	1.00		
1,2-Dibromoethane	ND		0.00050	0.000069	1.00		
Dichlorotetrafluoroethane	ND		0.0020	0.00027	1.00		
1,2-Dichlorobenzene	ND		0.00050	0.000053	1.00		
1,2-Dichloroethane	ND		0.00050	0.000069	1.00		
1,2-Dichloropropane	ND		0.00050	0.00019	1.00		
1,3-Dichlorobenzene	ND		0.00050	0.00016	1.00		
1,4-Dichlorobenzene	ND		0.00050	0.000067	1.00		
1,4-Dioxane	ND		0.010	0.00042	1.00		
c-1,3-Dichloropropene	ND		0.00050	0.000065	1.00		
c-1,2-Dichloroethene	ND		0.00050	0.000087	1.00		
t-1,2-Dichloroethene	ND		0.00050	0.00013	1.00		
t-1,3-Dichloropropene	ND		0.0010	0.000069	1.00		
Ethanol	ND		0.050	0.00087	1.00		
Ethyl Acetate	ND		0.010	0.00061	1.00		

 AECOM
 Date Received:
 04/06/18

 130 Robin Hill Road, Suite 100
 Work Order:
 18-04-0574

 Santa Barbara, CA 93117-3153
 Preparation:
 N/A

 Method:
 EPA TO-15M

 Units:
 ppm (v/v)

 Page 5 of 6

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Ethyl-t-Butyl Ether (ETBE)	ND	0.0020	0.000057	1.00	
Ethylbenzene	ND	0.00050	0.00014	1.00	
4-Ethyltoluene	ND	0.00050	0.00016	1.00	
Heptane	ND	0.0020	0.00044	1.00	
Hexachloro-1,3-Butadiene	ND	0.0015	0.00010	1.00	
Hexane	ND	0.0020	0.00016	1.00	
2-Hexanone	ND	0.0015	0.00044	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.0020	0.00015	1.00	
Methylene Chloride	ND	0.0050	0.00025	1.00	
4-Methyl-2-Pentanone	ND	0.0015	0.00037	1.00	
o-Xylene	ND	0.00050	0.00016	1.00	
o/m-Xylene	ND	0.0020	0.00033	1.00	
Propene	ND	0.010	0.00025	1.00	
Styrene	ND	0.0015	0.000064	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	0.0020	0.000049	1.00	
Tert-Butyl Alcohol (TBA)	ND	0.0050	0.00017	1.00	
Tetrachloroethene	ND	0.00050	0.000067	1.00	
Tetrahydrofuran	ND	0.0015	0.00031	1.00	
Γoluene	ND	0.0050	0.00013	1.00	
Trichloroethene	ND	0.00050	0.000069	1.00	
Trichlorofluoromethane	ND	0.0010	0.00017	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.0015	0.000070	1.00	
1,1,1-Trichloroethane	ND	0.00050	0.000079	1.00	
1,1,2-Trichloroethane	ND	0.00050	0.00018	1.00	
1,2,3-Trichloropropane	ND	0.0050	0.000077	1.00	
Acrolein	ND	0.0050	0.00028	1.00	
Acrylonitrile	ND	0.0010	0.00040	1.00	
Methyl Methacrylate	ND	0.00050	0.00011	1.00	
Propane	ND	0.015	0.00047	1.00	
Butane	ND	0.0050	0.00048	1.00	
Methanol	ND	0.050	0.0013	1.00	
2,2,4-Trimethyl Pentane	ND	0.00050	0.000067	1.00	
sobutane	ND	0.0050	0.00060	1.00	
1,1,1,2-Tetrafluoroethane	ND	0.0020	0.000073	1.00	
1,3,5-Trimethylbenzene	ND	0.00050	0.00014	1.00	
1,1,2,2-Tetrachloroethane	ND	0.0010	0.00014	1.00	
1,2,4-Trimethylbenzene	ND	0.0015	0.00015	1.00	
1,2,4-Trichlorobenzene	ND	0.0020	0.00012	1.00	

AECOM Date Received: 04/06/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 6 of 6

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Vinyl Acetate	ND	0.0020	0.000098	<u>57</u> 1.00	<u>Qualifici 5</u>
Vinyl Chloride	ND	0.0020	0.000098	1.00	
·					
1,1-Difluoroethane	ND	0.0020	0.000093	1.00	
Isopropanol	ND	0.050	0.00025	1.00	
Isopropylbenzene	ND	0.00050	0.00022	1.00	
Naphthalene	ND	0.0050	0.00016	1.00	
n-Butylbenzene	ND	0.00050	0.00033	1.00	
n-Propylbenzene	ND	0.00050	0.00027	1.00	
sec-Butylbenzene	ND	0.00050	0.00025	1.00	
tert-Butylbenzene	ND	0.00050	0.00026	1.00	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	97	57-129			
1,2-Dichloroethane-d4	97	47-137			
Toluene-d8	98	78-156			

Page 1 of 2

180406L01

Analytical Report

AECOM Date Received: 04/06/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-3M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

VCC0426E

VSS01368

Client Sample No	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01366		18-04-0574-1-A	04/05/18 12:00	Air	GC 13	N/A	04/06/18 21:31	180406L01
Comment(s):	- Results were evaluated to	the MDL (DL), conc	entrations >= t	o the MDL ([DL) but < RL (LO	Q), if found, are	e qualified with a	"J" flag.
<u>Parameter</u>		<u>Resul</u>	<u>t</u> <u>l</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>0</u>	<u>Qualifiers</u>
TPH as Gasoline)	1700		10	2.1	5.00		

V3301303	10-U4-U3/4-2-A	12:01	Air	GC 13	N/A	21:41	100400LU1
Comment(s):	- Results were evaluated to the MDL (DL), con	centrations >= to	the MDL (DL)	but < RL (LOQ), if found, are o	qualified with a ".	J" flag.
<u>Parameter</u>	Res	<u>ult </u>	<u> </u>	<u>MDL</u>	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
TPH as Gasoline	1300	00 1	100	21	50.0		

VSS01367	18-04-05/4-3	3-A 04/05/18 12:05	3 Air	GC 13	N/A	04/06/18 20:57	180406L0
Comment(s):	- Results were evaluated to the MDL (DL)	, concentrations	>= to the MDL	(DL) but < RL (LOQ), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u>	<u>ualifiers</u>
TPH as Gasoline		6.7	2.0	0.43	1.00		

	14:	:55		21:	52
Comment(s):	- Results were evaluated to the MDL (DL), concentra	ations >= to the MDL	(DL) but < RL (LOQ),	if found, are qualit	fied with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
TPH as Gasolir	ne 19000	200	43	100	

04/06/18

N/A

GC 13

04/06/18

VSS01369	18-04-0574-5-A	04/06/18 15:00	Air	GC 13	N/A	04/06/18 22:02	180406L01
Comment(s):	- Results were evaluated to the MDL (DL), con	centrations >=	to the MD	DL (DL) but < RL (L	OQ), if found, a	re qualified with	a "J" flag.
<u>Parameter</u>	Resu	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	!	<u>Qualifiers</u>

TPH as Gasoline	1600	20	4.3	10.0

18-04-0574-4-A

VSS01370	18-04-0574-6-4	04/06/18 15:05	Air	GC 13	N/A	04/06/18 21:07	180406L01
Comment(s):	- Results were evaluated to the MDL (DL), o	concentrations	>= to the MDL	(DL) but < RL (LOQ), if found, are o	qualified with a "J'	' flag.
<u>Parameter</u>	<u>R</u>	<u>esult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qua</u>	<u>llifiers</u>
TPH as Gasolin	ne 8.	4	2.0	0.43	1.00		

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

Page 2 of 2

Analytical Report

AECOM Date Received: 04/06/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-3M

> Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample N	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		098-01-005-8397	N/A	Air	GC 13	N/A	04/06/18 10:02	180406L01
Comment(s):	- Results were evaluated to	o the MDL (DL), conc	entrations >= t	o the MDL (I	DL) but < RL (LO	Q), if found, are	e qualified with a	"J" flag.
<u>Parameter</u>		<u>Resul</u>	<u>t</u> .	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u>	<u>Qualifiers</u>
TPH as Gasoline	e	ND		2.0	0.43	1.00		

MDL: Method Detection Limit.

<u>Parameter</u>

Methane

Methane

Analytical Report

AECOM Date Received: 04/06/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Santa Barbara, CA 93117-3153 Preparation: N/A Method: SCAQMD 25.1M Units: ppm (v/v)

	Project: Del Amo Superfund Site, Los Angeles / Page 1 of 1 60566446.2018.1.0601											
Client Sample N	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID				
VSS01366		18-04-0574-1-A	04/05/18 12:00	Air	GC 14	N/A	04/07/18 11:09	180407L02				
Comment(s):	- Results were evaluated t	o the MDL (DL), con	centrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with	a "J" flag.				
<u>Parameter</u>		<u>Resu</u>	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	!	<u>Qualifiers</u>				
Methane		26		1.0	0.21	1.00						
VSS01365		18-04-0574-2-A	04/05/18 12:01	Air	GC 14	N/A	04/07/18 11:52	180407L02				
Comment(s):	- Results were evaluated t	o the MDL (DL), con-	centrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with	a "J" flag.				
<u>Parameter</u>		Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>				
Methane		260		1.0	0.21	1.00						
VSS01368		18-04-0574-4-A	04/06/18 14:55	Air	GC 14	N/A	04/07/18 12:38	180407L02				
Comment(s):	- Results were evaluated t	o the MDL (DL), con	centrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with	a "J" flag.				
<u>Parameter</u>		Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>				
Methane		250		1.0	0.21	1.00						
VSS01369		18-04-0574-5-A	04/06/18 15:00	Air	GC 14	N/A	04/07/18 13:25	180407L02				
Comment(s):	- Results were evaluated t	o the MDL (DL), con-	centrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with	a "J" flag.				

Method Blank	099-07-02	1-1540 N//	A Air	GC 14	N/A	04/07/18 10:49	180407L02
Comment(s):	- Results were evaluated to the MDL (D	L), concentra	ations >= to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with a "	J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qı</u>	<u>ualifiers</u>

<u>RL</u>

1.0

1.0

Result

23

ND

<u>MDL</u>

0.21

0.21

<u>DF</u>

1.00

1.00

Qualifiers

Page 1 of 1

Quality Control - Sample Duplicate

AECOM Date Received: 04/06/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Santa Barbara, CA 93117-3153 Preparation: N/A

Method: EPA TO-3M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
18-04-0418-2	Sample	Air	GC 13	N/A	04/06/18 13:20	180406D01
18-04-0418-2	Sample Duplicate	Air	GC 13	N/A	04/06/18 13:35	180406D01
Parameter		Sample Conc.	DUP Conc.	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline		2.998	3.006	0	0-20	

Quality Control - LCS/LCSD

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

04/06/18 18-04-0574 N/A

Page 1 of 9

Method: **ASTM D-1946**

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Type M		trix	Instrument	Date P	repared Date	e Analyzed	LCS/LCSD Batch Numb	
099-16-444-762	LCS	Air		GC 65	N/A	04/0	7/18 09:39	180407L01	
099-16-444-762	LCSD	Air		GC 65	N/A	04/0	7/18 09:58	180407L01	
Parameter	Spike Adde	ed LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
Carbon Dioxide	15.01	15.00	100	16.39	109	80-120	9	0-30	
Carbon Monoxide	7.020	6.798	97	7.280	104	80-120	7	0-30	
Oxygen (+ Argon)	3.990	3.918	98	4.126	103	80-120	5	0-30	
Nitrogen	69.45	65.16	94	69.32	100	80-120	6	0-30	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS/LCSD

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/06/18 18-04-0574 N/A EPA TO-15M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 2 of 9

Quality Control Sample ID	Туре				Date Prepared Date Analyzed			ttorr rambo		
099-12-981-8430	LCS			GC/MS II		N/A 04/06/18 12:19				
099-12-981-8430	LCSD		Air	GC/N		N/A			180406L02	
<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Acetone	0.02500	0.02279	91	0.02350	94	50-150	33-167	3	0-35	
Benzene	0.02500	0.02373	95	0.02394	96	60-156	44-172	1	0-40	
Benzyl Chloride	0.02500	0.02449	98	0.02466	99	50-150	33-167	1	0-35	
Bromodichloromethane	0.02500	0.02410	96	0.02437	97	50-150	33-167	1	0-35	
Bromoform	0.02500	0.02484	99	0.02512	100	50-150	33-167	1	0-38	
Bromomethane	0.02500	0.02347	94	0.02379	95	50-150	33-167	1	0-35	
2-Butanone	0.02500	0.02272	91	0.02310	92	50-150	33-167	2	0-35	
Carbon Disulfide	0.02500	0.02235	89	0.02271	91	50-150	33-167	2	0-35	
Carbon Tetrachloride	0.02500	0.02498	100	0.02524	101	64-154	49-169	1	0-32	
Chlorobenzene	0.02500	0.02542	102	0.02542	102	50-150	33-167	0	0-35	
Chloroethane	0.02500	0.02493	100	0.02478	99	50-150	33-167	1	0-35	
Chloroform	0.02500	0.02326	93	0.02347	94	50-150	33-167	1	0-35	
Chloromethane	0.02500	0.02330	93	0.02617	105	50-150	33-167	12	0-35	
Dibromochloromethane	0.02500	0.02448	98	0.02475	99	50-150	33-167	1	0-35	
Dichlorodifluoromethane	0.02500	0.02373	95	0.02398	96	50-150	33-167	1	0-35	
Diisopropyl Ether (DIPE)	0.02500	0.02042	82	0.02060	82	60-140	47-153	1	0-30	
1,1-Dichloroethane	0.02500	0.02320	93	0.02357	94	50-150	33-167	2	0-35	
1,1-Dichloroethene	0.02500	0.02410	96	0.02431	97	50-150	33-167	1	0-35	
1,2-Dibromoethane	0.02500	0.02483	99	0.02489	100	54-144	39-159	0	0-36	
Dichlorotetrafluoroethane	0.02500	0.02487	99	0.02497	100	50-150	33-167	0	0-35	
1,2-Dichlorobenzene	0.02500	0.02486	99	0.02502	100	34-160	13-181	1	0-47	
1,2-Dichloroethane	0.02500	0.02336	93	0.02370	95	69-153	55-167	1	0-35	
1,2-Dichloropropane	0.02500	0.02417	97	0.02447	98	67-157	52-172	1	0-35	
1,3-Dichlorobenzene	0.02500	0.02455	98	0.02475	99	50-150	33-167	1	0-35	
1,4-Dichlorobenzene	0.02500	0.02489	100	0.02509	100	36-156	16-176	1	0-47	
1,4-Dioxane	0.02500	0.02518	101	0.02525	101	50-150	33-167	0	0-30	
c-1,3-Dichloropropene	0.02500	0.02601	104	0.02633	105	61-157	45-173	1	0-35	
c-1,2-Dichloroethene	0.02500	0.02473	99	0.02504	100	50-150	33-167	1	0-35	
t-1,2-Dichloroethene	0.02500	0.02426	97	0.02451	98	50-150	33-167	1	0-35	
t-1,3-Dichloropropene	0.02500	0.02626	105	0.02678	107	50-150	33-167	2	0-35	
Ethanol	0.1000	0.09038	90	0.08136	81	60-140	47-153	11	0-30	
Ethyl-t-Butyl Ether (ETBE)	0.02500	0.02243	90	0.02271	91	60-140	47-153	1	0-30	
Ethylbenzene	0.02500	0.02547	102	0.02570	103	52-154	35-171	1	0-38	
4-Ethyltoluene	0.02500	0.02549	102	0.02579	103	50-150	33-167	1	0-35	
Hexachloro-1,3-Butadiene	0.02500	0.02542	102	0.02618	105	50-150	33-167	3	0-35	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS/LCSD

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/06/18 18-04-0574 N/A EPA TO-15M

Page 3 of 9

2

6

47-153

33-167

0-30

0-30

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	<u>Qualifiers</u>
2-Hexanone	0.02500	0.02507	100	0.02536	101	50-150	33-167	1	0-35	
Methyl-t-Butyl Ether (MTBE)	0.02500	0.02446	98	0.02456	98	50-150	33-167	0	0-35	
Methylene Chloride	0.02500	0.02493	100	0.02507	100	50-150	33-167	1	0-35	
4-Methyl-2-Pentanone	0.02500	0.02566	103	0.02599	104	50-150	33-167	1	0-35	
Naphthalene	0.02500	0.02688	108	0.02708	108	40-190	15-215	1	0-30	
o-Xylene	0.02500	0.02410	96	0.02428	97	52-148	36-164	1	0-38	
p/m-Xylene	0.05000	0.04908	98	0.04954	99	42-156	23-175	1	0-41	
Styrene	0.02500	0.02501	100	0.02531	101	50-150	33-167	1	0-35	
Tert-Amyl-Methyl Ether (TAME)	0.02500	0.02349	94	0.02346	94	60-140	47-153	0	0-30	
Tert-Butyl Alcohol (TBA)	0.05000	0.04803	96	0.04818	96	60-140	47-153	0	0-30	
Tetrachloroethene	0.02500	0.02484	99	0.02504	100	56-152	40-168	1	0-40	
Toluene	0.02500	0.02359	94	0.02364	95	56-146	41-161	0	0-43	
Trichloroethene	0.02500	0.02500	100	0.02526	101	63-159	47-175	1	0-34	
Trichlorofluoromethane	0.02500	0.02275	91	0.02387	95	50-150	33-167	5	0-35	
1,1,2-Trichloro-1,2,2- Trifluoroethane	0.02500	0.02373	95	0.02412	96	50-150	33-167	2	0-35	
1,1,1-Trichloroethane	0.02500	0.02416	97	0.02443	98	50-150	33-167	1	0-35	
1,1,2-Trichloroethane	0.02500	0.02475	99	0.02497	100	65-149	51-163	1	0-37	
1,3,5-Trimethylbenzene	0.02500	0.02547	102	0.02566	103	50-150	33-167	1	0-35	
1,1,2,2-Tetrachloroethane	0.02500	0.02396	96	0.02415	97	50-150	33-167	1	0-35	
1,2,4-Trimethylbenzene	0.02500	0.02492	100	0.02504	100	50-150	33-167	0	0-35	
1,2,4-Trichlorobenzene	0.02500	0.02819	113	0.02872	115	50-150	33-167	2	0-35	
Vinyl Acetate	0.02500	0.02182	87	0.02208	88	50-150	33-167	1	0-35	
Vinyl Chloride	0.02500	0.02364	95	0.02359	94	45-177	23-199	0	0-36	

0.02384

0.02038

95

82

60-140

50-150

Total number of LCS compounds: 60 Total number of ME compounds: 0 Total number of ME compounds allowed: 3 LCS ME CL validation result: Pass

1,1-Difluoroethane

Isopropanol

CL: Control Limits RPD: Relative Percent Difference.

0.02500

0.02500

0.02439

0.02158

98

86

LCS/LCSD - Surrogate

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/06/18 18-04-0574 N/A

Page 4 of 9

EPA TO-15M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре		Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Ba	atch Number
099-12-981-8430	LCS		Air	GC/MS II	N/A	04/06/18 12:19	180406L02	
099-12-981-8430	LCSD		Air	GC/MS II	N/A	04/06/18 13:09	180406L02	
Parameter		Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	Qualifiers
1,4-Bromofluorobenzene		0.02500	0.02414	97	0.02411	96	57-129	
1,2-Dichloroethane-d4		0.02500	0.02347	94	0.02372	95	47-137	
Toluene-d8		0.02500	0.02487	99	0.02519	101	78-156	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS/LCSD

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/06/18 18-04-0574 N/A EPA TO-15M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 5 of 9

Quality Control Sample ID	Туре		Matrix	Instru	ument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
099-12-981-8431	LCS		Air	GC/N	/IS II	N/A	04/09/1	8 12:59	180409L02	
099-12-981-8431	LCSD		Air	GC/N	/IS II	N/A	04/09/1	8 13:57	180409L02	
Parameter	<u>Spike</u> Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Acetone	0.02500	0.02793	112	0.03480	139	50-150	33-167	22	0-35	
Benzene	0.02500	0.02494	100	0.02423	97	60-156	44-172	3	0-40	
Benzyl Chloride	0.02500	0.03056	122	0.02646	106	50-150	33-167	14	0-35	
Bromodichloromethane	0.02500	0.02656	106	0.02587	103	50-150	33-167	3	0-35	
Bromoform	0.02500	0.02758	110	0.02783	111	50-150	33-167	1	0-38	
Bromomethane	0.02500	0.02603	104	0.03121	125	50-150	33-167	18	0-35	
2-Butanone	0.02500	0.02574	103	0.02215	89	50-150	33-167	15	0-35	
Carbon Disulfide	0.02500	0.02357	94	0.02253	90	50-150	33-167	5	0-35	
Carbon Tetrachloride	0.02500	0.02779	111	0.02783	111	64-154	49-169	0	0-32	
Chlorobenzene	0.02500	0.02705	108	0.02668	107	50-150	33-167	1	0-35	
Chloroethane	0.02500	0.02679	107	0.03346	134	50-150	33-167	22	0-35	
Chloroform	0.02500	0.02554	102	0.02462	98	50-150	33-167	4	0-35	
Chloromethane	0.02500	0.02599	104	0.03248	130	50-150	33-167	22	0-35	
Dibromochloromethane	0.02500	0.02640	106	0.02733	109	50-150	33-167	3	0-35	
Dichlorodifluoromethane	0.02500	0.02630	105	0.03176	127	50-150	33-167	19	0-35	
1,1-Dichloroethane	0.02500	0.02484	99	0.02366	95	50-150	33-167	5	0-35	
1,1-Dichloroethene	0.02500	0.02705	108	0.02406	96	50-150	33-167	12	0-35	
1,2-Dibromoethane	0.02500	0.02620	105	0.02663	107	54-144	39-159	2	0-36	
Dichlorotetrafluoroethane	0.02500	0.02675	107	0.03243	130	50-150	33-167	19	0-35	
1,2-Dichlorobenzene	0.02500	0.02910	116	0.02709	108	34-160	13-181	7	0-47	
1,2-Dichloroethane	0.02500	0.02650	106	0.02528	101	69-153	55-167	5	0-35	
1,2-Dichloropropane	0.02500	0.02643	106	0.02438	98	67-157	52-172	8	0-35	
1,3-Dichlorobenzene	0.02500	0.02948	118	0.02684	107	50-150	33-167	9	0-35	
1,4-Dichlorobenzene	0.02500	0.02895	116	0.02703	108	36-156	16-176	7	0-47	
c-1,3-Dichloropropene	0.02500	0.02838	114	0.02681	107	61-157	45-173	6	0-35	
c-1,2-Dichloroethene	0.02500	0.02608	104	0.02523	101	50-150	33-167	3	0-35	
t-1,2-Dichloroethene	0.02500	0.02547	102	0.02496	100	50-150	33-167	2	0-35	
t-1,3-Dichloropropene	0.02500	0.02917	117	0.02767	111	50-150	33-167	5	0-35	
Ethylbenzene	0.02500	0.02762	110	0.02661	106	52-154	35-171	4	0-38	
4-Ethyltoluene	0.02500	0.02928	117	0.02717	109	50-150	33-167	7	0-35	
Hexachloro-1,3-Butadiene	0.02500	0.02958	118	0.03056	122	50-150	33-167	3	0-35	
2-Hexanone	0.02500	0.02738	110	0.02611	104	50-150	33-167	5	0-35	
Methyl-t-Butyl Ether (MTBE)	0.02500	0.02595	104	0.02536	101	50-150	33-167	2	0-35	
Methylene Chloride	0.02500	0.02623	105	0.02346	94	50-150	33-167	11	0-35	
4-Methyl-2-Pentanone	0.02500	0.02878	115	0.02579	103	50-150	33-167	11	0-35	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS/LCSD

Method:

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

04/06/18 18-04-0574 N/A EPA TO-15M

Page 6 of 9

Project: Del Amo Superfund Site, Los Angeles /

0.02500

0.02500

0.02500

0.03232

0.02473

0.02638

129

99

106

60566446.2018.1.0601

<u>Parameter</u>	Spike Added	LCS Conc	<u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	<u>Qualifiers</u>
o-Xylene	0.02500	0.02880	115	0.02547	102	52-148	36-164	12	0-38	
p/m-Xylene	0.05000	0.05482	110	0.05232	105	42-156	23-175	5	0-41	
Styrene	0.02500	0.02912	116	0.02606	104	50-150	33-167	11	0-35	
Tetrachloroethene	0.02500	0.02637	105	0.02749	110	56-152	40-168	4	0-40	
Toluene	0.02500	0.02468	99	0.02471	99	56-146	41-161	0	0-43	
Trichloroethene	0.02500	0.02707	108	0.02630	105	63-159	47-175	3	0-34	
Trichlorofluoromethane	0.02500	0.02711	108	0.03215	129	50-150	33-167	17	0-35	
1,1,2-Trichloro-1,2,2- Trifluoroethane	0.02500	0.02534	101	0.02458	98	50-150	33-167	3	0-35	
1,1,1-Trichloroethane	0.02500	0.02686	107	0.02636	105	50-150	33-167	2	0-35	
1,1,2-Trichloroethane	0.02500	0.02714	109	0.02517	101	65-149	51-163	8	0-37	
1,3,5-Trimethylbenzene	0.02500	0.02957	118	0.02727	109	50-150	33-167	8	0-35	
1,1,2,2-Tetrachloroethane	0.02500	0.02988	120	0.02441	98	50-150	33-167	20	0-35	
1,2,4-Trimethylbenzene	0.02500	0.03007	120	0.02678	107	50-150	33-167	12	0-35	

0.03322

0.02206

0.03408

133

88

136

50-150

50-150

45-177

33-167

33-167

23-199

3

11

25

0-35

0-35

0-36

Total number of LCS compounds: 51 Total number of ME compounds: 0 Total number of ME compounds allowed: 3 LCS ME CL validation result: Pass

1,2,4-Trichlorobenzene

Vinyl Acetate

Vinyl Chloride

CL: Control Limits RPD: Relative Percent Difference.

LCS/LCSD - Surrogate

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

18-04-0574 N/A

04/06/18

Method:

EPA TO-15M Page 7 of 9

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре		Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Ba	atch Number
099-12-981-8431	LCS		Air	GC/MS II	N/A	04/09/18 12:59	180409L02	
099-12-981-8431	LCSD		Air	GC/MS II	N/A	04/09/18 13:57	180409L02	
Parameter		Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	Qualifiers
1,4-Bromofluorobenzene		0.02500	0.02697	108	0.02362	94	57-129	
1,2-Dichloroethane-d4		0.02500	0.02499	100	0.02444	98	47-137	
Toluene-d8		0.02500	0.02539	102	0.02462	98	78-156	

RPD: Relative Percent Difference. CL: Control Limits

Quality Control - LCS

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

18-04-0574 N/A

04/06/18

Method:

EPA TO-3M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 8 of 9

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
098-01-005-8397	LCS	Air	GC 13	N/A	04/06/18 09:40	180406L01
<u>Parameter</u>		Spike Added	Conc. Recover	ed LCS %R	ec. %Rec.	CL Qualifiers
TPH as Gasoline		200.0	192.5	96	80-120)

Page 9 of 9

Quality Control - LCS/LCSD

AECOM Date Received: 04/06/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0574 Santa Barbara, CA 93117-3153 Preparation: N/A

Method: SCAQMD 25.1M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD B	atch Number
099-07-024-1540	LCS	Air		GC 14	N/A	04/0	7/18 10:01	180407L02	
099-07-024-1540	LCSD	Air		GC 14	N/A	04/0	7/18 10:24	180407L02	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Methane	101.0	105.0	104	104.8	104	80-120	0	0-20	

Sample Analysis Summary Report

Work Order: 18-04-0574				Page 1 of 1
<u>Method</u>	Extraction	Chemist ID	Instrument	Analytical Location
ASTM D-1946	N/A	1145	GC 65	2
EPA TO-15M	N/A	866	GC/MS II	2
EPA TO-3M	N/A	1145	GC 13	2
SCAOMD 25 1M	N/A	1144	GC 14	2

Glossary of Terms and Qualifiers

Work Order: 18-04-0574 Page 1 of 1

<u>Qualifiers</u>	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater

concentration by a factor of four or greater.

The sample extract was subjected to Silica Gel treatment prior to analysis.

X % Recovery and/or RPD out-of-range.

SG

Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Contents

Erick Ovalle

From: Pittman, Margaret <Margaret.Pittman@aecom.com>

Sent: Monday, April 09, 2018 3:02 PM

To: Erick Ovalle

Cc: Doane-Allmon, Julie; Vikas Patel; Francis, Jude; Grasmick, Daniel Subject: Re: Del Amo Superfund / 18-04-0574 - Response requested

EXTERNAL EMAIL*

Please analyze outside holding time and flag the results accordingly. Thanks!

Sent from my iPhone

On Apr 9, 2018, at 2:21 PM, Erick Ovalle < ErickOvalle@eurofinsUS.com wrote:

Margaret,

Sample VSS01367 was not logged in for TO-15 due to laboratory oversight and is now outside holding time. Please advise if you would like us to analyze outside holding time or if you would like to re-collect?

I attempted to call your office and direct numbers but they all have a busy tone.

Best Regards, Erick Ovalle Project Manager Assistant

Eurofins Calscience 7440 Lincoln Way Garden Grove, CA 92841-1427 USA

Phone: +1 (714) 895-5494

Email: <u>ErickOvalle@eurofinsus.com</u>
Website: <u>www.eurofinsUS.com/Calscience</u>

<image001.jpg>

<18-04-0574.PDF>

Notify us here to report this email as spam.

* WARNING - EXTERNAL: This email originated from outside of Eurofins. Do not click any links or open any attachments unless you trust the sender and know that the content is safe!

CLIENT:

1 Bage 47 of 47 7-4

SAMPLE R

S. CUIUIIIIS WORK ORDER NO	WORK ORDER NUMBER: 10-04-0777						
Calscience SAMPLE RECEIPT CHECKLIST	C DATI	OOLER _ ≣: _ 04 / <i>€</i>	O o F O / 2018				
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue)							
Thermometer ID: SC6 (CF: +0.1°C); Temperature (w/o CF):°C (w/ CF):	°C;	☐ Blank	□ Sample				
☐ Sample(s) outside temperature criteria (PM/APM contacted by:)			AND THE PROPERTY OF THE PROPER				
☐ Sample(s) outside temperature criteria but received on ice/chilled on same day of sam	pling						
☐ Sample(s) received at ambient temperature; placed on ice for transport by courier			1991				
Ambient Temperature:		Checked I	oy: ///				
CUSTODY SEAL:			1991				

CUSTODY	SEAL:						in91
Cooler	☐ Present and Intact	☐ Present but Not Intact	☐ Not Present	☑ N/A		ed by: _/	<u>VII</u>
Sample(s)	☐ Present and Intact	☐ Present but Not Intact	☑ Not Present	□ N/A	Check	ed by: /	253
SAMPLE C	ONDITION:				Yes	No	N/A
Chain-of-Cu	istody (COC) document(s	received with samples			Ø		
COC docum	nent(s) received complete				Ø		
☐ Samp	ling date □ Sampling tim	e 🗆 Matrix 🗀 Number of c	ontainers				
☐ No an	alysis requested ☐ Not r	elinquished 🛭 No relinquish	ned date 🛭 No relir	nquished time			
Sampler's n	ame indicated on COC .				Ø		
Sample con	tainer label(s) consistent	with COC			Ø		
Sample con	tainer(s) intact and in goo	d condition			Ø		
Proper cont	ainers for analyses reque	sted			Ø		
Sufficient vo	olume/mass for analyses r	equested			Ø		, I
Samples red	ceived within holding time				ø		
Aqueous	samples for certain analy	ses received within 15-minut	e holding time				
□рН□	Residual Chlorine D	ssolved Sulfide	d Oxygen				Ø
Proper pres	ervation chemical(s) note	d on COC and/or sample con	tainer				Ø
Unprese	rved aqueous sample(s) r	eceived for certain analyses					
☐ Volatil	e Organics 🛚 Total Meta	als Dissolved Metals					
Acid/base p	reserved samples - pH wi	thin acceptable range			. 🗆		
Container(s) for certain analysis free	of headspace			. 🗆		D/
☐ Volatil	e Organics 🛚 Dissolved	Gases (RSK-175) ☐ Dissol	ved Oxygen (SM 45	500)			
☐ Carbo	n Dioxide (SM 4500) □ I	Ferrous Iron (SM 3500) D H	lydrogen Sulfide (H	ach)			
Tedlar™ ba	g(s) free of condensation				ď		
CONTAINE	R TYPE:		(Trip Blar	nk Lot Numbe	er:)
Aqueous:	VOA □ VOAh □ VOAna₂ [□ 100PJ □ 100PJ na ₂ □ 125AGI	B □ 125AGB h □ 125	AGB p □ 125P	В 🗆 125	SPB znna (pH9)
□ 250AGB [□ 250CGB □ 250CGB s (pH_	_2) 🗆 250PB 🗆 250PB n (pH	_2) 🗆 500AGB 🗆 50	DAGJ 🗆 500AC	SJs (pH_	_2) 🗆 50	0PB

□ 1AGB □ 1AGBna₂ □ 1AGBs (pH_2) □ 1AGBs (O&G) □ 1PB □ 1PBna (pH_12) □ _____ □ _ Solid: ☐ 4ozCGJ ☐ 8ozCGJ ☐ 16ozCGJ ☐ Sleeve (____) ☐ EnCores® (____) ☐ TerraCores® (____) ☐ ____ ☐ ___

Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Resealable Bag

Air:
☐ Tedlar™ ☐ Canister ☐ Sorbent Tube ☐ PUF ☐ _____ Other Matrix (_

Labeled/Checked by: / Preservative: b = buffered, f = filtered, h = HCl, $n = HNO_3$, na = NaOH, $na_2 = Na_2S_2O_3$, $p = H_3PO_4$, Reviewed by: $s = H_2SO_4$, u = ultra-pure, $x = Na_2SO_3+NaHSO_4$. H_2O , $znna = Zn (CH_3CO_2)_2 + NaOH$

_____): □ _____ □ ____ □ ___

Calscience

WORK ORDER NUMBER: 18-04-0819

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AECOM

Client Project Name: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Attention: Julie Doane-Allmon

130 Robin Hill Road

Suite 100

Santa Barbara, CA 93117-3153

Vikas Patel

Approved for release on 05/03/2018 by:

Vikas Patel **Project Manager**

ResultLink >

Email your PM >

Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Del Amo Superfund Site, Los Angeles / 60566446.2018.1	.0601
--	-------

Work Order Number: 18-04-0819

1	Work Order Narrative	3
2	Sample Summary	4
3	QC Association Summary	5
4	Detections Summary	7
5	Client Sample Data. 5.1 ASTM D-1946 Fixed Gases (Air). 5.2 EPA TO-15 (M) Full List (Air). 5.3 EPA TO-3 (M) TPH Gasoline (Air). 5.4 SCAQMD 25.1 TGNMO and CH4 (Air).	11 11 15 43 46
6	Quality Control Sample Data. 6.1 Sample Duplicate. 6.2 LCS/LCSD.	49 49 50
7	Sample Analysis Summary	59
8	Glossary of Terms and Qualifiers	60
9	Chain-of-Custody/Sample Receipt Form	61

Work Order Narrative

Work Order: 18-04-0819 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/10/18. They were assigned to Work Order 18-04-0819.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

DoD Projects:

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.

Sample Summary

Client: AECOM Work Order: 18-04-0819

Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 130 Robin Hill Road, Suite 100 Project Name: Santa Barbara, CA 93117-3153

PO Number: 100067

04/10/18 18:10 Date/Time

Received:

13 Number of

Containers:

Attn: Julie Doane-Allmon

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix	
VSS01371	18-04-0819-1	04/09/18 08:35	1	Air	
VSS01372	18-04-0819-2	04/09/18 08:33	1	Air	
VSS01373	18-04-0819-3	04/09/18 10:05	1	Air	
VSS01374	18-04-0819-4	04/09/18 10:05	1	Air	
VSS01375	18-04-0819-5	04/09/18 12:25	1	Air	
VSS01376	18-04-0819-6	04/09/18 12:20	1	Air	
VSS01377	18-04-0819-7	04/09/18 13:15	1	Air	
VSS01378	18-04-0819-8	04/09/18 13:17	1	Air	
VSS01379	18-04-0819-9	04/09/18 14:15	1	Air	
VSS01380	18-04-0819-10	04/09/18 14:20	1	Air	
VSS01381	18-04-0819-11	04/09/18 16:15	1	Air	
VSS01382	18-04-0819-12	04/09/18 16:20	1	Air	
VSS01383	18-04-0819-13	04/09/18 16:25	1	Air	

QC Association Summary

Work Order: 18-04	4-0819				Pag	e 1 of 2
Client Sample ID	Method Name	<u>Type</u>	Ext Name	Instrument	MS/MSD/SDP	LCS/LCSD
VSS01371	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180411L02
VSS01371	EPA TO-15 (M) Full List		N/A	GC/MS OOO	*2	180411L02
VSS01371	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180411D01	180411L01
VSS01371	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180417L02
VSS01372	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180411L02
VSS01372	EPA TO-15 (M) Full List		N/A	GC/MS OOO	*2	180411L02
VSS01372	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180411D01	180411L01
VSS01372	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180417L02
VSS01373	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180411L02
VSS01373	EPA TO-15 (M) Full List		N/A	GC/MS OOO	*2	180411L02
VSS01373	EPA TO-15 (M) Full List	R	N/A	GC/MS OOO	*1	180412L02
VSS01373	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180411D01	180411L01
VSS01373	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180417L02
VSS01374	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180411L02
VSS01374	EPA TO-15 (M) Full List		N/A	GC/MS OOO	*2	180411L02
VSS01374	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180411D01	180411L01
VSS01374	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180417L02
VSS01375	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180411L02
VSS01375	EPA TO-15 (M) Full List		N/A	GC/MS OOO	*2	180411L02
VSS01375	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180411D01	180411L01
VSS01375	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180417L02
VSS01376	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180411L02
VSS01376	EPA TO-15 (M) Full List		N/A	GC/MS OOO	*2	180411L02
VSS01376	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180411D01	180411L01
VSS01376	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180417L02
VSS01377	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180411L02
VSS01377	EPA TO-15 (M) Full List		N/A	GC/MS OOO	*2	180411L02
VSS01377	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180411D01	180411L01
VSS01377	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180417L02
VSS01378	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180411L02
VSS01378	EPA TO-15 (M) Full List		N/A	GC/MS OOO	*2	180411L02
VSS01378	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180411D01	180411L01
VSS01378	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180417L02
VSS01379	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180411L02
VSS01379 VSS01379	EPA TO-15 (M) Full List		N/A	GC/MS OOO	*2	180411L02
VSS01379 VSS01379	EPA TO-13 (M) THI LIST EPA TO-3 (M) TPH Gasoline		N/A	GC 13	2 180411D01	180411L02
VSS01379 VSS01379	SCAQMD 25.1 TGNMO and CH4		N/A	GC 13	*2	180417L01
VSS01379 VSS01380	ASTM D-1946 Fixed Gases		N/A N/A	GC 14 GC 65	*2	180417L02 180411L02
			N/A	GC/MS OOO	*2	
VSS01380	EPA TO 3 (M) TPH Casalina					180411L02
VSS01380	EPA TO-3 (M) TPH Gasoline		N/A	GC 14	180411D01 *2	180411L01
VSS01380	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2 *2	180417L02
VSS01381	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180411L02
VSS01381	EPA TO-15 (M) Full List		N/A	GC/MS OOO	*2	180411L02

^{1 =} Dilution analysis performed, no associated matrix QC

^{2 =} Limited sample received, no MS/MSD performed

R = Rerun

QC Association Summary

Work Order: 18-04	Work Order: 18-04-0819					
Client Sample ID	Method Name	<u>Type</u>	Ext Name	Instrument	MS/MSD/SDP	LCS/LCSD
VSS01381	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180411D01	180411L01
VSS01381	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180417L02
VSS01382	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180411L02
VSS01382	EPA TO-15 (M) Full List		N/A	GC/MS OOO	*2	180411L02
VSS01382	EPA TO-15 (M) Full List	R	N/A	GC/MS OOO	*1	180412L02
VSS01382	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180411D01	180411L01
VSS01382	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180417L02
VSS01383	EPA TO-15 (M) Full List		N/A	GC/MS OOO	*2	180411L02
VSS01383	EPA TO-15 (M) Full List	R	N/A	GC/MS OOO	*1	180412L02
VSS01383	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180411D01	180411L01

R = Rerun

^{1 =} Dilution analysis performed, no associated matrix QC

^{2 =} Limited sample received, no MS/MSD performed

Detections Summary

Client: AECOM Work Order: 18-04-0819

Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 130 Robin Hill Road, Suite 100 Project Name:

Received: 04/10/18

Attn: Julie Doane-Allmon Page 1 of 4

Client SampleID						
<u>Analyte</u>	<u>Result</u>	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
VSS01371 (18-04-0819-1)						
Carbon Dioxide	6.44		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	14.1		0.500	%v	ASTM D-1946	N/A
Nitrogen	79.5		0.500	%v	ASTM D-1946	N/A
Acetone	21	J	11*	ppm (v/v)	EPA TO-15M	N/A
Benzene	3600		20	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	1100		20	ppm (v/v)	EPA TO-15M	N/A
Toluene	39	J	5.4*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	5700		30	ppm (v/v)	EPA TO-3M	N/A
Methane	120		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01372 (18-04-0819-2)						
Carbon Dioxide	16.3		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	2.42		0.500	%v	ASTM D-1946	N/A
Nitrogen	81.2		0.500	%v	ASTM D-1946	N/A
Benzene	8700		62	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	2800		62	ppm (v/v)	EPA TO-15M	N/A
Toluene	74	J	17*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	17000		75	ppm (v/v)	EPA TO-3M	N/A
Methane	290		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01373 (18-04-0819-3)						
Carbon Dioxide	7.29		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	13.1		0.500	%v	ASTM D-1946	N/A
Nitrogen	79.6		0.500	%v	ASTM D-1946	N/A
Acetone	1.3	J	0.23*	ppm (v/v)	EPA TO-15M	N/A
Benzene	1100	E	0.40	ppm (v/v)	EPA TO-15M	N/A
Benzene	3100		40	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	660	Е	0.40	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	870		40	ppm (v/v)	EPA TO-15M	N/A
4-Ethyltoluene	0.37	J	0.13*	ppm (v/v)	EPA TO-15M	N/A
o-Xylene	0.20	J	0.13*	ppm (v/v)	EPA TO-15M	N/A
p/m-Xylene	0.38	J	0.27*	ppm (v/v)	EPA TO-15M	N/A
Styrene	0.16	J	0.051*	ppm (v/v)	EPA TO-15M	N/A
Toluene	49		4.0	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	9400		75	ppm (v/v)	EPA TO-3M	N/A
Methane	130		1.0	ppm (v/v)	SCAQMD 25.1M	N/A

^{*} MDL is shown

Detections Summary

Client: AECOM Work Order: 18-04-0819

Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 130 Robin Hill Road, Suite 100 Project Name:

04/10/18 Received:

Attn: Julie Doane-Allmon Page 2 of 4

Client CompleID						1 age 2 01 4
Client SampleID	Popult	Qualifiere	ы	Unito	Mathad	Extraction
<u>Analyte</u>	Result	<u>Qualifiers</u>	<u>RL</u>	<u>Units</u>	<u>Method</u>	<u>Extraction</u>
VSS01374 (18-04-0819-4)						
Carbon Dioxide	16.1		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	2.55		0.500	%v	ASTM D-1946	N/A
Nitrogen	81.4		0.500	%v	ASTM D-1946	N/A
Benzene	8900		80	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	3000		80	ppm (v/v)	EPA TO-15M	N/A
Toluene	82	J	22*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	19000		75	ppm (v/v)	EPA TO-3M	N/A
Methane	290		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01375 (18-04-0819-5)						
Carbon Dioxide	9.86		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	9.95		0.500	%v	ASTM D-1946	N/A
Nitrogen	80.2		0.500	%v	ASTM D-1946	N/A
Benzene	5700		50	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	2700		50	ppm (v/v)	EPA TO-15M	N/A
Toluene	56	J	13*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	12000		75	ppm (v/v)	EPA TO-3M	N/A
Methane	200		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01376 (18-04-0819-6)						
Carbon Dioxide	15.9		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	2.53		0.500	%v	ASTM D-1946	N/A
Nitrogen	81.5		0.500	%v	ASTM D-1946	N/A
Acetone	48	J	46*	ppm (v/v)	EPA TO-15M	N/A
Benzene	7700		80	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	2200		80	ppm (v/v)	EPA TO-15M	N/A
Toluene	65	J	22*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	18000		75	ppm (v/v)	EPA TO-3M	N/A
Methane	280		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01377 (18-04-0819-7)						
Carbon Dioxide	8.66		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	11.4		0.500	%v	ASTM D-1946	N/A
Nitrogen	79.9		0.500	%v	ASTM D-1946	N/A
Acetone	30	J	23*	ppm (v/v)	EPA TO-15M	N/A
Benzene	5100		40	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	2600		40	ppm (v/v)	EPA TO-15M	N/A
Toluene	55	J	11*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	11000		75	ppm (v/v)	EPA TO-3M	N/A
Methane	170		1.0	ppm (v/v)	SCAQMD 25.1M	N/A

^{*} MDL is shown

Detections Summary

Client: AECOM Work Order: 18-04-0819

Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 130 Robin Hill Road, Suite 100 Project Name:

Received: 04/10/18

Attn: Julie Doane-Allmon Page 3 of 4

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
VSS01378 (18-04-0819-8)						
Carbon Dioxide	15.8		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	2.61		0.500	%v	ASTM D-1946	N/A
Nitrogen	81.6		0.500	%v	ASTM D-1946	N/A
Benzene	6900		80	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	2700		80	ppm (v/v)	EPA TO-15M	N/A
Toluene	60	J	22*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	19000		75	ppm (v/v)	EPA TO-3M	N/A
Methane	350		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01379 (18-04-0819-9)						
Carbon Dioxide	8.34		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	11.8		0.500	%v	ASTM D-1946	N/A
Nitrogen	79.8		0.500	%v	ASTM D-1946	N/A
Acetone	40	J	23*	ppm (v/v)	EPA TO-15M	N/A
Benzene	4600		40	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	2100		40	ppm (v/v)	EPA TO-15M	N/A
Toluene	44	J	11*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	11000		75	ppm (v/v)	EPA TO-3M	N/A
Methane	130		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01380 (18-04-0819-10)						
Carbon Dioxide	16.0		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	2.61		0.500	%v	ASTM D-1946	N/A
Nitrogen	81.4		0.500	%v	ASTM D-1946	N/A
Benzene	8300		80	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	3000		80	ppm (v/v)	EPA TO-15M	N/A
Toluene	70	J	22*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	18000		75	ppm (v/v)	EPA TO-3M	N/A
Methane	330		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01381 (18-04-0819-11)						
Carbon Dioxide	15.9		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	3.04		0.500	%v	ASTM D-1946	N/A
Nitrogen	81.1		0.500	%v	ASTM D-1946	N/A
Benzene	7900		80	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	2700		80	ppm (v/v)	EPA TO-15M	N/A
Toluene	63	J	22*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	17000		75	ppm (v/v)	EPA TO-3M	N/A
Methane	250		1.0	ppm (v/v)	SCAQMD 25.1M	N/A

^{*} MDL is shown

Detections Summary

Client: AECOM Work Order: 18-04-0819

Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 130 Robin Hill Road, Suite 100 Project Name:

Received: 04/10/18

Attn: Julie Doane-Allmon Page 4 of 4

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
VSS01382 (18-04-0819-12)						
Oxygen (+ Argon)	21.4		0.500	%v	ASTM D-1946	N/A
Nitrogen	78.5		0.500	%v	ASTM D-1946	N/A
Acetone	0.35	J	0.11*	ppm (v/v)	EPA TO-15M	N/A
Benzene	17		0.20	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	51	E	0.20	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	39		0.50	ppm (v/v)	EPA TO-15M	N/A
Toluene	0.53	J	0.054*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	110		1.5	ppm (v/v)	EPA TO-3M	N/A
Methane	0.82	J	0.21*	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01383 (18-04-0819-13)						
Acetone	0.53	J	0.18*	ppm (v/v)	EPA TO-15M	N/A
Benzene	33		0.31	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	110	E	0.31	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	82		1.2	ppm (v/v)	EPA TO-15M	N/A
Toluene	1.0	J	0.084*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	170		1.5	ppm (v/v)	EPA TO-3M	N/A

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: **ASTM D-1946** Units:

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 1 of 4

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01371	18-04-0819-1-A	04/09/18 08:35	Air	GC 65	N/A	04/11/18 12:32	180411L02
Comment(s): - Results were ev	aluated to the MDL (DL), con-	centrations >= t	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	ılt .	<u>RL</u>	MDL	<u>DF</u>	<u>0</u>	Qualifiers
Carbon Dioxide	6.44		0.500	0.139	1.00		
Carbon Monoxide	ND		0.500	0.183	1.00		
Oxygen (+ Argon)	14.1		0.500	0.205	1.00		
Nitrogen	79.5	1	0.500	0.477	1.00		
VSS01372	18-04-0819-2-A	04/09/18	Air	GC 65	N/A	04/11/18	180411L02

	08:33			13:2	20
Comment(s): - Results were evaluated to the M	MDL (DL), concentration	ons >= to the MDL (DL) but < RL (LOQ)	if found, are qualifi	ed with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Dioxide	16.3	0.500	0.139	1.00	
Carbon Monoxide	ND	0.500	0.183	1.00	
Oxygen (+ Argon)	2.42	0.500	0.205	1.00	
Nitrogen	81.2	0.500	0.477	1.00	

VSS01373	18-04-0819-3-A	04/09/18 Air 10:05	GC 65		4/11/18 180411L02 3:40
Comment(s): - Results were evaluated to	the MDL (DL), conce	entrations >= to the M	DL (DL) but < RL (LC	Q), if found, are qua	alified with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Dioxide	7.29	0.500	0.139	1.00	
Carbon Monoxide	ND	0.500	0.183	1.00	
Oxygen (+ Argon)	13.1	0.500	0.205	1.00	
Nitrogen	79.6	0.500	0.477	1.00	

VSS01374		4/09/18 Air 0:05	GC 65	N/A	04/11/18 14:00	180411L02
Comment(s): - Results were evaluated to	the MDL (DL), concent	rations >= to the MD	DL (DL) but < RL (L	OQ), if found, are	qualified with a "	J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qı</u>	<u>ualifiers</u>
Carbon Dioxide	16.1	0.500	0.139	1.00		
Carbon Monoxide	ND	0.500	0.183	1.00		
Oxygen (+ Argon)	2.55	0.500	0.205	1.00		
Nitrogen	81.4	0.500	0.477	1.00		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Page 2 of 4

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: **ASTM D-1946** Units:

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID

	Number	Collected		Frepareu	Analyzeu	
VSS01375	18-04-0819-5-A	04/09/18 Air 12:25	GC 65	N/A	04/11/18 14:19	180411L02
Comment(s): - Results	s were evaluated to the MDL (DL), cond	centrations >= to the N	/IDL (DL) but < RL ((LOQ), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	ı <u>lt</u> <u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Carbon Dioxide	9.86	0.500	0.139	1.00		
Carbon Monoxide	ND	0.500	0.183	1.00		
Oxygen (+ Argon)	9.95	0.500	0.205	1.00		
Nitrogen	80.2	0.500	0.477	1.00		

VSS01376	18-04-0819-6-A	04/09/18 12:20	Air	GC 65	N/A	04/11/18 14:41	180411L02
Comment(s):	- Results were evaluated to the MDL (DL), con	centrations >=	to the MDI	L (DL) but < RL (LO	Q), if found, are	e qualified with a	"J" flag.
<u>Parameter</u>	Resi	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>ualifiers</u>

Carbon Dioxide 15.9 0.500 0.139 1.00 Carbon Monoxide ND 0.500 0.183 1.00 2.53 0.500 0.205 Oxygen (+ Argon) 1.00 0.500 0.477 1.00 Nitrogen 81.5

VSS01377	18-04-0819-7-A	04/09/18 13:15	Air	GC 65	N/A	04/11/18 14:59	180411L02
Comment(s):	- Results were evaluated to the MDL (DL), co	ncentrations >= t	o the MDL (DL)	but < RL (LOQ), if found, are o	qualified with a ".	J" flag.
<u>Parameter</u>	Res	<u>sult</u> <u>l</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
Carbon Dioxide	8.6	6 (0.500	0.139	1.00		

<u>r arameter</u>	result	IXE	IVIDE	<u>D1</u>
Carbon Dioxide	8.66	0.500	0.139	1.00
Carbon Monoxide	ND	0.500	0.183	1.00
Oxygen (+ Argon)	11.4	0.500	0.205	1.00
Nitrogen	79.9	0.500	0.477	1.00

VSS01378	18-04-0819-8-A 04/09 13:17		GC 65		4/11/18 180411L02 8:17
Comment(s): - Results were evaluated to	the MDL (DL), concentration	ons >= to the MDL	(DL) but < RL (LOQ), if found, are qua	alified with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Dioxide	15.8	0.500	0.139	1.00	
Carbon Monoxide	ND	0.500	0.183	1.00	
Oxygen (+ Argon)	2.61	0.500	0.205	1.00	
Nitrogen	81.6	0.500	0.477	1.00	

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

Page 3 of 4

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: **ASTM D-1946** Units:

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Oxygen (+ Argon)

Nitrogen

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01379	18-04-0819-9-A	04/09/18 14:15	Air	GC 65	N/A	04/11/18 17:31	180411L02
Comment(s): - Results were evaluated to	to the MDL (DL), cond	centrations >= 1	to the MDL (I	DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Carbon Dioxide	8.34		0.500	0.139	1.00		
Carbon Monoxide	ND		0.500	0.183	1.00		

0.500

0.500

0.205

0.477

1.00

1.00

VSS01380	18-04-0819-10-A	04/09/18 14:20	Air	GC 65	N/A	04/11/18 180411L02 17:50
Comment(s):	- Results were evaluated to the MDL (DL), con	centrations >	= to the MDL	(DL) but < RL (LO	Q), if found, are	e qualified with a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Dioxide	16.0		0.500	0.139	1.00	

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Dioxide	16.0	0.500	0.139	1.00	
Carbon Monoxide	ND	0.500	0.183	1.00	
Oxygen (+ Argon)	2.61	0.500	0.205	1.00	
Nitrogen	81.4	0.500	0.477	1.00	

11.8

79.8

VSS01381	18-04-0819-11-A	04/09/18 16:15	Air	GC 65	N/A	04/11/18 1804 ² 18:44	11L02
Comment(s): - Results were evaluated to	the MDL (DL), cond	centrations >	= to the MDL	(DL) but < RL (LOQ), if found, are o	qualified with a "J" flag.	
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>	<u>i</u>
Carbon Dioxide	15.9		0.500	0.139	1.00		
Carbon Monoxide	ND		0.500	0.183	1.00		
Oxygen (+ Argon)	3.04		0.500	0.205	1.00		
Nitrogen	81.1		0.500	0.477	1.00		

VSS01382	18-04-0819-12-A 04/09 16:20		GC 65		4/11/18 180411L02 9:12
Comment(s): - Results were evaluated to	the MDL (DL), concentration	ons >= to the MDL	(DL) but < RL (LOQ), if found, are qua	lified with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Dioxide	ND	0.500	0.139	1.00	
Carbon Monoxide	ND	0.500	0.183	1.00	
Oxygen (+ Argon)	21.4	0.500	0.205	1.00	
Nitrogen	78.5	0.500	0.477	1.00	

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

Page 4 of 4

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: **ASTM D-1946** Units:

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time N Collected	Matrix Instrume	ent Date Prepared	Date/Time Analyzed	QC Batch ID			
Method Blank	099-16-444-764	N/A A	Air GC 65	N/A	04/11/18 10:42	180411L02			
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.									
<u>Parameter</u>	Resu	<u>lt</u> <u>RL</u>	MDL	<u>DF</u>		<u>Qualifiers</u>			
Carbon Dioxide	ND	0.50	0.13	9 1.00	1				
Carbon Monoxide	ND	0.50	0.18	3 1.00	1				
Oxygen (+ Argon)	ND	0.50	0.20	5 1.00	1				
Nitrogen	ND	0.50	0.47	7 1.00)				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Page 1 of 28

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
VSS01371	18-04-0819-1-A	04/09/18 08:35	Air	GC/MS 000	N/A	04/11/18 18:28	180411L02		
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.									
<u>Parameter</u>	Result	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	<u>Qualifiers</u>		
Acetone	21		2000	11	40000		I		
Benzene	3600		20	3.4	40000				
Benzyl Chloride	ND		60	2.0	40000				
Bromodichloromethane	ND		20	2.5	40000				
Bromoform	ND		20	3.2	40000				
Bromomethane	ND		20	5.5	40000				
2-Butanone	ND		60	17	40000				
Carbon Disulfide	ND		400	11	40000				
Carbon Tetrachloride	ND		20	2.5	40000				
Chlorobenzene	ND		20	2.7	40000				
Chloroethane	ND		20	9.6	40000				
Chloroform	ND		20	2.8	40000				
Chloromethane	ND		20	9.6	40000				
Dibromochloromethane	ND		20	2.2	40000				
Dichlorodifluoromethane	ND		20	2.4	40000				
1,1-Dichloroethane	ND		20	2.5	40000				
1,1-Dichloroethene	ND		20	8.0	40000				
1,2-Dibromoethane	ND		20	2.8	40000				
Dichlorotetrafluoroethane	ND		80	11	40000				
1,2-Dichlorobenzene	ND		20	2.1	40000				
1,2-Dichloroethane	ND		20	2.7	40000				
1,2-Dichloropropane	ND		20	7.6	40000				
1,3-Dichlorobenzene	ND		20	6.5	40000				
1,4-Dichlorobenzene	ND		20	2.7	40000				
c-1,3-Dichloropropene	ND		20	2.6	40000				
c-1,2-Dichloroethene	ND		20	3.5	40000				
t-1,2-Dichloroethene	ND		20	5.1	40000				
t-1,3-Dichloropropene	ND		40	2.8	40000				
Ethylbenzene	1100		20	5.8	40000				
4-Ethyltoluene	ND		20	6.4	40000				
Hexachloro-1,3-Butadiene	ND		60	4.1	40000				
2-Hexanone	ND		60	18	40000				
Methyl-t-Butyl Ether (MTBE)	ND		80	6.1	40000				
Methylene Chloride	ND		200	9.9	40000				

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A EPA TO-15M Method: Units: ppm (v/v) Page 2 of 28

Project: Del Amo Superfund Site, Los Angeles /

60566446.		

00000440.2010.1.0001						
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>	
4-Methyl-2-Pentanone	ND	60	15	40000		
o-Xylene	ND	20	6.3	40000		
p/m-Xylene	ND	80	13	40000		
Styrene	ND	60	2.5	40000		
Tetrachloroethene	ND	20	2.7	40000		
Toluene	39	200	5.4	40000	J	
Trichloroethene	ND	20	2.8	40000		
Trichlorofluoromethane	ND	40	6.8	40000		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	60	2.8	40000		
1,1,1-Trichloroethane	ND	20	3.2	40000		
1,1,2-Trichloroethane	ND	20	7.3	40000		
1,3,5-Trimethylbenzene	ND	20	5.8	40000		
1,1,2,2-Tetrachloroethane	ND	40	5.5	40000		
1,2,4-Trimethylbenzene	ND	60	6.1	40000		
1,2,4-Trichlorobenzene	ND	80	5.0	40000		
Vinyl Acetate	ND	80	3.9	40000		
Vinyl Chloride	ND	20	8.9	40000		
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	106	57-129				
1,2-Dichloroethane-d4	106	47-137				
Toluene-d8	94	78-156				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Page 3 of 28

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

t-1,2-Dichloroethene

Ethylbenzene

4-Ethyltoluene

2-Hexanone

Methylene Chloride

t-1,3-Dichloropropene

Hexachloro-1,3-Butadiene

Methyl-t-Butyl Ether (MTBE)

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01372	18-04-0819-2-A	04/09/18 08:33	Air	GC/MS 000	N/A	04/11/18 19:12	180411L02
Comment(s): - Results were evaluated to	to the MDL (DL), conc	entrations >=	to the MDL (DL) but < RL (LOC	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Acetone	ND		6200	36	12500	00	
Benzene	8700		62	11	12500	00	
Benzyl Chloride	ND		190	6.1	12500	00	
Bromodichloromethane	ND		62	7.7	12500	00	
Bromoform	ND		62	10	12500	00	
Bromomethane	ND		62	17	12500	00	
2-Butanone	ND		190	54	12500	00	
Carbon Disulfide	ND		1200	35	12500	00	
Carbon Tetrachloride	ND		62	7.7	12500	00	
Chlorobenzene	ND		62	8.5	12500	00	
Chloroethane	ND		62	30	12500	00	
Chloroform	ND		62	8.7	12500	00	
Chloromethane	ND		62	30	12500	00	
Dibromochloromethane	ND		62	6.8	12500	00	
Dichlorodifluoromethane	ND		62	7.4	12500	00	
1,1-Dichloroethane	ND		62	7.9	12500	00	
1,1-Dichloroethene	ND		62	25	12500	00	
1,2-Dibromoethane	ND		62	8.6	12500	00	
Dichlorotetrafluoroethane	ND		250	33	12500	00	
1,2-Dichlorobenzene	ND		62	6.6	12500	00	
1,2-Dichloroethane	ND		62	8.6	12500	00	
1,2-Dichloropropane	ND		62	24	12500	00	
1,3-Dichlorobenzene	ND		62	20	12500	00	
1,4-Dichlorobenzene	ND		62	8.4	12500	00	
c-1,3-Dichloropropene	ND		62	8.2	12500	00	
c-1,2-Dichloroethene	ND		62	11	12500	00	

MDL: Method Detection Limit. RL: Reporting Limit. DF: Dilution Factor.

ND

ND

ND

ND

ND

ND

ND

2800

62

120

62

62

190

190

250

620

16

8.7

18

20

13

55

19

31

125000

125000

125000

125000

125000

125000

125000

125000

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 4 of 28

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Toluene-d8

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers	
4-Methyl-2-Pentanone	ND	190	47	125000		
o-Xylene	ND	62	20	125000		
p/m-Xylene	ND	250	42	125000		
Styrene	ND	190	8.0	125000		
Tetrachloroethene	ND	62	8.4	125000		
Toluene	74	620	17	125000	J	
Trichloroethene	ND	62	8.7	125000		
Trichlorofluoromethane	ND	120	21	125000		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	190	8.8	125000		
1,1,1-Trichloroethane	ND	62	9.9	125000		
1,1,2-Trichloroethane	ND	62	23	125000		
1,3,5-Trimethylbenzene	ND	62	18	125000		
1,1,2,2-Tetrachloroethane	ND	120	17	125000		
1,2,4-Trimethylbenzene	ND	190	19	125000		
1,2,4-Trichlorobenzene	ND	250	16	125000		
Vinyl Acetate	ND	250	12	125000		
Vinyl Chloride	ND	62	28	125000		
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	101	57-129				
1,2-Dichloroethane-d4	106	47-137				

78-156

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

100

04/10/18 **AECOM** Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153

Preparation: N/A Method: EPA TO-15M

Units: ppm (v/v) Page 5 of 28

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01373	18-04-0819-3-A	04/09/18 10:05	Air	GC/MS 000	N/A	04/11/18 19:56	180411L02
Comment(s): - Results were evaluated to	o the MDL (DL), cond	entrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers
Acetone	1.3		40	0.23	800		J
Benzene	1100		0.40	0.068	800	E	Ī
Benzyl Chloride	ND		1.2	0.039	800		
Bromodichloromethane	ND		0.40	0.050	800		
Bromoform	ND		0.40	0.065	800		
Bromomethane	ND		0.40	0.11	800		
2-Butanone	ND		1.2	0.35	800		
Carbon Disulfide	ND		8.0	0.22	800		
Carbon Tetrachloride	ND		0.40	0.049	800		
Chlorobenzene	ND		0.40	0.054	800		
Chloroethane	ND		0.40	0.19	800		
Chloroform	ND		0.40	0.055	800		
Chloromethane	ND		0.40	0.19	800		
Dibromochloromethane	ND		0.40	0.044	800		
Dichlorodifluoromethane	ND		0.40	0.048	800		
1,1-Dichloroethane	ND		0.40	0.050	800		
1,1-Dichloroethene	ND		0.40	0.16	800		
1,2-Dibromoethane	ND		0.40	0.055	800		
Dichlorotetrafluoroethane	ND		1.6	0.21	800		
1,2-Dichlorobenzene	ND		0.40	0.042	800		
1,2-Dichloroethane	ND		0.40	0.055	800		
1,2-Dichloropropane	ND		0.40	0.15	800		
1,3-Dichlorobenzene	ND		0.40	0.13	800		
1,4-Dichlorobenzene	ND		0.40	0.054	800		
c-1,3-Dichloropropene	ND		0.40	0.052	800		
c-1,2-Dichloroethene	ND		0.40	0.070	800		
t-1,2-Dichloroethene	ND		0.40	0.10	800		
t-1,3-Dichloropropene	ND		0.80	0.055	800		
Ethylbenzene	660		0.40	0.12	800	E	=
4-Ethyltoluene	0.37		0.40	0.13	800		J
Hexachloro-1,3-Butadiene	ND		1.2	0.082	800		
2-Hexanone	ND		1.2	0.35	800		
Methyl-t-Butyl Ether (MTBE)	ND		1.6	0.12	800		
Methylene Chloride	ND		4.0	0.20	800		

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 6 of 28

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
4-Methyl-2-Pentanone	ND	1.2	0.30	800	
o-Xylene	0.20	0.40	0.13	800	J
p/m-Xylene	0.38	1.6	0.27	800	J
Styrene	0.16	1.2	0.051	800	J
Tetrachloroethene	ND	0.40	0.054	800	
Toluene	49	4.0	0.11	800	
Trichloroethene	ND	0.40	0.056	800	
Trichlorofluoromethane	ND	0.80	0.14	800	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	1.2	0.056	800	
1,1,1-Trichloroethane	ND	0.40	0.063	800	
1,1,2-Trichloroethane	ND	0.40	0.15	800	
1,3,5-Trimethylbenzene	ND	0.40	0.12	800	
1,1,2,2-Tetrachloroethane	ND	0.80	0.11	800	
1,2,4-Trimethylbenzene	ND	1.2	0.12	800	
1,2,4-Trichlorobenzene	ND	1.6	0.099	800	
Vinyl Acetate	ND	1.6	0.078	800	
Vinyl Chloride	ND	0.40	0.18	800	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	107	57-129			
1,2-Dichloroethane-d4	106	47-137			
Toluene-d8	106	78-156			

VSS01373	18-04-0819-3-A	04/09/18 10:05	Air G	C/MS 000	N/A	04/12/18 17:55	180412L02
Comment(s): - Results were evaluated	to the MDL (DL), conce	entrations >= to	the MDL (DL) but	ut < RL (LOQ), if found, are o	ualified with a "	J" flag.
<u>Parameter</u>	Result	<u> R</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qu</u>	alifiers
Benzene	3100	4	10	6.8	80000		
Ethylbenzene	870	4	10	12	80000		
<u>Surrogate</u>	<u>Rec. (</u> '	<u>%)</u> <u>C</u>	Control Limits	Qualifiers			
1,4-Bromofluorobenzene	101	5	7-129				
1,2-Dichloroethane-d4	100	4	7-137				
Toluene-d8	96	7	'8-156				

Matrix

Instrument

Date

Prepared

Date/Time

Analyzed

QC Batch ID

Date/Time

Collected

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Lab Sample

Number

Page 7 of 28

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01374	18-04-0819-4-A	04/09/18 10:05	Air	GC/MS 000	N/A	04/11/18 20:41	180411L02
Comment(s): - Results were evalu	ated to the MDL (DL), conc	entrations >= to	o the MDL	(DL) but < RL (LOC	(a), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resul	<u>t</u> <u>F</u>	<u> </u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Acetone	ND	8	3000	46	16000	0	
Benzene	8900	8	30	14	16000	0	
Benzyl Chloride	ND	2	240	7.8	16000	0	
Bromodichloromethane	ND	8	30	9.9	16000	0	
Bromoform	ND	8	30	13	16000	0	
Bromomethane	ND	8	30	22	16000	0	
2-Butanone	ND	2	240	69	16000	0	
Carbon Disulfide	ND	1	1600	44	16000	0	
Carbon Tetrachloride	ND	8	30	9.9	16000	0	
Chlorobenzene	ND	8	30	11	16000	0	
Chloroethane	ND	8	30	39	16000	0	
Chloroform	ND	8	30	11	16000	0	
Chloromethane	ND	8	30	38	16000	0	
Dibromochloromethane	ND	8	30	8.8	16000	0	
Dichlorodifluoromethane	ND	8	30	9.5	16000	0	
1,1-Dichloroethane	ND	8	30	10	16000	0	
1,1-Dichloroethene	ND	8	30	32	16000	0	
1,2-Dibromoethane	ND	8	30	11	16000	0	
Dichlorotetrafluoroethane	ND	3	320	42	16000	0	
1,2-Dichlorobenzene	ND	8	30	8.5	16000	0	
1,2-Dichloroethane	ND	8	30	11	16000	0	
1,2-Dichloropropane	ND	8	30	31	16000	0	
1,3-Dichlorobenzene	ND	8	30	26	16000	0	
1,4-Dichlorobenzene	ND	8	30	11	16000	0	
c-1,3-Dichloropropene	ND	8	30	10	16000	0	
c-1,2-Dichloroethene	ND	8	30	14	16000	0	
t-1,2-Dichloroethene	ND	8	30	20	16000	0	
t-1,3-Dichloropropene	ND	1	160	11	16000	0	
Ethylbenzene	3000	8	30	23	16000	0	
4-Ethyltoluene	ND	8	30	25	16000	0	
Hexachloro-1,3-Butadiene	ND	2	240	16	16000	0	
2-Hexanone	ND	2	240	70	16000	0	
Methyl-t-Butyl Ether (MTBE)	ND	3	320	24	16000		
Methylene Chloride	ND		300	40	16000		

MDL: Method Detection Limit. RL: Reporting Limit. DF: Dilution Factor.

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 8 of 28

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Toluene-d8

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers	
4-Methyl-2-Pentanone	ND	240	60	160000		
o-Xylene	ND	80	25	160000		
p/m-Xylene	ND	320	53	160000		
Styrene	ND	240	10	160000		
Tetrachloroethene	ND	80	11	160000		
Toluene	82	800	22	160000	J	
Trichloroethene	ND	80	11	160000		
Trichlorofluoromethane	ND	160	27	160000		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	240	11	160000		
1,1,1-Trichloroethane	ND	80	13	160000		
1,1,2-Trichloroethane	ND	80	29	160000		
1,3,5-Trimethylbenzene	ND	80	23	160000		
1,1,2,2-Tetrachloroethane	ND	160	22	160000		
1,2,4-Trimethylbenzene	ND	240	25	160000		
1,2,4-Trichlorobenzene	ND	320	20	160000		
Vinyl Acetate	ND	320	16	160000		
Vinyl Chloride	ND	80	36	160000		
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	97	57-129				
1,2-Dichloroethane-d4	111	47-137				

78-156

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

101

Page 9 of 28

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01375	18-04-0819-5-A	04/09/18 12:25	Air	GC/MS 000	N/A	04/11/18 21:30	180411L02
Comment(s): - Results were evaluated	uated to the MDL (DL), conc	entrations >= to	the MDL	(DL) but < RL (LOC	Q), if found, are o	qualified with	a "J" flag.
<u>Parameter</u>	<u>Resul</u>	<u>t</u> <u>F</u>	<u> </u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Acetone	ND	5	5000	29	10000)	
Benzene	5700	5	50	8.5	10000)	
Benzyl Chloride	ND	1	50	4.9	10000)	
Bromodichloromethane	ND	5	50	6.2	10000)	
Bromoform	ND	5	50	8.1	10000)	
Bromomethane	ND	5	50	14	10000)	
2-Butanone	ND	1	50	43	10000)	
Carbon Disulfide	ND	1	000	28	10000)	
Carbon Tetrachloride	ND	5	50	6.2	10000)	
Chlorobenzene	ND	5	50	6.8	10000)	
Chloroethane	ND	5	50	24	10000)	
Chloroform	ND	5	50	6.9	10000)	
Chloromethane	ND	5	50	24	10000)	
Dibromochloromethane	ND	5	50	5.5	10000)	
Dichlorodifluoromethane	ND	5	50	6.0	10000)	
1,1-Dichloroethane	ND	5	50	6.3	10000)	
1,1-Dichloroethene	ND	5	50	20	10000)	
1,2-Dibromoethane	ND	5	50	6.9	10000)	
Dichlorotetrafluoroethane	ND	2	200	27	10000)	
1,2-Dichlorobenzene	ND	5	50	5.3	10000)	
1,2-Dichloroethane	ND	5	50	6.9	10000)	
1,2-Dichloropropane	ND	5	50	19	10000)	
1,3-Dichlorobenzene	ND	5	50	16	10000)	
1,4-Dichlorobenzene	ND	5	50	6.7	10000)	
c-1,3-Dichloropropene	ND	5	50	6.5	10000)	
c-1,2-Dichloroethene	ND	5	50	8.7	10000)	
t-1,2-Dichloroethene	ND	5	50	13	10000)	
t-1,3-Dichloropropene	ND	1	00	6.9	10000)	
Ethylbenzene	2700	5	50	14	10000)	
4-Ethyltoluene	ND	5	50	16	10000)	
Hexachloro-1,3-Butadiene	ND	1	50	10	10000)	
2-Hexanone	ND	1	50	44	10000)	
Methyl-t-Butyl Ether (MTBE)	ND	2	200	15	10000)	
Methylene Chloride	ND	5	500	25	10000		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation: Method:

Units:

04/10/18 18-04-0819 N/A EPA TO-15M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

ppm (v/v) Page 10 of 28

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
4-Methyl-2-Pentanone	ND	150	37	100000	
o-Xylene	ND	50	16	100000	
p/m-Xylene	ND	200	33	100000	
Styrene	ND	150	6.4	100000	
Tetrachloroethene	ND	50	6.7	100000	
Toluene	56	500	13	100000	J
Trichloroethene	ND	50	6.9	100000	
Trichlorofluoromethane	ND	100	17	100000	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	150	7.0	100000	
1,1,1-Trichloroethane	ND	50	7.9	100000	
1,1,2-Trichloroethane	ND	50	18	100000	
1,3,5-Trimethylbenzene	ND	50	14	100000	
1,1,2,2-Tetrachloroethane	ND	100	14	100000	
1,2,4-Trimethylbenzene	ND	150	15	100000	
1,2,4-Trichlorobenzene	ND	200	12	100000	
Vinyl Acetate	ND	200	9.8	100000	
Vinyl Chloride	ND	50	22	100000	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	101	57-129			
1,2-Dichloroethane-d4	105	47-137			
Toluene-d8	100	78-156			

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Page 11 of 28

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153

Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

160000

160000

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Methyl-t-Butyl Ether (MTBE)

Methylene Chloride

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01376	18-04-0819-6-A	04/09/18 12:20	Air	GC/MS 000	N/A	04/11/18 22:18	180411L02
Comment(s): - Results were eva	luated to the MDL (DL), cond	entrations >=	to the MDL (DL) but < RL (LOC	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
Acetone	48		8000	46	16000	00 .	J
Benzene	7700		80	14	16000	00	
Benzyl Chloride	ND		240	7.8	16000	00	
Bromodichloromethane	ND		80	9.9	16000	00	
Bromoform	ND		80	13	16000	00	
Bromomethane	ND		80	22	16000	00	
2-Butanone	ND		240	69	16000	00	
Carbon Disulfide	ND		1600	44	16000	00	
Carbon Tetrachloride	ND		80	9.9	16000	00	
Chlorobenzene	ND		80	11	16000	00	
Chloroethane	ND		80	39	16000	00	
Chloroform	ND		80	11	16000	00	
Chloromethane	ND		80	38	16000	00	
Dibromochloromethane	ND		80	8.8	16000	00	
Dichlorodifluoromethane	ND		80	9.5	16000	00	
1,1-Dichloroethane	ND		80	10	16000	00	
1,1-Dichloroethene	ND		80	32	16000	00	
1,2-Dibromoethane	ND		80	11	16000	00	
Dichlorotetrafluoroethane	ND		320	42	16000	00	
1,2-Dichlorobenzene	ND		80	8.5	16000	00	
1,2-Dichloroethane	ND		80	11	16000	00	
1,2-Dichloropropane	ND		80	31	16000	00	
1,3-Dichlorobenzene	ND		80	26	16000	00	
1,4-Dichlorobenzene	ND		80	11	16000	00	
c-1,3-Dichloropropene	ND		80	10	16000	00	
c-1,2-Dichloroethene	ND		80	14	16000	00	
t-1,2-Dichloroethene	ND		80	20	16000	00	
t-1,3-Dichloropropene	ND		160	11	16000	00	
Ethylbenzene	2200		80	23	16000	00	
4-Ethyltoluene	ND		80	25	16000	00	
Hexachloro-1,3-Butadiene	ND		240	16	16000	00	
2-Hexanone	ND		240	70	16000	00	

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

ND

ND

320

800

24

40

Page 12 of 28

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Toluene-d8

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
4-Methyl-2-Pentanone	ND	240	60	160000	
o-Xylene	ND	80	25	160000	
p/m-Xylene	ND	320	53	160000	
Styrene	ND	240	10	160000	
Tetrachloroethene	ND	80	11	160000	
Toluene	65	800	22	160000	J
Trichloroethene	ND	80	11	160000	
Trichlorofluoromethane	ND	160	27	160000	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	240	11	160000	
1,1,1-Trichloroethane	ND	80	13	160000	
1,1,2-Trichloroethane	ND	80	29	160000	
1,3,5-Trimethylbenzene	ND	80	23	160000	
1,1,2,2-Tetrachloroethane	ND	160	22	160000	
1,2,4-Trimethylbenzene	ND	240	25	160000	
1,2,4-Trichlorobenzene	ND	320	20	160000	
Vinyl Acetate	ND	320	16	160000	
Vinyl Chloride	ND	80	36	160000	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	98	57-129			
1,2-Dichloroethane-d4	105	47-137			

78-156

96

Page 13 of 28

N/A

Analytical Report

04/10/18 **AECOM** Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation:

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01377	18-04-0819-7-A	04/09/18 13:15	Air	GC/MS 000	N/A	04/11/18 23:03	180411L02
Comment(s): - Results were evaluated to	the MDL (DL), cond	entrations >=	to the MDL (DL) but < RL (LOC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Acetone	30		4000	23	80000	J	
Benzene	5100		40	6.8	80000		
Benzyl Chloride	ND		120	3.9	80000		
Bromodichloromethane	ND		40	5.0	80000		
Bromoform	ND		40	6.5	80000		
Bromomethane	ND		40	11	80000		
2-Butanone	ND		120	35	80000		
Carbon Disulfide	ND		800	22	80000		
Carbon Tetrachloride	ND		40	4.9	80000		
Chlorobenzene	ND		40	5.4	80000		
Chloroethane	ND		40	19	80000		
Chloroform	ND		40	5.5	80000		
Chloromethane	ND		40	19	80000		
Dibromochloromethane	ND		40	4.4	80000		
Dichlorodifluoromethane	ND		40	4.8	80000		
1,1-Dichloroethane	ND		40	5.0	80000		
1,1-Dichloroethene	ND		40	16	80000		
1,2-Dibromoethane	ND		40	5.5	80000		
Dichlorotetrafluoroethane	ND		160	21	80000		
1,2-Dichlorobenzene	ND		40	4.2	80000		
1,2-Dichloroethane	ND		40	5.5	80000		
1,2-Dichloropropane	ND		40	15	80000		
1,3-Dichlorobenzene	ND		40	13	80000		
1,4-Dichlorobenzene	ND		40	5.4	80000		
c-1,3-Dichloropropene	ND		40	5.2	80000		
c-1,2-Dichloroethene	ND		40	7.0	80000		
t-1,2-Dichloroethene	ND		40	10	80000		
t-1,3-Dichloropropene	ND		80	5.5	80000		
Ethylbenzene	2600		40	12	80000		
4-Ethyltoluene	ND		40	13	80000		
Hexachloro-1,3-Butadiene	ND		120	8.2	80000		
2-Hexanone	ND		120	35	80000		
Methyl-t-Butyl Ether (MTBE)	ND		160	12	80000		
Methylene Chloride	ND		400	20	80000		

Page 14 of 28

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Toluene-d8

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
4-Methyl-2-Pentanone	ND	120	30	80000	
o-Xylene	ND	40	13	80000	
p/m-Xylene	ND	160	27	80000	
Styrene	ND	120	5.1	80000	
Tetrachloroethene	ND	40	5.4	80000	
Toluene	55	400	11	80000	J
Trichloroethene	ND	40	5.6	80000	
Trichlorofluoromethane	ND	80	14	80000	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	120	5.6	80000	
1,1,1-Trichloroethane	ND	40	6.3	80000	
1,1,2-Trichloroethane	ND	40	15	80000	
1,3,5-Trimethylbenzene	ND	40	12	80000	
1,1,2,2-Tetrachloroethane	ND	80	11	80000	
1,2,4-Trimethylbenzene	ND	120	12	80000	
1,2,4-Trichlorobenzene	ND	160	9.9	80000	
Vinyl Acetate	ND	160	7.8	80000	
Vinyl Chloride	ND	40	18	80000	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	104	57-129			
1,2-Dichloroethane-d4	112	47-137			

78-156

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Page 15 of 28

Analytical Report

04/10/18 **AECOM** Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01378	18-04-0819-8-A	04/09/18 13:17	Air	GC/MS 000	N/A	04/11/18 23:49	180411L02
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.							
<u>Parameter</u>	Resul	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	2	<u>Qualifiers</u>
Acetone	ND	;	8000	46	16000	0	

Comment(s): - Results were evaluated Parameter Acetone Benzene	to the MDL (DL), concents Result ND 6900 ND ND	rations >= to the MDL RL 8000 80 240	. (DL) but < RL (LOQ) MDL 46 14 7.8	, if found, are qualified w <u>DF</u> 160000 160000	vith a "J" flag. <u>Qualifiers</u>
Acetone	ND 6900 ND	8000 80	46 14	160000	<u>Qualifiers</u>
	6900 ND	80	14		
Benzene	ND			160000	
		240	7 Ω		
Benzyl Chloride	ND		1.0	160000	
Bromodichloromethane		80	9.9	160000	
Bromoform	ND	80	13	160000	
Bromomethane	ND	80	22	160000	
2-Butanone	ND	240	69	160000	
Carbon Disulfide	ND	1600	44	160000	
Carbon Tetrachloride	ND	80	9.9	160000	
Chlorobenzene	ND	80	11	160000	
Chloroethane	ND	80	39	160000	
Chloroform	ND	80	11	160000	
Chloromethane	ND	80	38	160000	
Dibromochloromethane	ND	80	8.8	160000	
Dichlorodifluoromethane	ND	80	9.5	160000	
1,1-Dichloroethane	ND	80	10	160000	
1,1-Dichloroethene	ND	80	32	160000	
1,2-Dibromoethane	ND	80	11	160000	
Dichlorotetrafluoroethane	ND	320	42	160000	
1,2-Dichlorobenzene	ND	80	8.5	160000	
1,2-Dichloroethane	ND	80	11	160000	
1,2-Dichloropropane	ND	80	31	160000	
1,3-Dichlorobenzene	ND	80	26	160000	
1,4-Dichlorobenzene	ND	80	11	160000	
c-1,3-Dichloropropene	ND	80	10	160000	
c-1,2-Dichloroethene	ND	80	14	160000	
t-1,2-Dichloroethene	ND	80	20	160000	
t-1,3-Dichloropropene	ND	160	11	160000	
Ethylbenzene	2700	80	23	160000	
4-Ethyltoluene	ND	80	25	160000	
Hexachloro-1,3-Butadiene	ND	240	16	160000	
2-Hexanone	ND	240	70	160000	
Methyl-t-Butyl Ether (MTBE)	ND	320	24	160000	
Methylene Chloride	ND	800	40	160000	

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 16 of 28

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Toluene-d8

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers	
4-Methyl-2-Pentanone	ND	240	60	160000		
o-Xylene	ND	80	25	160000		
p/m-Xylene	ND	320	53	160000		
Styrene	ND	240	10	160000		
Tetrachloroethene	ND	80	11	160000		
Toluene	60	800	22	160000	J	
Trichloroethene	ND	80	11	160000		
Trichlorofluoromethane	ND	160	27	160000		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	240	11	160000		
1,1,1-Trichloroethane	ND	80	13	160000		
1,1,2-Trichloroethane	ND	80	29	160000		4
1,3,5-Trimethylbenzene	ND	80	23	160000		
1,1,2,2-Tetrachloroethane	ND	160	22	160000		
1,2,4-Trimethylbenzene	ND	240	25	160000		
1,2,4-Trichlorobenzene	ND	320	20	160000		
Vinyl Acetate	ND	320	16	160000		
Vinyl Chloride	ND	80	36	160000		
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	100	57-129				
1,2-Dichloroethane-d4	105	47-137				

78-156

99

04/10/18

N/A

18-04-0819

Page 17 of 28

Analytical Report

AECOM Date Received: 130 Robin Hill Road, Suite 100 Work Order: Santa Barbara, CA 93117-3153 Preparation:

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01379	18-04-0819-9-A	04/09/18 14:15	Air	GC/MS 000	N/A	04/12/18 00:39	180411L02

VSS01379	18-04-0819-9-A	04/09/18 14:15	Air	GC/MS 000	N/A	04/12/18 180411L02 00:39
Comment(s): - Results were evaluated	to the MDL (DL), cond	entrations >=	to the MDI	(DL) but < RL (LO	Q), if found, are	qualified with a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Acetone	40		4000	23	8000	0 J
Benzene	4600		40	6.8	8000	0
Benzyl Chloride	ND		120	3.9	8000	0
Bromodichloromethane	ND		40	5.0	8000	0
Bromoform	ND		40	6.5	8000	0
Bromomethane	ND		40	11	8000	0
2-Butanone	ND		120	35	8000	0
Carbon Disulfide	ND		800	22	8000	0
Carbon Tetrachloride	ND		40	4.9	8000	0
Chlorobenzene	ND		40	5.4	8000	0
Chloroethane	ND		40	19	8000	0
Chloroform	ND		40	5.5	8000	0
Chloromethane	ND		40	19	8000	0
Dibromochloromethane	ND		40	4.4	8000	0
Dichlorodifluoromethane	ND		40	4.8	8000	0
1,1-Dichloroethane	ND		40	5.0	8000	0
1,1-Dichloroethene	ND		40	16	8000	0
1,2-Dibromoethane	ND		40	5.5	8000	0
Dichlorotetrafluoroethane	ND		160	21	8000	0
1,2-Dichlorobenzene	ND		40	4.2	8000	0
1,2-Dichloroethane	ND		40	5.5	8000	0
1,2-Dichloropropane	ND		40	15	8000	0
1,3-Dichlorobenzene	ND		40	13	8000	0
1,4-Dichlorobenzene	ND		40	5.4	8000	0
c-1,3-Dichloropropene	ND		40	5.2	8000	0
c-1,2-Dichloroethene	ND		40	7.0	8000	0
t-1,2-Dichloroethene	ND		40	10	8000	0
t-1,3-Dichloropropene	ND		80	5.5	8000	0
Ethylbenzene	2100		40	12	8000	0
4-Ethyltoluene	ND		40	13	8000	0
Hexachloro-1,3-Butadiene	ND		120	8.2	8000	0
2-Hexanone	ND		120	35	8000	
Methyl-t-Butyl Ether (MTBE)	ND		160	12	8000	0
Methylene Chloride	ND		400	20	8000	0

Page 18 of 28

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Toluene-d8

						_
<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers	
4-Methyl-2-Pentanone	ND	120	30	80000		
o-Xylene	ND	40	13	80000		
p/m-Xylene	ND	160	27	80000		
Styrene	ND	120	5.1	80000		
Tetrachloroethene	ND	40	5.4	80000		
Toluene	44	400	11	80000	J	
Trichloroethene	ND	40	5.6	80000		
Trichlorofluoromethane	ND	80	14	80000		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	120	5.6	80000		
1,1,1-Trichloroethane	ND	40	6.3	80000		
1,1,2-Trichloroethane	ND	40	15	80000		
1,3,5-Trimethylbenzene	ND	40	12	80000		
1,1,2,2-Tetrachloroethane	ND	80	11	80000		
1,2,4-Trimethylbenzene	ND	120	12	80000		
1,2,4-Trichlorobenzene	ND	160	9.9	80000		
Vinyl Acetate	ND	160	7.8	80000		
Vinyl Chloride	ND	40	18	80000		
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	98	57-129				
1,2-Dichloroethane-d4	105	47-137				

78-156

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

04/10/18

N/A

18-04-0819

Page 19 of 28

Analytical Report

AECOM Date Received: 130 Robin Hill Road, Suite 100 Work Order: Santa Barbara, CA 93117-3153 Preparation:

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles /

4-Ethyltoluene

2-Hexanone

Methylene Chloride

Hexachloro-1,3-Butadiene

Methyl-t-Butyl Ether (MTBE)

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01380	18-04-0819-10-A	04/09/18 14:20	Air	GC/MS 000	N/A	04/12/18 01:23	180411L02
Comment(s): - Results were evaluate	ed to the MDL (DL), conc	entrations >=	to the MDL (DL) but < RL (LOC	Q), if found, are	e qualified with a	"J" flag.
<u>Parameter</u>	Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	Qualifiers
Acetone	ND		8000	46	1600	000	
Benzene	8300		80	14	1600	000	
Benzyl Chloride	ND		240	7.8	1600	000	
Bromodichloromethane	ND		80	9.9	1600	000	
Bromoform	ND		80	13	1600	000	
Bromomethane	ND		80	22	1600	000	
2-Butanone	ND		240	69	1600	000	
Carbon Disulfide	ND		1600	44	1600	000	
Carbon Tetrachloride	ND		80	9.9	1600	000	
Chlorobenzene	ND		80	11	1600	000	
Chloroethane	ND		80	39	1600	000	
Chloroform	ND		80	11	1600	000	
Chloromethane	ND		80	38	1600	000	
Dibromochloromethane	ND		80	8.8	1600	000	
Dichlorodifluoromethane	ND		80	9.5	1600	000	
1,1-Dichloroethane	ND		80	10	1600	000	
1,1-Dichloroethene	ND		80	32	1600	000	
1,2-Dibromoethane	ND		80	11	1600	000	
Dichlorotetrafluoroethane	ND		320	42	1600	000	
1,2-Dichlorobenzene	ND		80	8.5	1600	000	
1,2-Dichloroethane	ND		80	11	1600	000	
1,2-Dichloropropane	ND		80	31	1600	000	
1,3-Dichlorobenzene	ND		80	26	1600	000	
1,4-Dichlorobenzene	ND		80	11	1600	000	
c-1,3-Dichloropropene	ND		80	10	1600	000	
c-1,2-Dichloroethene	ND		80	14	1600	000	
t-1,2-Dichloroethene	ND		80	20	1600	000	
t-1,3-Dichloropropene	ND		160	11	1600	000	
Ethylbenzene	3000		80	23	1600	000	

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

ND

ND

ND

ND

ND

80

240

240

320

800

25

16

70

24

40

160000

160000

160000

160000

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 20 of 28

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Toluene-d8

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers	
4-Methyl-2-Pentanone	ND	240	60	160000		
o-Xylene	ND	80	25	160000		
p/m-Xylene	ND	320	53	160000		
Styrene	ND	240	10	160000		
Tetrachloroethene	ND	80	11	160000		
Toluene	70	800	22	160000	J	
Trichloroethene	ND	80	11	160000		
Trichlorofluoromethane	ND	160	27	160000		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	240	11	160000		
1,1,1-Trichloroethane	ND	80	13	160000		
1,1,2-Trichloroethane	ND	80	29	160000		
1,3,5-Trimethylbenzene	ND	80	23	160000		
1,1,2,2-Tetrachloroethane	ND	160	22	160000		
1,2,4-Trimethylbenzene	ND	240	25	160000		
1,2,4-Trichlorobenzene	ND	320	20	160000		
Vinyl Acetate	ND	320	16	160000		
Vinyl Chloride	ND	80	36	160000		
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	103	57-129				
1,2-Dichloroethane-d4	105	47-137				

78-156

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

04/10/18

N/A

18-04-0819

Analytical Report

AECOM Date Received: 130 Robin Hill Road, Suite 100 Work Order: Santa Barbara, CA 93117-3153

Preparation: Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 Page 21 of 28

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01381	18-04-0819-11-A	04/09/18 16:15	Air	GC/MS 000	N/A	04/12/18 02:08	180411L02
Comment(s): - Results were evaluated to	o the MDL (DL), cond	entrations >=	to the MDL	(DL) but < RL (LOC	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Acetone	ND		8000	46	16000	0	
Benzene	7900		80	14	16000	0	
Benzyl Chloride	ND		240	7.8	16000	0	
Bromodichloromethane	ND		80	9.9	16000	0	
Bromoform	ND		80	13	16000	0	
Bromomethane	ND		80	22	16000	0	
2-Butanone	ND		240	69	16000	0	
Carbon Disulfide	ND		1600	44	16000	0	
Carbon Tetrachloride	ND		80	9.9	16000	0	
Chlorobenzene	ND		80	11	16000	0	
Chloroethane	ND		80	39	16000	0	
Chloroform	ND		80	11	16000	0	
Chloromethane	ND		80	38	16000	0	
Dibromochloromethane	ND		80	8.8	16000	0	
Dichlorodifluoromethane	ND		80	9.5	16000	0	
1,1-Dichloroethane	ND		80	10	16000	0	
1,1-Dichloroethene	ND		80	32	16000	0	
1,2-Dibromoethane	ND		80	11	16000	0	
Dichlorotetrafluoroethane	ND		320	42	16000		
1,2-Dichlorobenzene	ND		80	8.5	16000	0	
1,2-Dichloroethane	ND		80	11	16000	0	
1,2-Dichloropropane	ND		80	31	16000	0	
1,3-Dichlorobenzene	ND		80	26	16000	0	
1,4-Dichlorobenzene	ND		80	11	16000	0	
c-1,3-Dichloropropene	ND		80	10	16000	0	
c-1,2-Dichloroethene	ND		80	14	16000	0	
t-1,2-Dichloroethene	ND		80	20	16000	0	
t-1,3-Dichloropropene	ND		160	11	16000		
Ethylbenzene	2700		80	23	16000	0	
4-Ethyltoluene	ND		80	25	16000		
Hexachloro-1,3-Butadiene	ND		240	16	16000		
2-Hexanone	ND		240	70	16000		
Methyl-t-Butyl Ether (MTBE)	ND		320	24	16000		
Methylene Chloride	ND		800	40	16000		

Page 22 of 28

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Toluene-d8

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
4-Methyl-2-Pentanone	ND	240	60	160000	
o-Xylene	ND	80	25	160000	
p/m-Xylene	ND	320	53	160000	
Styrene	ND	240	10	160000	
Tetrachloroethene	ND	80	11	160000	
Toluene	63	800	22	160000	J
Trichloroethene	ND	80	11	160000	
Trichlorofluoromethane	ND	160	27	160000	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	240	11	160000	
1,1,1-Trichloroethane	ND	80	13	160000	
1,1,2-Trichloroethane	ND	80	29	160000	
1,3,5-Trimethylbenzene	ND	80	23	160000	
1,1,2,2-Tetrachloroethane	ND	160	22	160000	
1,2,4-Trimethylbenzene	ND	240	25	160000	
1,2,4-Trichlorobenzene	ND	320	20	160000	
Vinyl Acetate	ND	320	16	160000	
Vinyl Chloride	ND	80	36	160000	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	101	57-129			
1,2-Dichloroethane-d4	107	47-137			

78-156

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Page 23 of 28

Analytical Report

04/10/18 **AECOM** Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01382	18-04-0819-12-A	04/09/18 16:20	Air	GC/MS 000	N/A	04/12/18 02:54	180411L02
Comment(s): - Results were evaluated to	o the MDL (DL), conc	entrations >= t	to the MDL	(DL) but < RL (LOC	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	<u>Resul</u>	<u>t</u> .	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Acetone	0.35		20	0.11	400	,	J
Benzene	17		0.20	0.034	400		
Benzyl Chloride	ND		0.60	0.020	400		
Bromodichloromethane	ND		0.20	0.025	400		
Bromoform	ND		0.20	0.032	400		
Bromomethane	ND		0.20	0.055	400		
2-Butanone	ND		0.60	0.17	400		
Carbon Disulfide	ND		4.0	0.11	400		
Carbon Tetrachloride	ND		0.20	0.025	400		
Chlorobenzene	ND		0.20	0.027	400		
Chloroethane	ND		0.20	0.096	400		
Chloroform	ND		0.20	0.028	400		
Chloromethane	ND		0.20	0.096	400		
Dibromochloromethane	ND		0.20	0.022	400		
Dichlorodifluoromethane	ND		0.20	0.024	400		
1,1-Dichloroethane	ND		0.20	0.025	400		
1,1-Dichloroethene	ND		0.20	0.080	400		
1,2-Dibromoethane	ND		0.20	0.028	400		
Dichlorotetrafluoroethane	ND		0.80	0.11	400		
1,2-Dichlorobenzene	ND		0.20	0.021	400		
1,2-Dichloroethane	ND		0.20	0.027	400		
1,2-Dichloropropane	ND		0.20	0.076	400		
1,3-Dichlorobenzene	ND		0.20	0.065	400		
1,4-Dichlorobenzene	ND		0.20	0.027	400		
c-1,3-Dichloropropene	ND		0.20	0.026	400		
c-1,2-Dichloroethene	ND		0.20	0.035	400		
t-1,2-Dichloroethene	ND		0.20	0.051	400		
t-1,3-Dichloropropene	ND		0.40	0.028	400		
Ethylbenzene	51		0.20	0.058	400		E
4-Ethyltoluene	ND		0.20	0.064	400		
Hexachloro-1,3-Butadiene	ND		0.60	0.041	400		
2-Hexanone	ND		0.60	0.18	400		
Methyl-t-Butyl Ether (MTBE)	ND		0.80	0.061	400		
Methylene Chloride	ND		2.0	0.099	400		

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 24 of 28

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
4-Methyl-2-Pentanone	ND	0.60	0.15	400	
o-Xylene	ND	0.20	0.063	400	
p/m-Xylene	ND	0.80	0.13	400	
Styrene	ND	0.60	0.025	400	
Tetrachloroethene	ND	0.20	0.027	400	
Toluene	0.53	2.0	0.054	400	J
Trichloroethene	ND	0.20	0.028	400	
Trichlorofluoromethane	ND	0.40	0.068	400	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.60	0.028	400	
1,1,1-Trichloroethane	ND	0.20	0.032	400	
1,1,2-Trichloroethane	ND	0.20	0.073	400	
1,3,5-Trimethylbenzene	ND	0.20	0.058	400	
1,1,2,2-Tetrachloroethane	ND	0.40	0.055	400	
1,2,4-Trimethylbenzene	ND	0.60	0.061	400	
1,2,4-Trichlorobenzene	ND	0.80	0.050	400	
Vinyl Acetate	ND	0.80	0.039	400	
Vinyl Chloride	ND	0.20	0.089	400	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	106	57-129			
1,2-Dichloroethane-d4	107	47-137			
Toluene-d8	97	78-156			

VSS01382	18-04-0819-12-A	04/09/18 A 16:20	ir GC/MS OC	OO N/A	04/12/18 18:44	180412L02
Comment(s): - Results were ev	valuated to the MDL (DL), cond	centrations >= to the	MDL (DL) but < RL (LOQ), if found, are	qualified with a ".	J" flag.
<u>Parameter</u>	Resu	<u>lt RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qu</u>	<u>ıalifiers</u>
Ethylbenzene	39	0.50	0.14	1000		
<u>Surrogate</u>	Rec.	<u>(%)</u> <u>Cont</u>	rol Limits Qualific	<u>ers</u>		
1,4-Bromofluorobenzene	101	57-1	29			
1,2-Dichloroethane-d4	106	47-1	37			
Toluene-d8	97	78-1	56			

Matrix

Instrument

Date

Prepared

Date/Time

Analyzed

QC Batch ID

Date/Time

Collected

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Lab Sample

Number

Page 25 of 28

Santa Barbara, CA 93117-3153

Analytical Report

AECOM Date Received: 04/10/18 Work Order: 18-04-0819 130 Robin Hill Road, Suite 100 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles /

60566446.2018.1.0601

Client Sample Number	Lab Sa Numbe		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01383	18-04-0)819-13-A	04/09/18 16:25	Air	GC/MS 000	N/A	04/12/18 03:38	180411L02
Comment(s): - Res	ults were evaluated to the MDI	L (DL), conce	entrations >=	to the MDL (DL) but < RL (LOC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Result	ţ	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>tualifiers</u>
Acetone		0.53		31	0.18	625	J	
Benzene		33		0.31	0.053	625		
Benzyl Chloride		ND		0 94	0.031	625		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL: (714) 895-5494 • FAX: (714) 894-7501

QC Batch ID

Date/Time

Analyzed

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 26 of 28

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
4-Methyl-2-Pentanone	ND	0.94	0.23	625	
o-Xylene	ND	0.31	0.098	625	
p/m-Xylene	ND	1.2	0.21	625	
Styrene	ND	0.94	0.040	625	
Tetrachloroethene	ND	0.31	0.042	625	
Toluene	1.0	3.1	0.084	625	J
Trichloroethene	ND	0.31	0.043	625	
Trichlorofluoromethane	ND	0.62	0.11	625	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.94	0.044	625	
1,1,1-Trichloroethane	ND	0.31	0.049	625	
1,1,2-Trichloroethane	ND	0.31	0.11	625	
1,3,5-Trimethylbenzene	ND	0.31	0.091	625	
1,1,2,2-Tetrachloroethane	ND	0.62	0.086	625	
1,2,4-Trimethylbenzene	ND	0.94	0.096	625	
1,2,4-Trichlorobenzene	ND	1.2	0.078	625	
Vinyl Acetate	ND	1.2	0.061	625	
Vinyl Chloride	ND	0.31	0.14	625	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	110	57-129			
1,2-Dichloroethane-d4	105	47-137			
Toluene-d8	98	78-156			

VSS01383	18-04-0819-13-A	04/09/18 A 16:25	ir GC/MS OO	O N/A	04/12/18 19:33	180412L02
Comment(s): - Results we	re evaluated to the MDL (DL), cond	centrations >= to the	e MDL (DL) but < RL (L	OQ), if found, are	qualified with a ".	J" flag.
<u>Parameter</u>	Resu	<u>ılt</u> <u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qu</u>	alifiers
Ethylbenzene	82	1.2	0.36	2500		
<u>Surrogate</u>	Rec.	<u>(%)</u>	rol Limits Qualifie	<u>ers</u>		
1,4-Bromofluorobenzene	98	57-1	29			
1,2-Dichloroethane-d4	102	47-1	37			
Toluene-d8	93	78-1	56			

Matrix

Instrument

Date

Prepared

Date/Time

Collected

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Lab Sample

Number

Page 27 of 28

Analytical Report

04/10/18 **AECOM** Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-981-8448	N/A	Air	GC/MS 000	N/A	04/11/18 15:32	180411L02
Comment(s): - Results were evaluated to	o the MDL (DL), cond	entrations >=	to the MDL (DL) but < RL (LOC	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
Acetone	ND		0.050	0.00029	1.00		
Benzene	ND		0.00050	0.000085	1.00		
Benzyl Chloride	ND		0.0015	0.000049	1.00		
Bromodichloromethane	ND		0.00050	0.000062	1.00		
Bromoform	ND		0.00050	0.000081	1.00		
Bromomethane	ND		0.00050	0.00014	1.00		
2-Butanone	ND		0.0015	0.00043	1.00		
Carbon Disulfide	ND		0.010	0.00028	1.00		
Carbon Tetrachloride	ND		0.00050	0.000062	1.00		
Chlorobenzene	ND		0.00050	0.000068	1.00		
Chloroethane	ND		0.00050	0.00024	1.00		
Chloroform	ND		0.00050	0.000069	1.00		
Chloromethane	ND		0.00050	0.00024	1.00		
Dibromochloromethane	ND		0.00050	0.000055	1.00		
Dichlorodifluoromethane	ND		0.00050	0.000060	1.00		
1,1-Dichloroethane	ND		0.00050	0.000063	1.00		
1,1-Dichloroethene	ND		0.00050	0.00020	1.00		
1,2-Dibromoethane	ND		0.00050	0.000069	1.00		
Dichlorotetrafluoroethane	ND		0.0020	0.00027	1.00		
1,2-Dichlorobenzene	ND		0.00050	0.000053	1.00		
1,2-Dichloroethane	ND		0.00050	0.000069	1.00		
1,2-Dichloropropane	ND		0.00050	0.00019	1.00		
1,3-Dichlorobenzene	ND		0.00050	0.00016	1.00		
1,4-Dichlorobenzene	ND		0.00050	0.000067	1.00		
c-1,3-Dichloropropene	ND		0.00050	0.000065	1.00		
c-1,2-Dichloroethene	ND		0.00050	0.000087	1.00		
t-1,2-Dichloroethene	ND		0.00050	0.00013	1.00		
t-1,3-Dichloropropene	ND		0.0010	0.000069	1.00		
Ethylbenzene	ND		0.00050	0.00014	1.00		
4-Ethyltoluene	ND		0.00050	0.00016	1.00		
Hexachloro-1,3-Butadiene	ND		0.0015	0.00010	1.00		
2-Hexanone	ND		0.0015	0.00044	1.00		
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	0.00015	1.00		
Methylene Chloride	ND		0.0050	0.00025	1.00		

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

Page 28 of 28

04/12/18

180412L02

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Method Blank

<u>Parameter</u>		Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u> </u>	Qualifiers
4-Methyl-2-Pentanone		ND		0.0015	0.00037	1.00		
o-Xylene		ND		0.00050	0.00016	1.00		
p/m-Xylene		ND		0.0020	0.00033	1.00		
Styrene		ND		0.0015	0.000064	1.00		
Tetrachloroethene		ND		0.00050	0.000067	1.00		
Toluene		ND		0.0050	0.00013	1.00		
Trichloroethene		ND		0.00050	0.000069	1.00		
Trichlorofluoromethane		ND		0.0010	0.00017	1.00		
1,1,2-Trichloro-1,2,2-Trifluoroethane		ND		0.0015	0.000070	1.00		
1,1,1-Trichloroethane		ND		0.00050	0.000079	1.00		
1,1,2-Trichloroethane		ND		0.00050	0.00018	1.00		
1,3,5-Trimethylbenzene		ND		0.00050	0.00014	1.00		
1,1,2,2-Tetrachloroethane		ND		0.0010	0.00014	1.00		
1,2,4-Trimethylbenzene		ND		0.0015	0.00015	1.00		
1,2,4-Trichlorobenzene		ND		0.0020	0.00012	1.00		
Vinyl Acetate		ND		0.0020	0.000098	1.00		
Vinyl Chloride		ND		0.00050	0.00022	1.00		
Surrogate		<u>Rec. (</u>	<u>(%)</u>	Control Limits	Qualifiers			
1,4-Bromofluorobenzene		99		57-129				
1,2-Dichloroethane-d4		101		47-137				
Toluene-d8		98		78-156				
Client Sample Number	Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID

					16:40	
Comment(s): - F	Results were evaluated to the MDL (DI	L), concentrations >:	= to the MDL (DL) b	ut < RL (LOQ), if for	und, are qualified wi	th a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Benzene		ND	0.00050	0.000085	1.00	
Ethylbenzene		ND	0.00050	0.00014	1.00	
<u>Surrogate</u>		Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluoroben	zene	100	57-129			
1,2-Dichloroethane-	d4	100	47-137			
Toluene-d8		98	78-156			

Air

GC/MS 000

N/A

N/A

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

099-12-981-8449

180411L01

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-3M Units: ppm (v/v) Page 1 of 3

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

VSS01373

.

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01371	18-04-0819-1-A	04/09/18 08:35	Air	GC 13	N/A	04/11/18 11:22	180411L01
Comment(s): - Results were evaluated t	o the MDL (DL), cond	centrations >= t	o the MDL (I	DL) but < RL (LO	Q), if found, are	e qualified with a	ı "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>(</u>	Qualifiers
TPH as Gasoline	5700	;	30	8.6	20.0		

VSS01372	18-04-0819-2-A	04/09/18 08:33	Air	GC 13	N/A	04/11/18 12:13	180411L01
Comment(s):	- Results were evaluated to the MDL (DL), cor	centrations >=	to the MD	L (DL) but < RL (LOQ)	, if found, are	qualified with a "	J" flag.
<u>Parameter</u>	Res	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qu</u>	<u>ıalifiers</u>
TPH as Gasolin	e 170	00	75	21	50.0		

GC 13

N/A

04/11/18

		10:05			12:	28
Comment(s):	- Results were evaluated to the MD	L (DL), concentration	ons >= to the MDL	(DL) but < RL (LOQ),	if found, are qualif	ied with a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
TPH as Gasolir	ne	9400	75	21	50.0	

Air

04/09/18

VSS01374	18-04-0819-4-A	04/09/18 10:05	Air	GC 13	N/A	04/11/18 180411L0 12:41)1
Comment(s):	- Results were evaluated to the MDL (DL), con	centrations >=	to the MDL	(DL) but < RL (LOC	Q), if found, are	qualified with a "J" flag.	
<u>Parameter</u>	Resu	<u>ult</u>	<u>RL</u>	MDL	<u>DF</u>	Qualifiers	

TPH as Gasoline 19000 75 21 50.0

18-04-0819-3-A

VSS01375	18-04-0819-5-A	04/09/18 12:25	Air	GC 13	N/A	04/11/18 12:54	180411L01
Comment(s):	- Results were evaluated to the MDL (DL), con-	centrations >=	to the MDL	(DL) but < RL (LOQ), if found,	are qualified with a	a "J" flag.

<u>DF</u> <u>Parameter</u> <u>Result</u> <u>RL</u> <u>MDL</u> **Qualifiers**

75 50.0 TPH as Gasoline 12000 21

VSS01376	18-04-0819-6-A	04/09/18 Air 12:20	GC 13	N/A	04/11/18 13:25	180411L01
Comment(s):	- Results were evaluated to the MDL (DL), con	centrations >= to the MD	DL (DL) but < RL	(LOQ), if found, a	re qualified with a ".	J" flag.

Parameter Result <u>RL</u> **MDL** <u>DF</u> Qualifiers TPH as Gasoline 18000 50.0 75 21

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: **EPA TO-3M** Units: ppm (v/v) Page 2 of 3

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

VSS01379

VCC04303

Client Sample N	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01377		18-04-0819-7-A	04/09/18 13:15	Air	GC 13	N/A	04/11/18 13:44	180411L01
Comment(s):	- Results were evaluated to	the MDL (DL), cond	entrations >= t	o the MDL ([DL) but < RL (LC	Q), if found, are	e qualified with a	"J" flag.
<u>Parameter</u>		Resu	<u>lt</u> .	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>0</u>	<u>Qualifiers</u>
TPH as Gasoline	•	11000)	75	21	50.0		

V5501378	18-04-0819-8-A	04/09/18 13:17	Air	GC 13	N/A	04/11/18 14:01	180411L01
Comment(s):	Results were evaluated to the MDL (DL), conc	entrations >=	to the MDL (D	DL) but < RL (LOC	Q), if found, are o	qualified with a "	J" flag.
<u>Parameter</u>	Resul	<u>t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
TPH as Gasoline	19000)	75	21	50.0		

VSS01379	18-04-0819-9-A	04/09/18 14:15	Air	GC 13	N/A	04/11/18 18 14:18	0411L01
Comment(s):	- Results were evaluated to the MDL (DL), co	ncentrations >	= to the MDL	(DL) but < RL (LO	Q), if found, ar	e qualified with a "J" fl	ag.
<u>Parameter</u>	Res	<u>sult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualif</u>	<u>iers</u>
TPH as Gasolir	ne 110	00	75	21	50.0		

VSS01380	18-04-0819-10-A	04/09/18 14:20	Air	GC 13	N/A	04/11/18 14:38	180411L01
Comment(s):	- Results were evaluated to the MDL (DL), cond	centrations >=	to the MDI	L (DL) but < RL (L	OQ), if found,	are qualified with a	"J" flag.

Qualifiers <u>Parameter</u> Result <u>RL</u> <u>MDL</u> <u>DF</u> TPH as Gasoline 18000 75 21 50.0

VSS01381	18-04-0819-11-A	04/09/18 16:15	Air	GC 13	N/A	04/11/18 14:54	180411L01
Comment(s):	- Results were evaluated to the MDL (DL), cond	entrations >=	to the MDL	. (DL) but < RL (L	OQ), if found,	are qualified with a	a "J" flag.

<u>Parameter</u> Result <u>RL</u> <u>MDL</u> <u>DF</u> **Qualifiers**

TPH as Gasoline 75 50.0 17000 21

18-04-0819-9-A

V5501382	18-04-0819-12-A	16:20	Air GC	, 13 N/A	15:18	180411L01
Comment(s):	- Results were evaluated to the MDL (DL), con	centrations >= to	the MDL (DL) but	t < RL (LOQ), if found,	are qualified with a	'J" flag.
Parameter	Resi	ult R	L	MDL DI	F Q	ualifiers

<u>MDL</u> <u>Parameter</u> Result <u>KL</u> <u>DF</u> TPH as Gasoline 110 1.5 0.43 1.00

Page 3 of 3

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-3M Units: ppm (v/v)

> > 1.00

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

TPH as Gasoline

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01383		18-04-0819-13-A	04/09/18 16:25	Air	GC 13	N/A	04/11/18 15:42	180411L01
Comment(s):	- Results were evaluated t	o the MDL (DL), cond	centrations >= t	to the MDL (DL) but < RL (LC	Q), if found, are	e qualified with a	ı "J" flag.
<u>Parameter</u>		Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	Qualifiers

170

Method Blank	098-01-005-8	8407 N/A	Air	GC 13	N/A	04/11/18 10:52	180411L01
Comment(s):	- Results were evaluated to the MDL (DL)), concentrat	ions >= to the MDL	(DL) but < RL (LC	DQ), if found, a	re qualified with a	a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u> </u>	<u>Qualifiers</u>
TPH as Gasoline		ND	1.5	0.43	1.00	0	

1.5

0.43

Methane

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: SCAQMD 25.1M Units: ppm (v/v)

Project: Dol Ama Superfund Site Les Angeles /

Client Sample	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01371		18-04-0819-1-A	04/09/18 08:35	Air	GC 14	N/A	04/17/18 17:36	180417L02
Comment(s):	- Results were evaluate	ed to the MDL (DL), con	centrations >=	to the MDL (DL) but < RL (LC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Resu	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>0</u>	<u>Qualifiers</u>
Methane		120		1.0	0.21	1.00		
VSS01372		18-04-0819-2-A	04/09/18 08:33	Air	GC 14	N/A	04/17/18 17:59	180417L02
Comment(s):	- Results were evaluate	ed to the MDL (DL), con	centrations >=	to the MDL (DL) but < RL (LC	Q), if found, are	qualified with a	"J" flag.
Parameter Parameter		Resu	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>0</u>	<u>Qualifiers</u>
Methane		290		1.0	0.21	1.00		
/SS01373		18-04-0819-3-A	04/09/18 10:05	Air	GC 14	N/A	04/17/18 18:20	180417L02
Comment(s):	- Results were evaluate	ed to the MDL (DL), con	centrations >=	to the MDL (DL) but < RL (LC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Resu	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>0</u>	<u>Qualifiers</u>
Methane		130		1.0	0.21	1.00		
VSS01374		18-04-0819-4-A	04/09/18 10:05	Air	GC 14	N/A	04/17/18 18:41	180417L02
Comment(s):	- Results were evaluate	ed to the MDL (DL), con	centrations >=	to the MDL (DL) but < RL (LC	Q), if found, are	qualified with a	ı "J" flag.
<u>Parameter</u>		Resu	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>0</u>	Qualifiers
Methane		290		1.0	0.21	1.00		
/SS01375		18-04-0819-5-A	04/09/18 12:25	Air	GC 14	N/A	04/17/18 19:02	180417L02
Comment(s):	- Results were evaluate	ed to the MDL (DL), con	centrations >=	to the MDL (DL) but < RL (LC	Q), if found, are	qualified with a	"J" flag.
Parameter		Resu	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>0</u>	Qualifiers

VSS01376	18-04-0819-6-A	04/09/18 12:20	Air	GC 14	N/A	04/17/18 19:19	180417L02
Comment(s):	- Results were evaluated to the MDL (DL), con	centrations >= t	o the MD	L (DL) but < RL (LC	Q), if found, a	re qualified with a	"J" flag.
<u>Parameter</u>	Resi	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Q	<u>ualifiers</u>

1.0

0.21

1.00

280

Analytical Report

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819 Santa Barbara, CA 93117-3153 Preparation: N/A Method: SCAQMD 25.1M Units: ppm (v/v) Page 2 of 3

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01377		18-04-0819-7-A	04/09/18 13:15	Air	GC 14	N/A	04/17/18 19:37	180417L02
Comment(s):	- Results were evaluated t	o the MDL (DL), cond	centrations >= t	o the MDL (I	DL) but < RL (LO	Q), if found, are	e qualified with a	"J" flag.
<u>Parameter</u>		<u>Resu</u>	<u>lt</u> <u> </u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Methane		170		1.0	0.21	1.00		

VSS01378	18-04-0819-8-A	04/09/18 13:17	Air	GC 14	N/A	04/17/18 20:01	180417L02
Comment(s):	- Results were evaluated to the MDL (DL), con	centrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u>	Qualifiers
Methane	350		1.0	0.21	1.00		

VSS01379	18-04-0819-9-A	04/09/18 14:15	Air	GC 14	N/A	04/17/18 20:17	180417L0
Comment(s):	- Results were evaluated to the MDL (DL), con-	centrations >= 1	to the MDI	L (DL) but < RL (LOC	(a), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Methane	130		1.0	0.21	1.00		

VSS01380	18-04-0819-10-A	04/09/18 14:20	Air	GC 14	N/A	04/17/18 20:33	180417L02
Comment(s):	- Results were evaluated to the MDL (DL), cond	centrations >=	to the MD	L (DL) but < RL (LOC	Q), if found, are	e qualified with a "	J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u> ı	<u>ualifiers</u>

VSS01381	18-04-0819-11-A	04/09/18	Air GC 14	N/A	04/17/18 1804171
Methane	330	1.0	0.21	1.00	
<u>Parameter</u>	Resu	<u>lt RL</u>	MDL	<u>DF</u>	<u>Qualifiers</u>

VSS01381	18-04-0819-11-A	04/09/18 16:15	Air	GC 14	N/A	04/17/18 20:50	180417L02
Comment(s):	- Results were evaluated to the MDL (DL), cond	entrations >=	to the MDL	(DL) but < RL (LO	Q), if found, a	re qualified with a '	'J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	MDL	<u>DF</u>	Qı	<u>ualifiers</u>

VSS01382	18-04-0819-12-A	04/09/18 16:20	Air	GC 14	N/A	04/17/18 21:05	180417L02
Methane	250		1.0	0.21	1.00		

Comment(s):	- Results were evaluated to the MDL (DL	_), concentrat	ions >= to the MDL	(DL) but < RL (LOQ),	if found, are qualif	ed with a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Methane		0.82	1.0	0.21	1.00	J

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

04/10/18

N/A

18-04-0819

Page 3 of 3

Analytical Report

AECOM Date Received: 130 Robin Hill Road, Suite 100 Work Order: Santa Barbara, CA 93117-3153 Preparation:

ND

Method: SCAQMD 25.1M Units: ppm (v/v)

1.00

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Methane

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		099-07-024-1541	N/A	Air	GC 14	N/A	04/17/18 13:34	180417L02
Comment(s):	- Results were evaluated	to the MDL (DL), cond	centrations >= 1	to the MDL (DL) but < RL (LC	Q), if found, are	e qualified with a	"J" flag.
Parameter		Resu	lt	RL	MDL	DF	(Qualifiers

1.0

0.21

04/10/18

18-04-0819

Quality Control - Sample Duplicate

AECOM Date Received: 130 Robin Hill Road, Suite 100 Work Order: Santa Barbara, CA 93117-3153 Preparation:

N/A Method: EPA TO-3M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 Page 1 of 1

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
VSS01371	Sample	Air	GC 13	N/A	04/11/18 11:22	180411D01
VSS01371	Sample Duplicate	Air	GC 13	N/A	04/11/18 11:35	180411D01
Parameter		Sample Conc.	DUP Conc.	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline		5669	5703	1	0-20	

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

04/10/18 18-04-0819 N/A

Method:

ASTM D-1946

Page 1 of 9

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре	Mai	trix	Instrument	Date P	repared Date	e Analyzed	LCS/LCSD B	atch Number
099-16-444-764	LCS	Air		GC 65	N/A	04/1	1/18 10:04	180411L02	
099-16-444-764	LCSD	Air		GC 65	N/A	04/1	1/18 10:22	180411L02	
Parameter	Spike Adde	d LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	<u>Qualifiers</u>
Carbon Dioxide	15.01	14.85	99	15.31	102	80-120	3	0-30	
Carbon Monoxide	7.020	6.702	95	6.773	96	80-120	1	0-30	
Oxygen (+ Argon)	3.990	3.896	98	3.852	97	80-120	1	0-30	
Nitrogen	69.45	64.33	93	64.65	93	80-120	1	0-30	

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/10/18 18-04-0819 N/A EPA TO-15M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 2 of 9

Quality Control Sample ID	Туре		Matrix		ument	Date Prepare			LCS/LCSD Ba	itori i tarribe
099-12-981-8448	LCS		Air		//S 000	N/A			180411L02	
099-12-981-8448	LCSD		Air		<i>I</i> S 000	N/A	04/11/1	18 13:51	180411L02	
<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Acetone	0.02500	0.02860	114	0.02876	115	50-150	33-167	1	0-35	
Benzene	0.02500	0.02751	110	0.02675	107	60-156	44-172	3	0-40	
Benzyl Chloride	0.02500	0.03109	124	0.02892	116	50-150	33-167	7	0-35	
Bromodichloromethane	0.02500	0.02834	113	0.02724	109	50-150	33-167	4	0-35	
Bromoform	0.02500	0.02544	102	0.02776	111	50-150	33-167	9	0-38	
Bromomethane	0.02500	0.02543	102	0.02585	103	50-150	33-167	2	0-35	
2-Butanone	0.02500	0.03093	124	0.02913	117	50-150	33-167	6	0-35	
Carbon Disulfide	0.02500	0.02792	112	0.02715	109	50-150	33-167	3	0-35	
Carbon Tetrachloride	0.02500	0.02784	111	0.02759	110	64-154	49-169	1	0-32	
Chlorobenzene	0.02500	0.02675	107	0.02765	111	50-150	33-167	3	0-35	
Chloroethane	0.02500	0.02753	110	0.02786	111	50-150	33-167	1	0-35	
Chloroform	0.02500	0.02769	111	0.02697	108	50-150	33-167	3	0-35	
Chloromethane	0.02500	0.03118	125	0.03112	124	50-150	33-167	0	0-35	
Dibromochloromethane	0.02500	0.02643	106	0.02855	114	50-150	33-167	8	0-35	
Dichlorodifluoromethane	0.02500	0.03249	130	0.03257	130	50-150	33-167	0	0-35	
1,1-Dichloroethane	0.02500	0.02833	113	0.02796	112	50-150	33-167	1	0-35	
1,1-Dichloroethene	0.02500	0.02876	115	0.02752	110	50-150	33-167	4	0-35	
1,2-Dibromoethane	0.02500	0.02753	110	0.02967	119	54-144	39-159	7	0-36	
Dichlorotetrafluoroethane	0.02500	0.02836	113	0.02849	114	50-150	33-167	0	0-35	
1,2-Dichlorobenzene	0.02500	0.02673	107	0.02710	108	34-160	13-181	1	0-47	
1,2-Dichloroethane	0.02500	0.02904	116	0.02827	113	69-153	55-167	3	0-35	
1,2-Dichloropropane	0.02500	0.02813	113	0.02810	112	67-157	52-172	0	0-35	
1,3-Dichlorobenzene	0.02500	0.02910	116	0.02770	111	50-150	33-167	5	0-35	
1,4-Dichlorobenzene	0.02500	0.02749	110	0.02695	108	36-156	16-176	2	0-47	
c-1,3-Dichloropropene	0.02500	0.03026	121	0.03046	122	61-157	45-173	1	0-35	
c-1,2-Dichloroethene	0.02500	0.02772	111	0.02738	110	50-150	33-167	1	0-35	
t-1,2-Dichloroethene	0.02500	0.02694	108	0.02730	109	50-150	33-167	1	0-35	
:-1,3-Dichloropropene	0.02500	0.02983	119	0.03134	125	50-150	33-167	5	0-35	
Ethylbenzene	0.02500	0.02762	110	0.02886	115	52-154	35-171	4	0-38	
4-Ethyltoluene	0.02500	0.02767	111	0.02940	118	50-150	33-167	6	0-35	
Hexachloro-1,3-Butadiene	0.02500	0.02848	114	0.02810	112	50-150	33-167	1	0-35	
2-Hexanone	0.02500	0.02950	118	0.03178	127	50-150	33-167	7	0-35	
Methyl-t-Butyl Ether (MTBE)	0.02500	0.02773	111	0.02741	110	50-150	33-167	1	0-35	
Methylene Chloride	0.02500	0.02807	112	0.02780	111	50-150	33-167	1	0-35	
4-Methyl-2-Pentanone	0.02500	0.03016	121	0.02700	116	50-150	33-167	4	0-35	

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/10/18 18-04-0819 N/A EPA TO-15M

Page 3 of 9

0-36

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

<u>Parameter</u>	<u>Spike</u> Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
o-Xylene	0.02500	0.02779	111	0.02794	112	52-148	36-164	1	0-38	
p/m-Xylene	0.05000	0.05462	109	0.06024	120	42-156	23-175	10	0-41	
Styrene	0.02500	0.02782	111	0.02751	110	50-150	33-167	1	0-35	
Tetrachloroethene	0.02500	0.02710	108	0.02768	111	56-152	40-168	2	0-40	
Toluene	0.02500	0.02788	112	0.02725	109	56-146	41-161	2	0-43	
Trichloroethene	0.02500	0.02899	116	0.02789	112	63-159	47-175	4	0-34	
Trichlorofluoromethane	0.02500	0.02723	109	0.02707	108	50-150	33-167	1	0-35	
1,1,2-Trichloro-1,2,2- Trifluoroethane	0.02500	0.02780	111	0.02721	109	50-150	33-167	2	0-35	
1,1,1-Trichloroethane	0.02500	0.02770	111	0.02728	109	50-150	33-167	2	0-35	
1,1,2-Trichloroethane	0.02500	0.02941	118	0.02931	117	65-149	51-163	0	0-37	
1,3,5-Trimethylbenzene	0.02500	0.02754	110	0.02942	118	50-150	33-167	7	0-35	
1,1,2,2-Tetrachloroethane	0.02500	0.02885	115	0.02958	118	50-150	33-167	3	0-35	
1,2,4-Trimethylbenzene	0.02500	0.03072	123	0.02989	120	50-150	33-167	3	0-35	
1,2,4-Trichlorobenzene	0.02500	0.02986	119	0.02991	120	50-150	33-167	0	0-35	
Vinyl Acetate	0.02500	0.03122	125	0.02941	118	50-150	33-167	6	0-35	

0.02880

115

45-177

23-199

Total number of LCS compounds: 51 Total number of ME compounds: 0 Total number of ME compounds allowed: 3 LCS ME CL validation result: Pass

Vinyl Chloride

0.02500

0.02842

114

LCS/LCSD - Surrogate

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153

Date Received: Work Order: Preparation: Method:

18-04-0819 N/A EPA TO-15M

04/10/18

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 4 of 9

Quality Control Sample ID	Туре		Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Ba	tch Number
099-12-981-8448	LCS		Air	GC/MS 000	N/A	04/11/18 13:01	180411L02	
099-12-981-8448	LCSD		Air	GC/MS 000	N/A	04/11/18 13:51	180411L02	
Parameter		Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	Qualifiers
1,4-Bromofluorobenzene		0.02500	0.02580	103	0.02626	105	57-129	
1,2-Dichloroethane-d4		0.02500	0.02635	105	0.02561	102	47-137	
Toluene-d8		0.02500	0.02605	104	0.02627	105	78-156	

Method:

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

18-04-0819 N/A EPA TO-15M

04/10/18

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 5 of 9

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Number
099-12-981-8449	LCS		Air	GC/I	NS 000	N/A	04/12/1	18 14:09	180412L02	
099-12-981-8449	LCSD		Air	GC/I	MS 000	N/A	04/12/1	18 15:00	180412L02	
Parameter	<u>Spike</u> Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
Acetone	0.02500	0.02774	111	0.02748	110	50-150	33-167	1	0-35	
Benzene	0.02500	0.02547	102	0.02591	104	60-156	44-172	2	0-40	
Benzyl Chloride	0.02500	0.02660	106	0.02785	111	50-150	33-167	5	0-35	
Bromodichloromethane	0.02500	0.02596	104	0.02639	106	50-150	33-167	2	0-35	
Bromoform	0.02500	0.02537	101	0.02840	114	50-150	33-167	11	0-38	
Bromomethane	0.02500	0.02416	97	0.02427	97	50-150	33-167	0	0-35	
2-Butanone	0.02500	0.02643	106	0.02742	110	50-150	33-167	4	0-35	
Carbon Disulfide	0.02500	0.02698	108	0.02649	106	50-150	33-167	2	0-35	
Carbon Tetrachloride	0.02500	0.02592	104	0.02619	105	64-154	49-169	1	0-32	
Chlorobenzene	0.02500	0.02622	105	0.02695	108	50-150	33-167	3	0-35	
Chloroethane	0.02500	0.02605	104	0.02627	105	50-150	33-167	1	0-35	
Chloroform	0.02500	0.02536	101	0.02585	103	50-150	33-167	2	0-35	
Chloromethane	0.02500	0.02870	115	0.02807	112	50-150	33-167	2	0-35	
Dibromochloromethane	0.02500	0.02561	102	0.02729	109	50-150	33-167	6	0-35	
Dichlorodifluoromethane	0.02500	0.03120	125	0.03042	122	50-150	33-167	3	0-35	
1,1-Dichloroethane	0.02500	0.02533	101	0.02677	107	50-150	33-167	6	0-35	
1,1-Dichloroethene	0.02500	0.02642	106	0.02612	104	50-150	33-167	1	0-35	
1,2-Dibromoethane	0.02500	0.02683	107	0.02840	114	54-144	39-159	6	0-36	
Dichlorotetrafluoroethane	0.02500	0.02664	107	0.02634	105	50-150	33-167	1	0-35	
1,2-Dichlorobenzene	0.02500	0.02691	108	0.02741	110	34-160	13-181	2	0-47	
1,2-Dichloroethane	0.02500	0.02636	105	0.02664	107	69-153	55-167	1	0-35	
1,2-Dichloropropane	0.02500	0.02646	106	0.02679	107	67-157	52-172	1	0-35	
1,3-Dichlorobenzene	0.02500	0.02555	102	0.02607	104	50-150	33-167	2	0-35	
1,4-Dichlorobenzene	0.02500	0.02475	99	0.02567	103	36-156	16-176	4	0-47	
c-1,3-Dichloropropene	0.02500	0.02782	111	0.02906	116	61-157	45-173	4	0-35	
c-1,2-Dichloroethene	0.02500	0.02519	101	0.02673	107	50-150	33-167	6	0-35	
t-1,2-Dichloroethene	0.02500	0.02443	98	0.02647	106	50-150	33-167	8	0-35	
t-1,3-Dichloropropene	0.02500	0.02861	114	0.02897	116	50-150	33-167	1	0-35	
Ethylbenzene	0.02500	0.02678	107	0.02805	112	52-154	35-171	5	0-38	
4-Ethyltoluene	0.02500	0.02605	104	0.02634	105	50-150	33-167	1	0-35	
Hexachloro-1,3-Butadiene	0.02500	0.02717	109	0.02822	113	50-150	33-167	4	0-35	
2-Hexanone	0.02500	0.02848	114	0.02960	118	50-150	33-167	4	0-35	
Methyl-t-Butyl Ether (MTBE)	0.02500	0.02527	101	0.02643	106	50-150	33-167	5	0-35	
Methylene Chloride	0.02500	0.02497	100	0.02702	108	50-150	33-167	8	0-35	
4-Methyl-2-Pentanone	0.02500	0.02752	110	0.02769	111	50-150	33-167	1	0-35	
. ,			="		-		•			

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/10/18 18-04-0819 N/A EPA TO-15M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 6 of 9

<u>Parameter</u>	Spike Added	LCS Cond	c. <u>LCS</u> <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
o-Xylene	0.02500	0.02507	100	0.02604	104	52-148	36-164	4	0-38	
p/m-Xylene	0.05000	0.05193	104	0.05909	118	42-156	23-175	13	0-41	
Styrene	0.02500	0.02593	104	0.02681	107	50-150	33-167	3	0-35	
Tetrachloroethene	0.02500	0.02529	101	0.02638	106	56-152	40-168	4	0-40	
Toluene	0.02500	0.02526	101	0.02691	108	56-146	41-161	6	0-43	
Trichloroethene	0.02500	0.02627	105	0.02690	108	63-159	47-175	2	0-34	
Trichlorofluoromethane	0.02500	0.02643	106	0.02620	105	50-150	33-167	1	0-35	
1,1,2-Trichloro-1,2,2- Trifluoroethane	0.02500	0.02678	107	0.02643	106	50-150	33-167	1	0-35	
1,1,1-Trichloroethane	0.02500	0.02579	103	0.02635	105	50-150	33-167	2	0-35	
1,1,2-Trichloroethane	0.02500	0.02695	108	0.02716	109	65-149	51-163	1	0-37	
1,3,5-Trimethylbenzene	0.02500	0.02565	103	0.02621	105	50-150	33-167	2	0-35	
1,1,2,2-Tetrachloroethane	0.02500	0.02619	105	0.02704	108	50-150	33-167	3	0-35	
1,2,4-Trimethylbenzene	0.02500	0.02573	103	0.02649	106	50-150	33-167	3	0-35	
1,2,4-Trichlorobenzene	0.02500	0.02847	114	0.02986	119	50-150	33-167	5	0-35	
Vinyl Acetate	0.02500	0.02675	107	0.02743	110	50-150	33-167	3	0-35	
Vinyl Chloride	0.02500	0.02680	107	0.02663	107	45-177	23-199	1	0-36	

Total number of LCS compounds: 51 Total number of ME compounds: 0 Total number of ME compounds allowed: 3 LCS ME CL validation result: Pass

LCS/LCSD - Surrogate

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153

Date Received: Work Order: Preparation: Method:

18-04-0819 N/A

04/10/18

EPA TO-15M Page 7 of 9

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре		Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Ba	atch Number
099-12-981-8449	LCS		Air	GC/MS 000	N/A	04/12/18 14:09	180412L02	
099-12-981-8449	LCSD		Air	GC/MS 000	N/A	04/12/18 15:00	180412L02	
Parameter		Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	Qualifiers
1,4-Bromofluorobenzene		0.02500	0.02494	100	0.02566	103	57-129	
1,2-Dichloroethane-d4		0.02500	0.02518	101	0.02480	99	47-137	
Toluene-d8		0.02500	0.02513	101	0.02499	100	78-156	

Quality Control - LCS

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

18-04-0819 N/A

Page 8 of 9

04/10/18

EPA TO-3M Method:

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре	Matrix	Instrument	Date	e Prepared Date	e Analyzed	LCS Bato	h Number
098-01-005-8407	LCS	Air	GC 13	N/A	04/1	1/18 10:26	180411L0	01
Parameter		Spike Added	Conc. Recov	ered	LCS %Rec.	%Rec	. CL	Qualifiers
TPH as Gasoline		200.0	193.3		97	80-12	0	

Page 9 of 9

Quality Control - LCS/LCSD

AECOM Date Received: 04/10/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-0819

Santa Barbara, CA 93117-3153 Preparation: N/A Method: SCAQMD 25.1M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Prep	pared Date	Analyzed	LCS/LCSD B	atch Number
099-07-024-1541	LCS	Air		GC 14	N/A	04/1	7/18 12:46	180417L02	
099-07-024-1541	LCSD	Air		GC 14	N/A	04/1	7/18 13:06	180417L02	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Methane	101.0	91.50	91	91.90	91	80-120	0	0-20	

Sample Analysis Summary Report

Work Order: 18-04-0819	Page 1 of 1			
Method	Extraction	Chemist ID	Instrument	Analytical Location
ASTM D-1946	N/A	748	GC 65	2
ASTM D-1946	N/A	1145	GC 65	2
EPA TO-15M	N/A	953	GC/MS OOO	2
EPA TO-3M	N/A	748	GC 13	2
EPA TO-3M	N/A	1145	GC 13	2
SCAQMD 25.1M	N/A	1145	GC 14	2

Glossary of Terms and Qualifiers

Work Order: 18-04-0819 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Calscience

WORK ORDER NUMBER: 18-04-08 9

SAMPLE RECEIPT CHECKLIST

COOLER $\underline{\hspace{0.1cm} \mathcal{O}}$ OF $\underline{\hspace{0.1cm} \mathcal{O}}$

CLIENT: ACOM DATE	: <u>04 / ,</u>	10/2	018
TEMPERATURE: (Criteria: 0.0°C – 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: +0.1°C); Temperature (w/o CF):°C (w/ CF):°C; Sample(s) outside temperature criteria (PM/APM contacted by:) Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling	□ Blank	□ Sa	ample
☐ Sample(s) received at ambient temperature; placed on ice for transport by courier Ambient Temperature: ☑ Air ☐ Filter	Checked	by: <u>/</u>	291
CUSTODY SEAL:		10	91
Cooler ☐ Present and Intact ☐ Present but Not Intact ☐ Not Present ☐ N/A Sample(s) ☐ Present and Intact ☐ Present but Not Intact ☐ N/A	Checked Checked	^	13)
SAMPLE CONDITION:	Yes	No	N/A
Chain-of-Custody (COC) document(s) received with samples			
COC document(s) received complete	Ø		
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers			
☐ No analysis requested ☐ Not relinquished ☐ No relinquished date ☐ No relinquished time	,		
Sampler's name indicated on COC	'a'		
Sample container label(s) consistent with COC	\begin{align*} \begin{align*} \begin{align*} \begin{align*} \t		
Sample container(s) intact and in good condition	d		
Proper containers for analyses requested	₽		
Sufficient volume/mass for analyses requested	ø		
Samples received within holding time	Ø		
Aqueous samples for certain analyses received within 15-minute holding time	,		
☐ pH ☐ Residual Chlorine ☐ Dissolved Sulfide ☐ Dissolved Oxygen			Ø,
Proper preservation chemical(s) noted on COC and/or sample container			Ø
Unpreserved aqueous sample(s) received for certain analyses			
☐ Volatile Organics ☐ Total Metals ☐ Dissolved Metals			
Acid/base preserved samples - pH within acceptable range			Į
Container(s) for certain analysis free of headspace			ď
☐ Volatile Organics ☐ Dissolved Gases (RSK-175) ☐ Dissolved Oxygen (SM 4500)			
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)			
Tedlar™ bag(s) free of condensation	Ø		
CONTAINER TYPE: (Trip Blank Lot Numbe)
Aqueous: ☐ VOA ☐ VOAh ☐ VOAna₂ ☐ 100PJ ☐ 100PJna₂ ☐ 125AGB ☐ 125AGBh ☐ 125AGBp ☐ 125Pl			
☐ 250AGB ☐ 250CGB ☐ 250CGBs (pH_2) ☐ 250PB ☐ 250PBn (pH_2) ☐ 500AGB ☐ 500AGJ ☐ 500AG			
□ 1AGB □ 1AGBna₂ □ 1AGBs (pH_2) □ 1AGBs (O&G) □ 1PB □ 1PBna (pH_12) □ □			
Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleeve () EnCores® () TerraCores® ()			
Air: ☐ Tedlar™ ☐ Canister ☐ Sorbent Tube ☐ PUF ☐ Other Matrix (): ☐ I			
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Res	ealable Baç	g ,	1. ~
Preservative: $b = buffered$, $f = filtered$, $h = HCl$, $n = HNO_3$, $na = NaOH$, $na_2 = Na_2S_2O_3$, $p = H_3PO_4$. Labeled	d/Checked	l by:	119
$s = H_2SO_4$, $u = ultra$ -pure, $x = Na_2SO_3 + NaHSO_4$. H_2O , $znna = Zn (CH_3CO_2)_2 + NaOH$	Reviewed	l by: <u>/</u> 0	53

Calscience

WORK ORDER NUMBER: 18-04-1056

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AECOM

Client Project Name: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Attention: Julie Doane-Allmon

130 Robin Hill Road

Suite 100

Santa Barbara, CA 93117-3153

Vikas Patel

Approved for release on 05/03/2018 by:

Vikas Patel **Project Manager**

ResultLink >

Email your PM >

Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0	060
--	-----

Work Order Number: 18-04-1056

1	Work Order Narrative	3
2	Sample Summary	4
3	QC Association Summary	5
4	Detections Summary	6
5	Client Sample Data. 5.1 ASTM D-1946 Fixed Gases (Air). 5.2 EPA TO-15 (M) Full List (Air). 5.3 EPA TO-3 (M) TPH Gasoline (Air). 5.4 SCAQMD 25.1 TGNMO and CH4 (Air).	8 10 24 26
6	Quality Control Sample Data. 6.1 Sample Duplicate. 6.2 LCS/LCSD.	27 27 29
7	Sample Analysis Summary	36
8	Glossary of Terms and Qualifiers	37
9	Chain-of-Custody/Sample Receipt Form	38

Work Order Narrative

Work Order: 18-04-1056 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/12/18. They were assigned to Work Order 18-04-1056.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

DoD Projects:

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.

130 Robin Hill Road, Suite 100

Santa Barbara, CA 93117-3153

Sample Summary

Client: AECOM Work Order: 18-04-1056

> Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 Project Name:

PO Number: 100067 04/12/18 18:15

Date/Time Received:

6 Number of

Containers:

Attn: Julie Doane-Allmon

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
VSS01384	18-04-1056-1	04/11/18 10:28	1	Air
VSS01385	18-04-1056-2	04/11/18 10:25	1	Air
VSS01386	18-04-1056-3	04/11/18 10:30	1	Air
VSS01387	18-04-1056-4	04/12/18 10:00	1	Air
VSS01388	18-04-1056-5	04/12/18 10:00	1	Air
VSS01389	18-04-1056-6	04/12/18 10:05	1	Air

QC Association Summary

Work Order: 18-0	04-1056				Pag	je 1 of 1
Client Sample ID	Method Name	<u>Type</u>	Ext Name	Instrument	MS/MSD/SDP	LCS/LCSD
VSS01384	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180413L01
VSS01384	EPA TO-15 (M) Full List		N/A	GC/MS ZZ	*2	180413L02
VSS01384	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180412D02	180412L02
VSS01384	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180418L04
VSS01385	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180413L01
VSS01385	EPA TO-15 (M) Full List		N/A	GC/MS ZZ	*2	180413L02
VSS01385	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180412D02	180412L02
VSS01385	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180418L04
VSS01386	EPA TO-15 (M) Full List		N/A	GC/MS ZZ	*2	180413L02
VSS01386	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180412D02	180412L02
VSS01387	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180413L01
VSS01387	EPA TO-15 (M) Full List		N/A	GC/MS ZZ	*2	180413L02
VSS01387	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180413D01	180413L01
VSS01387	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180418L04
VSS01388	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180413L01
VSS01388	EPA TO-15 (M) Full List		N/A	GC/MS ZZ	*2	180413L02
VSS01388	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180413D01	180413L01
VSS01388	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180418L04
VSS01389	EPA TO-15 (M) Full List		N/A	GC/MS ZZ	*2	180413L02
VSS01389	EPA TO-15 (M) Full List	R	N/A	GC/MS ZZ	*1	180413L02
VSS01389	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180412D02	180412L02

^{1 =} Dilution analysis performed, no associated matrix QC

^{2 =} Limited sample received, no MS/MSD performed

R = Rerun

Santa Barbara, CA 93117-3153

Detections Summary

Client: AECOM Work Order: 18-04-1056

Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 130 Robin Hill Road, Suite 100 Project Name:

Received: 04/12/18

Page 1 of 2 Attn: Julie Doane-Allmon

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
VSS01384 (18-04-1056-1)						
Carbon Dioxide	14.9		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	6.29		0.500	%v	ASTM D-1946	N/A
Nitrogen	78.8		0.500	%v	ASTM D-1946	N/A
Benzene	7500		50	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	4800		50	ppm (v/v)	EPA TO-15M	N/A
Toluene	85	J	13*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	16000		75	ppm (v/v)	EPA TO-3M	N/A
Methane	270		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01385 (18-04-1056-2)						
Carbon Dioxide	7.48		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	14.0		0.500	%v	ASTM D-1946	N/A
Nitrogen	78.6		0.500	%v	ASTM D-1946	N/A
Acetone	14	J	14*	ppm (v/v)	EPA TO-15M	N/A
Benzene	3900		25	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	3200		25	ppm (v/v)	EPA TO-15M	N/A
Toluene	50	J	6.7*	ppm (v/v)	EPA TO-15M	N/A
Trichloroethene	9.3	J	3.5*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	8900		75	ppm (v/v)	EPA TO-3M	N/A
Methane	130		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01386 (18-04-1056-3)						
Benzene	81		2.0	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	310		2.0	ppm (v/v)	EPA TO-15M	N/A
Toluene	2.4	J	0.54*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	570		3.8	ppm (v/v)	EPA TO-3M	N/A
VSS01387 (18-04-1056-4)						
Carbon Dioxide	14.4		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	7.55		0.500	%v	ASTM D-1946	N/A
Nitrogen	78.0		0.500	%v	ASTM D-1946	N/A
Benzene	7200		50	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	5900		50	ppm (v/v)	EPA TO-15M	N/A
Toluene	87	J	13*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	15000		75	ppm (v/v)	EPA TO-3M	N/A
Methane	140		1.0	ppm (v/v)	SCAQMD 25.1M	N/A

^{*} MDL is shown

Santa Barbara, CA 93117-3153

Detections Summary

Client: AECOM Work Order: 18-04-1056

Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 130 Robin Hill Road, Suite 100 Project Name:

Received: 04/12/18

Attn: Julie Doane-Allmon Page 2 of 2

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
VSS01388 (18-04-1056-5)						
Carbon Dioxide	7.62		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	14.2		0.500	%v	ASTM D-1946	N/A
Nitrogen	78.2		0.500	%v	ASTM D-1946	N/A
Acetone	18	J	14*	ppm (v/v)	EPA TO-15M	N/A
Benzene	4100		25	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	3400		25	ppm (v/v)	EPA TO-15M	N/A
Toluene	54	J	6.7*	ppm (v/v)	EPA TO-15M	N/A
Trichloroethene	4.0	J	3.5*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	8500		75	ppm (v/v)	EPA TO-3M	N/A
Methane	76		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01389 (18-04-1056-6)						
Benzene	64		0.80	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	180	E	0.80	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	130		2.0	ppm (v/v)	EPA TO-15M	N/A
Toluene	1.7	J	0.22*	ppm (v/v)	EPA TO-15M	N/A
Trichloroethene	0.11	J	0.11*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	540		3.8	ppm (v/v)	EPA TO-3M	N/A

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Page 1 of 2

Analytical Report

AECOM Date Received: 04/12/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1056 Santa Barbara, CA 93117-3153 Preparation: N/A Method: **ASTM D-1946** Units:

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Nitrogen

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01384	18-04-1056-1-A	04/11/18 10:28	Air	GC 65	N/A	04/13/18 11:48	180413L01
Comment(s): - Results were evaluated t	o the MDL (DL), cond	centrations >= t	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u> .	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Carbon Dioxide	14.9		0.500	0.139	1.00		
Carbon Monoxide	ND		0.500	0.183	1.00		
Oxygen (+ Argon)	6.29		0.500	0.205	1.00		
Nitrogen	78.8		0.500	0.477	1.00		

VSS01385	18-04		04/11/18 <i>A</i> 10:25	Air GC 65	N/A	04/13/18 12:09	180413L01
Comment(s):	- Results were evaluated to the MI	DL (DL), conce	entrations >= to th	e MDL (DL) but < R	L (LOQ), if found, are	e qualified with a ".	J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDI</u>	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
Carbon Dioxide		7.48	0.50	0.13	1.00		
Carbon Monoxide	;	ND	0.50	0.18	1.00		
Oxygen (+ Argon)	14.0	0.50	0.20	1.00		

78.6

VSS01387	18-04-1056-4-A	04/12/18 10:00	Air	GC 65	N/A	04/13/18 12:36	180413L01
Comment(s): - Results w	ere evaluated to the MDL (DL), con-	centrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	e qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
Carbon Dioxide	14.4		0.500	0.139	1.00		
Carbon Monoxide	ND		0.500	0.183	1.00		
Oxygen (+ Argon)	7.55		0.500	0.205	1.00		
Nitrogen	78.0		0.500	0.477	1.00		

0.500

0.477

1.00

VSS01388		/12/18 Air :00	GC 65	N/A	04/13/18 180413L01 13:06
Comment(s): - Results were evaluated to	the MDL (DL), concentra	ations >= to the MD	L (DL) but < RL (LOC	Q), if found, are q	ualified with a "J" flag.
<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Carbon Dioxide	7.62	0.500	0.139	1.00	
Carbon Monoxide	ND	0.500	0.183	1.00	
Oxygen (+ Argon)	14.2	0.500	0.205	1.00	
Nitrogen	78.2	0.500	0.477	1.00	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Page 2 of 2

Analytical Report

04/12/18 **AECOM** Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-1056 Santa Barbara, CA 93117-3153 Preparation: N/A Method: **ASTM D-1946**

Units:

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Method Blank	099-16-444-766	N/A	Air	GC 65	N/A	04/13/18 10:57	180413L01		
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.									
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>		
Carbon Dioxide	ND		0.500	0.139	1.00				
Carbon Monoxide	ND		0.500	0.183	1.00				
Oxygen (+ Argon)	ND		0.500	0.205	1.00				
Nitrogen	ND		0.500	0.477	1.00				

04/12/18

N/A

18-04-1056

Analytical Report

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153

Date Received: Work Order: Preparation: Method:

EPA TO-15M Units: ppm (v/v) Page 1 of 14

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01384	18-04-1056-1-A	04/11/18 10:28	Air	GC/MS ZZ	N/A	04/13/18 16:07	180413L02
Comment(s): - Results were evaluated t	o the MDL (DL), con	centrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Acetone	ND		5000	29	1000	00	
Benzene	7500)	50	8.5	1000	00	
Benzyl Chloride	ND		150	4.9	1000	00	
Bromodichloromethane	ND		50	6.2	1000	00	
Bromoform	ND		50	8.1	1000	00	
Bromomethane	ND		50	14	1000	00	
2-Butanone	ND		150	43	1000	00	
Carbon Disulfide	ND		1000	28	1000	00	
Carbon Tetrachloride	ND		50	6.2	1000	00	
Chlorobenzene	ND		50	6.8	1000	00	
Chloroethane	ND		50	24	1000	00	
Chloroform	ND		50	6.9	1000	00	
Chloromethane	ND		50	24	1000	00	
Dibromochloromethane	ND		50	5.5	1000	00	
Dichlorodifluoromethane	ND		50	6.0	1000	00	
1,1-Dichloroethane	ND		50	6.3	1000	00	
1,1-Dichloroethene	ND		50	20	1000	00	
1,2-Dibromoethane	ND		50	6.9	1000	00	
Dichlorotetrafluoroethane	ND		200	27	1000	00	
1,2-Dichlorobenzene	ND		50	5.3	1000	00	
1,2-Dichloroethane	ND		50	6.9	1000	00	
1,2-Dichloropropane	ND		50	19	1000	00	
1,3-Dichlorobenzene	ND		50	16	1000	00	
1,4-Dichlorobenzene	ND		50	6.7	1000	00	
c-1,3-Dichloropropene	ND		50	6.5	1000	00	
c-1,2-Dichloroethene	ND		50	8.7	1000	00	
t-1,2-Dichloroethene	ND		50	13	1000	00	
t-1,3-Dichloropropene	ND		100	6.9	1000	00	
Ethylbenzene	4800)	50	14	1000	00	
4-Ethyltoluene	ND		50	16	1000	00	
Hexachloro-1,3-Butadiene	ND		150	10	1000	00	
2-Hexanone	ND		150	44	1000	00	
Methyl-t-Butyl Ether (MTBE)	ND		200	15	1000	00	
Methylene Chloride	ND		500	25	1000	00	

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Page 2 of 14

Analytical Report

AECOM Date Received: 04/12/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1056 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Toluene-d8

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
4-Methyl-2-Pentanone	ND	150	37	100000	
o-Xylene	ND	50	16	100000	
p/m-Xylene	ND	200	33	100000	
Styrene	ND	150	6.4	100000	
Tetrachloroethene	ND	50	6.7	100000	
Toluene	85	500	13	100000	J
Trichloroethene	ND	50	6.9	100000	
Trichlorofluoromethane	ND	100	17	100000	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	150	7.0	100000	
1,1,1-Trichloroethane	ND	50	7.9	100000	
1,1,2-Trichloroethane	ND	50	18	100000	
1,3,5-Trimethylbenzene	ND	50	14	100000	
1,1,2,2-Tetrachloroethane	ND	100	14	100000	
1,2,4-Trimethylbenzene	ND	150	15	100000	
1,2,4-Trichlorobenzene	ND	200	12	100000	
Vinyl Acetate	ND	200	9.8	100000	
Vinyl Chloride	ND	50	22	100000	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	101	57-129			
1,2-Dichloroethane-d4	101	47-137			

78-156

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

92

Page 3 of 14

Analytical Report

AECOM Date Received: 04/12/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1056 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01385	18-04-1056-2-A	04/11/18 10:25	Air	GC/MS ZZ	N/A	04/13/18 16:51	180413L02
Comment(s): - Results were evaluated to	o the MDL (DL), cond	entrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	2	<u>Qualifiers</u>
Acetone	14		2500	14	50000	J	
Benzene	3900		25	4.2	50000		
Benzyl Chloride	ND		75	2.5	50000		
Bromodichloromethane	ND		25	3.1	50000		
Bromoform	ND		25	4.0	50000		
Bromomethane	ND		25	6.9	50000		
2-Butanone	ND		75	22	50000		
Carbon Disulfide	ND		500	14	50000		
Carbon Tetrachloride	ND		25	3.1	50000		
Chlorobenzene	ND		25	3.4	50000		
Chloroethane	ND		25	12	50000		
Chloroform	ND		25	3.5	50000		
Chloromethane	ND		25	12	50000		
Dibromochloromethane	ND		25	2.7	50000		
Dichlorodifluoromethane	ND		25	3.0	50000		
1,1-Dichloroethane	ND		25	3.2	50000		
1,1-Dichloroethene	ND		25	9.9	50000		
1,2-Dibromoethane	ND		25	3.4	50000		
Dichlorotetrafluoroethane	ND		100	13	50000		
1,2-Dichlorobenzene	ND		25	2.7	50000		
1,2-Dichloroethane	ND		25	3.4	50000		
1,2-Dichloropropane	ND		25	9.5	50000		
1,3-Dichlorobenzene	ND		25	8.1	50000		
1,4-Dichlorobenzene	ND		25	3.4	50000		
c-1,3-Dichloropropene	ND		25	3.3	50000		
c-1,2-Dichloroethene	ND		25	4.4	50000		
t-1,2-Dichloroethene	ND		25	6.4	50000		
t-1,3-Dichloropropene	ND		50	3.5	50000		
Ethylbenzene	3200		25	7.2	50000		
4-Ethyltoluene	ND		25	7.9	50000		
Hexachloro-1,3-Butadiene	ND		75	5.1	50000		
2-Hexanone	ND		75	22	50000		
Methyl-t-Butyl Ether (MTBE)	ND		100	7.6	50000		
Methylene Chloride	ND		250	12	50000		

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

AECOM Date Received: 04/12/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1056 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 4 of 14

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	DF	<u>Qualifiers</u>	
4-Methyl-2-Pentanone	ND	75	19	50000		
o-Xylene	ND	25	7.8	50000		
p/m-Xylene	ND	100	17	50000		
Styrene	ND	75	3.2	50000		
Tetrachloroethene	ND	25	3.4	50000		
Toluene	50	250	6.7	50000	J	
Trichloroethene	9.3	25	3.5	50000	J	
Trichlorofluoromethane	ND	50	8.5	50000		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	75	3.5	50000		
1,1,1-Trichloroethane	ND	25	3.9	50000		
1,1,2-Trichloroethane	ND	25	9.1	50000		
1,3,5-Trimethylbenzene	ND	25	7.2	50000		
1,1,2,2-Tetrachloroethane	ND	50	6.9	50000		
1,2,4-Trimethylbenzene	ND	75	7.7	50000		
1,2,4-Trichlorobenzene	ND	100	6.2	50000		
Vinyl Acetate	ND	100	4.9	50000		
Vinyl Chloride	ND	25	11	50000		
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	98	57-129				
1,2-Dichloroethane-d4	102	47-137				
Toluene-d8	93	78-156				

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153

Date Received: Work Order: Preparation: Method:

N/A EPA TO-15M

Units:

ppm (v/v)

04/12/18

18-04-1056

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 5 of 14

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01386	18-04-1056-3-A	04/11/18 10:30	Air	GC/MS ZZ	N/A	04/13/18 17:35	180413L02
Comment(s): - Results were evaluated	to the MDL (DL), cond	centrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resu	ı <u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Acetone	ND		200	1.1	4000		
Benzene	81		2.0	0.34	4000		
Benzyl Chloride	ND		6.0	0.20	4000		
Bromodichloromethane	ND		2.0	0.25	4000		
Bromoform	ND		2.0	0.32	4000		
Bromomethane	ND		2.0	0.55	4000		
2-Butanone	ND		6.0	1.7	4000		
Carbon Disulfide	ND		40	1.1	4000		
Carbon Tetrachloride	ND		2.0	0.25	4000		
Chlorobenzene	ND		2.0	0.27	4000		
Chloroethane	ND		2.0	0.96	4000		
Chloroform	ND		2.0	0.28	4000		
Chloromethane	ND		2.0	0.96	4000		
Dibromochloromethane	ND		2.0	0.22	4000		
Dichlorodifluoromethane	ND		2.0	0.24	4000		
1,1-Dichloroethane	ND		2.0	0.25	4000		
1,1-Dichloroethene	ND		2.0	0.80	4000		
1,2-Dibromoethane	ND		2.0	0.28	4000		
Dichlorotetrafluoroethane	ND		8.0	1.1	4000		
1,2-Dichlorobenzene	ND		2.0	0.21	4000		
1,2-Dichloroethane	ND		2.0	0.27	4000		
1,2-Dichloropropane	ND		2.0	0.76	4000		
1,3-Dichlorobenzene	ND		2.0	0.65	4000		
1,4-Dichlorobenzene	ND		2.0	0.27	4000		
c-1,3-Dichloropropene	ND		2.0	0.26	4000		
c-1,2-Dichloroethene	ND		2.0	0.35	4000		
t-1,2-Dichloroethene	ND		2.0	0.51	4000		
t-1,3-Dichloropropene	ND		4.0	0.28	4000		
Ethylbenzene	310		2.0	0.58	4000		
4-Ethyltoluene	ND		2.0	0.64	4000		
Hexachloro-1,3-Butadiene	ND		6.0	0.41	4000		
2-Hexanone	ND		6.0	1.8	4000		
Methyl-t-Butyl Ether (MTBE)	ND		8.0	0.61	4000		
Methylene Chloride	ND		20	0.99	4000		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AECOM Date Received: 04/12/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1056 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 6 of 14

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Toluene-d8

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
4-Methyl-2-Pentanone	ND	6.0	1.5	4000	
o-Xylene	ND	2.0	0.63	4000	
p/m-Xylene	ND	8.0	1.3	4000	
Styrene	ND	6.0	0.25	4000	
Tetrachloroethene	ND	2.0	0.27	4000	
Toluene	2.4	20	0.54	4000	J
Trichloroethene	ND	2.0	0.28	4000	
Trichlorofluoromethane	ND	4.0	0.68	4000	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	6.0	0.28	4000	
1,1,1-Trichloroethane	ND	2.0	0.32	4000	
1,1,2-Trichloroethane	ND	2.0	0.73	4000	
1,3,5-Trimethylbenzene	ND	2.0	0.58	4000	
1,1,2,2-Tetrachloroethane	ND	4.0	0.55	4000	
1,2,4-Trimethylbenzene	ND	6.0	0.61	4000	
1,2,4-Trichlorobenzene	ND	8.0	0.50	4000	
Vinyl Acetate	ND	8.0	0.39	4000	
Vinyl Chloride	ND	2.0	0.89	4000	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	100	57-129			
1,2-Dichloroethane-d4	102	47-137			

78-156

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

92

04/12/18

N/A

18-04-1056

Page 7 of 14

Analytical Report

AECOM Date Received: 130 Robin Hill Road, Suite 100 Work Order: Santa Barbara, CA 93117-3153 Preparation:

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01387	18-04-1056-4-A	04/12/18 10:00	Air	GC/MS ZZ	N/A	04/13/18 18:19	180413L02
Comment(s): - Results were evalu	uated to the MDL (DL), cond	centrations >= 1	to the MDL	(DL) but < RL (LO	Q), if found, are	e qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Acetone	ND		5000	29	1000	00	
Benzene	7200		50	8.5	1000	00	
Benzyl Chloride	ND		150	4.9	1000	00	
Bromodichloromethane	ND		50	6.2	1000	00	
Bromoform	ND		50	8.1	1000	00	
Bromomethane	ND		50	14	1000	00	
2-Butanone	ND		150	43	1000	00	
Carbon Disulfide	ND		1000	28	1000	00	
Carbon Tetrachloride	ND		50	6.2	1000	00	
Chlorobenzene	ND		50	6.8	1000	00	
Chloroethane	ND		50	24	1000	00	
Chloroform	ND		50	6.9	1000	00	
Chloromethane	ND		50	24	1000	00	
Dibromochloromethane	ND		50	5.5	1000	00	
Dichlorodifluoromethane	ND		50	6.0	1000	00	
1,1-Dichloroethane	ND		50	6.3	1000	00	
1,1-Dichloroethene	ND		50	20	1000	00	
1,2-Dibromoethane	ND		50	6.9	1000	00	
Dichlorotetrafluoroethane	ND		200	27	1000	00	
1,2-Dichlorobenzene	ND		50	5.3	1000	00	
1,2-Dichloroethane	ND		50	6.9	1000	00	
1,2-Dichloropropane	ND		50	19	1000	00	
1,3-Dichlorobenzene	ND		50	16	1000	00	
1,4-Dichlorobenzene	ND		50	6.7	1000	00	
c-1,3-Dichloropropene	ND		50	6.5	1000	00	
c-1,2-Dichloroethene	ND		50	8.7	1000	00	
t-1,2-Dichloroethene	ND		50	13	1000	00	
t-1,3-Dichloropropene	ND		100	6.9	1000	00	
Ethylbenzene	5900		50	14	1000	00	
4-Ethyltoluene	ND		50	16	1000	00	
Hexachloro-1,3-Butadiene	ND		150	10	1000	00	
2-Hexanone	ND		150	44	1000	00	
Methyl-t-Butyl Ether (MTBE)	ND		200	15	1000	00	
Methylene Chloride	ND		500	25	1000		

DF: Dilution Factor. MDL: Method Detection Limit. RL: Reporting Limit.

Toluene-d8

Analytical Report

AECOM Date Received: 04/12/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1056 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 8 of 14

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
4-Methyl-2-Pentanone	ND	150	37	100000	
o-Xylene	ND	50	16	100000	
p/m-Xylene	ND	200	33	100000	
Styrene	ND	150	6.4	100000	
Tetrachloroethene	ND	50	6.7	100000	
Toluene	87	500	13	100000	J
Trichloroethene	ND	50	6.9	100000	
Trichlorofluoromethane	ND	100	17	100000	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	150	7.0	100000	
1,1,1-Trichloroethane	ND	50	7.9	100000	
1,1,2-Trichloroethane	ND	50	18	100000	
1,3,5-Trimethylbenzene	ND	50	14	100000	
1,1,2,2-Tetrachloroethane	ND	100	14	100000	
1,2,4-Trimethylbenzene	ND	150	15	100000	
1,2,4-Trichlorobenzene	ND	200	12	100000	
Vinyl Acetate	ND	200	9.8	100000	
Vinyl Chloride	ND	50	22	100000	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	99	57-129			
1,2-Dichloroethane-d4	103	47-137			

78-156

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

93

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

04/12/18 18-04-1056 N/A

Method: Units:

EPA TO-15M

ppm (v/v) Page 9 of 14

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01388	18-04-1056-5-A	04/12/18 10:00	Air	GC/MS ZZ	N/A	04/13/18 19:47	180413L02
Comment(s): - Results were evaluated	to the MDL (DL), cond	entrations >=	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	<u>Resu</u>	<u> t</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Acetone	18		2500	14	50000	,	J
Benzene	4100		25	4.2	50000		
Benzyl Chloride	ND		75	2.5	50000		
Bromodichloromethane	ND		25	3.1	50000		
Bromoform	ND		25	4.0	50000		
Bromomethane	ND		25	6.9	50000		
2-Butanone	ND		75	22	50000		
Carbon Disulfide	ND		500	14	50000		
Carbon Tetrachloride	ND		25	3.1	50000		
Chlorobenzene	ND		25	3.4	50000		
Chloroethane	ND		25	12	50000		
Chloroform	ND		25	3.5	50000		
Chloromethane	ND		25	12	50000		
Dibromochloromethane	ND		25	2.7	50000		
Dichlorodifluoromethane	ND		25	3.0	50000		
1,1-Dichloroethane	ND		25	3.2	50000		
1,1-Dichloroethene	ND		25	9.9	50000		
1,2-Dibromoethane	ND		25	3.4	50000		
Dichlorotetrafluoroethane	ND		100	13	50000		
1,2-Dichlorobenzene	ND		25	2.7	50000		
1,2-Dichloroethane	ND		25	3.4	50000		
1,2-Dichloropropane	ND		25	9.5	50000		
1,3-Dichlorobenzene	ND		25	8.1	50000		
1,4-Dichlorobenzene	ND		25	3.4	50000		
c-1,3-Dichloropropene	ND		25	3.3	50000		
c-1,2-Dichloroethene	ND		25	4.4	50000		
t-1,2-Dichloroethene	ND		25	6.4	50000		
t-1,3-Dichloropropene	ND		50	3.5	50000		
Ethylbenzene	3400		25	7.2	50000		
4-Ethyltoluene	ND		25	7.9	50000		
Hexachloro-1,3-Butadiene	ND		75	5.1	50000		
2-Hexanone	ND		75	22	50000		
Methyl-t-Butyl Ether (MTBE)	ND		100	7.6	50000		
Methylene Chloride	ND		250	12	50000		

RL: Reporting Limit.

DF: Dilution Factor.

MDL: Method Detection Limit.

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153

Date Received: Work Order: Preparation: Method:

Units:

04/12/18 18-04-1056 N/A EPA TO-15M

ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 10 of 14

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers	
4-Methyl-2-Pentanone	ND	75	19	50000		
o-Xylene	ND	25	7.8	50000		
p/m-Xylene	ND	100	17	50000		
Styrene	ND	75	3.2	50000		
Tetrachloroethene	ND	25	3.4	50000		
Toluene	54	250	6.7	50000	J	
Trichloroethene	4.0	25	3.5	50000	J	
Trichlorofluoromethane	ND	50	8.5	50000		
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	75	3.5	50000		
1,1,1-Trichloroethane	ND	25	3.9	50000		
1,1,2-Trichloroethane	ND	25	9.1	50000		4
1,3,5-Trimethylbenzene	ND	25	7.2	50000		
1,1,2,2-Tetrachloroethane	ND	50	6.9	50000		
1,2,4-Trimethylbenzene	ND	75	7.7	50000		
1,2,4-Trichlorobenzene	ND	100	6.2	50000		
Vinyl Acetate	ND	100	4.9	50000		
Vinyl Chloride	ND	25	11	50000		
<u>Surrogate</u>	Rec. (%)	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzene	99	57-129				
1,2-Dichloroethane-d4	99	47-137				
Toluene-d8	93	78-156				

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Page 11 of 14

Analytical Report

AECOM Date Received: 04/12/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1056 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01389	18-04-1056-6-A	04/12/18 10:05	Air	GC/MS ZZ	N/A	04/14/18 02:43	180413L02
Comment(s): - Results were evaluated to	o the MDL (DL), conc	entrations >= t	to the MDL	(DL) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	<u>Resul</u>	<u>lt</u> <u>!</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>!</u>	<u>Qualifiers</u>
Acetone	ND	;	80	0.46	1600		
Benzene	64	(0.80	0.14	1600		
Benzyl Chloride	ND	;	2.4	0.078	1600		
Bromodichloromethane	ND	(0.80	0.099	1600		
Bromoform	ND	(0.80	0.13	1600		
Bromomethane	ND	(0.80	0.22	1600		
2-Butanone	ND	:	2.4	0.69	1600		
Carbon Disulfide	ND		16	0.44	1600		
Carbon Tetrachloride	ND	(0.80	0.099	1600		
Chlorobenzene	ND	(0.80	0.11	1600		
Chloroethane	ND	(0.80	0.39	1600		
Chloroform	ND	(0.80	0.11	1600		
Chloromethane	ND	(0.80	0.38	1600		
Dibromochloromethane	ND	(0.80	0.088	1600		
Dichlorodifluoromethane	ND	(0.80	0.095	1600		
1,1-Dichloroethane	ND	(0.80	0.10	1600		
1,1-Dichloroethene	ND	(0.80	0.32	1600		
1,2-Dibromoethane	ND	(0.80	0.11	1600		
Dichlorotetrafluoroethane	ND	;	3.2	0.42	1600		
1,2-Dichlorobenzene	ND	(0.80	0.085	1600		
1,2-Dichloroethane	ND	(0.80	0.11	1600		
1,2-Dichloropropane	ND	(0.80	0.31	1600		
1,3-Dichlorobenzene	ND	(0.80	0.26	1600		
1,4-Dichlorobenzene	ND	(0.80	0.11	1600		
c-1,3-Dichloropropene	ND	(0.80	0.10	1600		
c-1,2-Dichloroethene	ND	(0.80	0.14	1600		
t-1,2-Dichloroethene	ND	(0.80	0.20	1600		
t-1,3-Dichloropropene	ND		1.6	0.11	1600		
Ethylbenzene	180	(0.80	0.23	1600		E
4-Ethyltoluene	ND	(0.80	0.25	1600		
Hexachloro-1,3-Butadiene	ND	:	2.4	0.16	1600		
2-Hexanone	ND		2.4	0.70	1600		
Methyl-t-Butyl Ether (MTBE)	ND	;	3.2	0.24	1600		
Methylene Chloride	ND		8.0	0.40	1600		

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

Page 12 of 14

Analytical Report

AECOM Date Received: 04/12/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1056 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
4-Methyl-2-Pentanone	ND	2.4	0.60	1600	
o-Xylene	ND	0.80	0.25	1600	
p/m-Xylene	ND	3.2	0.53	1600	
Styrene	ND	2.4	0.10	1600	
Tetrachloroethene	ND	0.80	0.11	1600	
Toluene	1.7	8.0	0.22	1600	J
Trichloroethene	0.11	0.80	0.11	1600	J
Trichlorofluoromethane	ND	1.6	0.27	1600	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	2.4	0.11	1600	
1,1,1-Trichloroethane	ND	0.80	0.13	1600	
1,1,2-Trichloroethane	ND	0.80	0.29	1600	
1,3,5-Trimethylbenzene	ND	0.80	0.23	1600	
1,1,2,2-Tetrachloroethane	ND	1.6	0.22	1600	
1,2,4-Trimethylbenzene	ND	2.4	0.25	1600	
1,2,4-Trichlorobenzene	ND	3.2	0.20	1600	
Vinyl Acetate	ND	3.2	0.16	1600	
Vinyl Chloride	ND	0.80	0.36	1600	
Surrogate	Rec. (%)	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	103	57-129			
1,2-Dichloroethane-d4	110	47-137			
Toluene-d8	98	78-156			

	110111001	0000.00				,a., a	
VSS01389	18-04-1056-6-4	A 04/12/18 10:05	Air	GC/MS ZZ	N/A	04/13/18 20:31	180413L02
Comment(s): - Res	ults were evaluated to the MDL (DL), o	concentrations >	= to the MDL (DL	but < RL (LOC	Q), if found, are	qualified with a "	J" flag.
<u>Parameter</u>	<u>R</u>	<u>esult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qu</u>	alifiers
Ethylbenzene	1;	30	2.0	0.58	4000		
<u>Surrogate</u>	<u>R</u>	ec. (%)	Control Limits	<u>Qualifiers</u>			
1,4-Bromofluorobenzer	ne 98	8	57-129				
1,2-Dichloroethane-d4	10	01	47-137				
Toluene-d8	94	4	78-156				

Matrix

Instrument

Date

Prepared

Date/Time

Analyzed

QC Batch ID

Date/Time

Collected

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Lab Sample

Number

Page 13 of 14

Analytical Report

AECOM Date Received: 04/12/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1056 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Methylene Chloride

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-981-8453	N/A	Air	GC/MS ZZ	N/A	04/13/18 15:16	180413L02
Comment(s): - Results were evaluated	to the MDL (DL), cond	entrations >=	to the MDL	DL) but < RL (LOC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Acetone	ND		0.050	0.00029	1.00		
Benzene	ND		0.00050	0.000085	1.00		
Benzyl Chloride	ND		0.0015	0.000049	1.00		
Bromodichloromethane	ND		0.00050	0.000062	1.00		
Bromoform	ND		0.00050	0.000081	1.00		
Bromomethane	ND		0.00050	0.00014	1.00		
2-Butanone	ND		0.0015	0.00043	1.00		
Carbon Disulfide	ND		0.010	0.00028	1.00		
Carbon Tetrachloride	ND		0.00050	0.000062	1.00		
Chlorobenzene	ND		0.00050	0.000068	1.00		
Chloroethane	ND		0.00050	0.00024	1.00		
Chloroform	ND		0.00050	0.000069	1.00		
Chloromethane	ND		0.00050	0.00024	1.00		
Dibromochloromethane	ND		0.00050	0.000055	1.00		
Dichlorodifluoromethane	ND		0.00050	0.000060	1.00		
1,1-Dichloroethane	ND		0.00050	0.000063	1.00		
1,1-Dichloroethene	ND		0.00050	0.00020	1.00		
1,2-Dibromoethane	ND		0.00050	0.000069	1.00		
Dichlorotetrafluoroethane	ND		0.0020	0.00027	1.00		
1,2-Dichlorobenzene	ND		0.00050	0.000053	1.00		
1,2-Dichloroethane	ND		0.00050	0.000069	1.00		
1,2-Dichloropropane	ND		0.00050	0.00019	1.00		
1,3-Dichlorobenzene	ND		0.00050	0.00016	1.00		
1,4-Dichlorobenzene	ND		0.00050	0.000067	1.00		
c-1,3-Dichloropropene	ND		0.00050	0.000065	1.00		
c-1,2-Dichloroethene	ND		0.00050	0.000087	1.00		
t-1,2-Dichloroethene	ND		0.00050	0.00013	1.00		
t-1,3-Dichloropropene	ND		0.0010	0.000069	1.00		
Ethylbenzene	ND		0.00050	0.00014	1.00		
4-Ethyltoluene	ND		0.00050	0.00016	1.00		
Hexachloro-1,3-Butadiene	ND		0.0015	0.00010	1.00		
2-Hexanone	ND		0.0015	0.00044	1.00		
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	0.00015	1.00		

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

ND

0.0050

0.00025

1.00

Page 14 of 14

Analytical Report

AECOM Date Received: 04/12/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1056 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Toluene-d8

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
4-Methyl-2-Pentanone	ND	0.0015	0.00037	1.00	
o-Xylene	ND	0.00050	0.00016	1.00	
p/m-Xylene	ND	0.0020	0.00033	1.00	
Styrene	ND	0.0015	0.000064	1.00	
Tetrachloroethene	ND	0.00050	0.000067	1.00	
Toluene	ND	0.0050	0.00013	1.00	
Trichloroethene	ND	0.00050	0.000069	1.00	
Trichlorofluoromethane	ND	0.0010	0.00017	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.0015	0.000070	1.00	
1,1,1-Trichloroethane	ND	0.00050	0.000079	1.00	
1,1,2-Trichloroethane	ND	0.00050	0.00018	1.00	
1,3,5-Trimethylbenzene	ND	0.00050	0.00014	1.00	
1,1,2,2-Tetrachloroethane	ND	0.0010	0.00014	1.00	
1,2,4-Trimethylbenzene	ND	0.0015	0.00015	1.00	
1,2,4-Trichlorobenzene	ND	0.0020	0.00012	1.00	
Vinyl Acetate	ND	0.0020	0.000098	1.00	
Vinyl Chloride	ND	0.00050	0.00022	1.00	
<u>Surrogate</u>	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	100	57-129			
1,2-Dichloroethane-d4	102	47-137			

78-156

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

96

180412L02

Analytical Report

AECOM Date Received: 04/12/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1056 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-3M Units: ppm (v/v) Page 1 of 2

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

VSS01386

Client Sample Nu	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01384		18-04-1056-1-A	04/11/18 10:28	Air	GC 13	N/A	04/12/18 21:28	180412L02
Comment(s):	- Results were evaluated to	the MDL (DL), conc	entrations >= to	the MDL ([DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>		Resul	<u>t</u> <u>F</u>	<u> </u>	<u>MDL</u>	<u>DF</u>	<u>0</u>	<u>Qualifiers</u>
TPH as Gasoline	:	16000) 7	7 5	21	50.0		

VSS01385	18-04-1056-2-A	04/11/18 10:25	Air	GC 13	N/A	04/12/18 21:48	180412L02
Comment(s):	- Results were evaluated to the MDL (DL), co	ncentrations >	= to the MDL	(DL) but < RL (LOQ), if found, are	qualified with a ".	J" flag.
<u>Parameter</u>	<u>Re</u>	<u>sult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
TPH as Gasolin	e 890	00	75	21	50.0		

		10:30	0		20:	59
Comment(s):	- Results were evaluated to the MDL (D	DL), concentrati	ons >= to the MDL	(DL) but < RL (LOQ),	if found, are quali	fied with a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
TPH as Gasolin	e	570	3.8	1.1	2.50	

Air

GC 13

N/A

04/12/18

04/11/18

VSS01387	18-04-1056-4-A	04/12/18 10:00	Air	GC 13	N/A	04/13/18 10:56	180413L01
Comment(s):	- Results were evaluated to the MDL (DL), cor	centrations >	= to the MDI	(DL) but < RL (LOQ)), if found, are	qualified with a ".	J" flag.
<u>Parameter</u>	Res	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qu</u>	<u>alifiers</u>
TPH as Gasoline	e 1500	00	75	21	50.0		

VSS01388	18-04-1056-5-A	04/12/18 10:00	Air	GC 13	N/A	04/13/18 11:44	180413L01
Comment(s):	- Results were evaluated to the MDL (DL), cond	centrations >=	to the MDL	(DL) but < RL (I	OQ), if found,	are qualified with a	"J" flag.

<u>Parameter</u> Result <u>RL</u> <u>MDL</u> <u>DF</u> **Qualifiers** 75 8500 50.0 TPH as Gasoline 21

VSS01389	18-04-1056-6-A	04/12/18 / 10:05	Air GC 13	N/A	04/12/18 21:08	180412L02
Comment(s):	- Results were evaluated to the MDL (DL), con-	centrations >= to th	ne MDL (DL) but < RI	(LOQ), if found, are	e qualified with a "J	l" flag.
<u>Parameter</u>	Resu	ılt RL	MDL	<u>DF</u>	Qua	<u>alifiers</u>

Parameter <u>DF</u> Result <u>RL</u> <u>MDL</u> TPH as Gasoline 540 3.8 1.1 2.50

18-04-1056-3-A

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Page 2 of 2

Analytical Report

AECOM Date Received: 04/12/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1056 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-3M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample N	lumber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank		098-01-005-8409	N/A	Air	GC 13	N/A	04/12/18 10:09	180412L02
Comment(s):	- Results were evaluated t	o the MDL (DL), cond	centrations >= t	o the MDL (I	DL) but < RL (LC	Q), if found, are	e qualified with a	"J" flag.
_		_					_	

<u>Parameter</u> Result <u>RL</u> <u>MDL</u> <u>DF</u> **Qualifiers** TPH as Gasoline ND 1.5 0.43 1.00

Method Blank	098-01-0	05-8411 N	/A Air	GC 13	N/A	04/13/18 10:08	180413L01
Comment(s):	- Results were evaluated to the MDL	(DL), concent	rations >= to the MDI	(DL) but < RL (LC	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>		Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
TPH as Gasoline	9	ND	1.5	0.43	1.00		

Qualifiers

Analytical Report

AECOM Date Received: 04/12/18 18-04-1056 130 Robin Hill Road, Suite 100 Work Order: Santa Barbara, CA 93117-3153 Preparation: N/A Method: SCAQMD 25.1M Units: ppm (v/v)

Project: Del Amo Superfund Si 60566446.2018.1.0601	te, Los Angeles /					Pa	age 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
/SS01384	18-04-1056-1-A	04/11/18 10:28	Air	GC 14	N/A	04/18/18 19:52	180418L04
Comment(s): - Results were evaluate	ated to the MDL (DL), cond	entrations >=	to the MDL	(DL) but < RL (LC	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	MDL	<u>DF</u>		<u>Qualifiers</u>
Methane	270		1.0	0.21	1.00		
/SS01385	18-04-1056-2-A	04/11/18 10:25	Air	GC 14	N/A	04/18/18 20:09	180418L04
Comment(s): - Results were evaluate	ated to the MDL (DL), cond	entrations >=	to the MDL	(DL) but < RL (LC	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	MDL	<u>DF</u>		<u>Qualifiers</u>
Methane	130		1.0	0.21	1.00		
/SS01387	18-04-1056-4-A	04/12/18 10:00	Air	GC 14	N/A	04/18/18 20:27	180418L04
Comment(s): - Results were evaluate	ated to the MDL (DL), cond	entrations >=	to the MDL	(DL) but < RL (LC	Q), if found, are	qualified with	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>
Methane	140		1.0	0.21	1.00		
VSS01388	18-04-1056-5-A	04/12/18 10:00	Air	GC 14	N/A	04/18/18 20:44	180418L04

VSS01388	18-04-1056-5-A	04/12/18 10:00	Air	GC 14	N/A	04/18/18 20:44	180418L04
				·			

Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag. <u>MDL</u> Qualifiers <u>Parameter</u> Result <u>RL</u> <u>DF</u>

Methane 76 1.0 0.21 1.00

Method Blank	099-07-024-1543	N/A	Air	GC 14	N/A	04/18/18 19:28	180418L04
Comment(s):	- Results were evaluated to the MDL (DL), cond	entration	ns >= to the MDL (I	DL) but < RL (LOQ), if found,	are qualified with a	"J" flag.

<u>DF</u> <u>RL</u> <u>MDL</u> <u>Parameter</u> Result Methane ND 1.0 0.21 1.00

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Quality Control - Sample Duplicate

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

18-04-1056 N/A

04/12/18

Method:

EPA TO-3M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 1 of 2

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
18-04-1014-1	Sample	Air	GC 13	N/A	04/12/18 19:41	180412D02
18-04-1014-1	Sample Duplicate	Air	GC 13	N/A	04/12/18 19:54	180412D02
<u>Parameter</u>		Sample Conc.	DUP Conc.	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline		556.1	545.8	2	0-20	

04/12/18

18-04-1056

Page 2 of 2

Quality Control - Sample Duplicate

AECOM Date Received: 130 Robin Hill Road, Suite 100 Work Order: Santa Barbara, CA 93117-3153 Preparation:

N/A Method: EPA TO-3M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
VSS01387	Sample	Air	GC 13	N/A	04/13/18 10:56	180413D01
VSS01387	Sample Duplicate	Air	GC 13	N/A	04/13/18 11:08	180413D01
<u>Parameter</u>		Sample Conc.	DUP Conc.	<u>RPD</u>	RPD CL	Qualifiers
TPH as Gasoline		15460	15350	1	0-20	

Quality Control - LCS/LCSD

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

04/12/18 18-04-1056 N/A

Method:

ASTM D-1946

Page 1 of 7

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре	Ma	trix	Instrument	Date P	repared Date	Analyzed	LCS/LCSD B	atch Number
099-16-444-766	LCS	Air		GC 65	N/A	04/1	3/18 10:15	180413L01	
099-16-444-766	LCSD	Air		GC 65	N/A	04/1	3/18 10:36	180413L01	
Parameter	Spike Add	led LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	RPD	RPD CL	Qualifiers
Carbon Dioxide	15.01	14.98	100	15.08	100	80-120	1	0-30	
Carbon Monoxide	7.020	6.746	96	6.752	96	80-120	0	0-30	
Oxygen (+ Argon)	3.990	3.918	98	3.859	97	80-120	2	0-30	
Nitrogen	69.45	64.74	93	64.54	93	80-120	0	0-30	

Quality Control - LCS/LCSD

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/12/18 18-04-1056 N/A EPA TO-15M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 2 of 7

Quality Control Sample ID	Туре		Matrix		ument	Date Prepare			LCS/LCSD Ba	itori Number
099-12-981-8453	LCS		Air		IS ZZ	N/A			180413L02	
099-12-981-8453	LCSD		Air	GC/I	IS ZZ	N/A	04/13/1	8 13:19	180413L02	
<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc.	<u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Acetone	0.02500	0.02377	95	0.02400	96	50-150	33-167	1	0-35	
Benzene	0.02500	0.02272	91	0.02298	92	60-156	44-172	1	0-40	
Benzyl Chloride	0.02500	0.02924	117	0.02963	119	50-150	33-167	1	0-35	
Bromodichloromethane	0.02500	0.02579	103	0.02571	103	50-150	33-167	0	0-35	
Bromoform	0.02500	0.03053	122	0.03073	123	50-150	33-167	1	0-38	
Bromomethane	0.02500	0.02824	113	0.02782	111	50-150	33-167	1	0-35	
2-Butanone	0.02500	0.02268	91	0.02279	91	50-150	33-167	0	0-35	
Carbon Disulfide	0.02500	0.02332	93	0.02344	94	50-150	33-167	1	0-35	
Carbon Tetrachloride	0.02500	0.02773	111	0.02752	110	64-154	49-169	1	0-32	
Chlorobenzene	0.02500	0.02533	101	0.02570	103	50-150	33-167	1	0-35	
Chloroethane	0.02500	0.02780	111	0.02728	109	50-150	33-167	2	0-35	
Chloroform	0.02500	0.02413	97	0.02408	96	50-150	33-167	0	0-35	
Chloromethane	0.02500	0.02759	110	0.02729	109	50-150	33-167	1	0-35	
Dibromochloromethane	0.02500	0.02756	110	0.02767	111	50-150	33-167	0	0-35	
Dichlorodifluoromethane	0.02500	0.02926	117	0.02838	114	50-150	33-167	3	0-35	
1,1-Dichloroethane	0.02500	0.02311	92	0.02323	93	50-150	33-167	0	0-35	
1,1-Dichloroethene	0.02500	0.02419	97	0.02420	97	50-150	33-167	0	0-35	
1,2-Dibromoethane	0.02500	0.02599	104	0.02621	105	54-144	39-159	1	0-36	
Dichlorotetrafluoroethane	0.02500	0.03010	120	0.02943	118	50-150	33-167	2	0-35	
1,2-Dichlorobenzene	0.02500	0.02879	115	0.02930	117	34-160	13-181	2	0-47	
1,2-Dichloroethane	0.02500	0.02468	99	0.02462	98	69-153	55-167	0	0-35	
1,2-Dichloropropane	0.02500	0.02312	92	0.02340	94	67-157	52-172	1	0-35	
1,3-Dichlorobenzene	0.02500	0.02919	117	0.02963	119	50-150	33-167	1	0-35	
1,4-Dichlorobenzene	0.02500	0.02936	117	0.02974	119	36-156	16-176	1	0-47	
c-1,3-Dichloropropene	0.02500	0.02470	99	0.02502	100	61-157	45-173	1	0-35	
c-1,2-Dichloroethene	0.02500	0.02331	93	0.02358	94	50-150	33-167	1	0-35	
t-1,2-Dichloroethene	0.02500	0.02346	94	0.02360	94	50-150	33-167	1	0-35	
t-1,3-Dichloropropene	0.02500	0.02595	104	0.02606	104	50-150	33-167	0	0-35	
Ethylbenzene	0.02500	0.02572	103	0.02600	104	52-154	35-171	1	0-38	
4-Ethyltoluene	0.02500	0.02690	108	0.02710	108	50-150	33-167	1	0-35	
Hexachloro-1,3-Butadiene	0.02500	0.03681	147	0.03697	148	50-150	33-167	0	0-35	
2-Hexanone	0.02500	0.02392	96	0.02440	98	50-150	33-167	2	0-35	
Methyl-t-Butyl Ether (MTBE)	0.02500	0.02067	83	0.02131	85	50-150	33-167	3	0-35	
Methylene Chloride	0.02500	0.02377	95	0.02386	95	50-150	33-167	0	0-35	
4-Methyl-2-Pentanone	0.02500	0.02344	94	0.02409	96	50-150	33-167	3	0-35	

Quality Control - LCS/LCSD

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/12/18 18-04-1056 N/A EPA TO-15M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 3 of 7

<u>Parameter</u>	<u>Spike</u> Added	LCS Cond	c. <u>LCS</u> %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	RPD	RPD CL	Qualifiers
o-Xylene	0.02500	0.02511	100	0.02532	101	52-148	36-164	1	0-38	
p/m-Xylene	0.05000	0.05380	108	0.05408	108	42-156	23-175	1	0-41	
Styrene	0.02500	0.02478	99	0.02521	101	50-150	33-167	2	0-35	
Tetrachloroethene	0.02500	0.02674	107	0.02695	108	56-152	40-168	1	0-40	
Toluene	0.02500	0.02352	94	0.02376	95	56-146	41-161	1	0-43	
Trichloroethene	0.02500	0.02538	102	0.02538	102	63-159	47-175	0	0-34	
Trichlorofluoromethane	0.02500	0.02504	100	0.02489	100	50-150	33-167	1	0-35	
1,1,2-Trichloro-1,2,2- Trifluoroethane	0.02500	0.02539	102	0.02537	101	50-150	33-167	0	0-35	
1,1,1-Trichloroethane	0.02500	0.02506	100	0.02505	100	50-150	33-167	0	0-35	
1,1,2-Trichloroethane	0.02500	0.02472	99	0.02485	99	65-149	51-163	1	0-37	
1,3,5-Trimethylbenzene	0.02500	0.02738	110	0.02775	111	50-150	33-167	1	0-35	
1,1,2,2-Tetrachloroethane	0.02500	0.02568	103	0.02607	104	50-150	33-167	2	0-35	
1,2,4-Trimethylbenzene	0.02500	0.02856	114	0.02893	116	50-150	33-167	1	0-35	
1,2,4-Trichlorobenzene	0.02500	0.03520	141	0.03568	143	50-150	33-167	1	0-35	
Vinyl Acetate	0.02500	0.02199	88	0.02193	88	50-150	33-167	0	0-35	
Vinyl Chloride	0.02500	0.02786	111	0.02760	110	45-177	23-199	1	0-36	

Total number of LCS compounds: 51 Total number of ME compounds: 0 Total number of ME compounds allowed: 3

LCS ME CL validation result: Pass

LCS/LCSD - Surrogate

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153

Date Received: Work Order: Preparation: Method:

18-04-1056 N/A

EPA TO-15M

04/12/18

Page 4 of 7

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре		Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Ba	atch Number
099-12-981-8453	LCS		Air	GC/MS ZZ	N/A	04/13/18 12:29	180413L02	
099-12-981-8453	LCSD		Air	GC/MS ZZ	N/A	04/13/18 13:19	180413L02	
Parameter		Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	Qualifiers
1,4-Bromofluorobenzene		0.02500	0.02504	100	0.02484	99	57-129	
1,2-Dichloroethane-d4		0.02500	0.02520	101	0.02480	99	47-137	
Toluene-d8		0.02500	0.02446	98	0.02431	97	78-156	

Quality Control - LCS

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153

Date Received: Work Order: Preparation: Method:

18-04-1056 N/A

04/12/18

EPA TO-3M Page 5 of 7

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре	Matrix	Instrument	Date	Prepared Date	e Analyzed	LCS Batc	h Number
098-01-005-8409	LCS	Air	GC 13	N/A	04/1	12/18 09:42	180412L0	02
<u>Parameter</u>		Spike Added	Conc. Recov	<u>rered</u>	LCS %Rec.	%Rec	<u>. CL</u>	<u>Qualifiers</u>
TPH as Gasoline		200.0	192.5		96	80-12	0	

Quality Control - LCS

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

18-04-1056 N/A

04/12/18

Method:

EPA TO-3M Page 6 of 7

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Type	Matrix	Instrument	Date Prepared	Date Analyzed	LCS Batch Number
098-01-005-8411	LCS	Air	GC 13	N/A	04/13/18 09:47	180413L01
<u>Parameter</u>		Spike Added	Conc. Recover	red LCS %R	ec. %Rec	. CL Qualifiers
TPH as Gasoline		200.0	196.7	98	80-120	0

Page 7 of 7

04/12/18

N/A

Quality Control - LCS/LCSD

AECOM Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-1056 Santa Barbara, CA 93117-3153 Preparation:

> Method: SCAQMD 25.1M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pr	epared	Date /	Analyzed	LCS/LCSD B	atch Number
099-07-024-1543	LCS	Air		GC 14	N/A		04/18	/18 18:58	180418L04	
099-07-024-1543	LCSD	Air		GC 14	N/A		04/18	/18 19:12	180418L04	
Parameter	Spike Adde	d LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec.	. CL	RPD	RPD CL	Qualifiers
Methane	101.0	91.88	91	91.85	91	80-120)	0	0-20	

Sample Analysis Summary Report

Work Order: 18-04-1056				Page 1 of 1
<u>Method</u>	Extraction	Chemist ID	Instrument	Analytical Location
ASTM D-1946	N/A	1145	GC 65	2
EPA TO-15M	N/A	1087	GC/MS ZZ	2
EPA TO-3M	N/A	748	GC 13	2
EPA TO-3M	N/A	1145	GC 13	2
SCAQMD 25.1M	N/A	1145	GC 14	2

Glossary of Terms and Qualifiers

Work Order: 18-04-1056 Page 1 of 1

Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Fig. 2017 Fig.	LAB (LOCATION)			OHAH CI	Shell Oil Froducts of Chall of dustody record	Planet Project ID	CHECK IF NO INCIDENT # APPLIES
Constitution Cons		Please	Check Appropriate	Box:	FINE BILL TO CONTACT INSTITE	COOCCATC	8/10/16
Constitute Con		☑sew FDG	MOTIVA RETAIL	SHELL RETAIL	Julie Doane-Allmon	IDEAUU068U	
Control Cont		☐MOTIVA SD&CM	CONSULTANT		# Od	GSAP Project ID	No. of the last of
Control Cont	ĺ	SHELL PIPELINE	Потнек		964833	USCH/00305	
The company of the	- 1		COG CODE:		SITE ADDRESS: Street and City Del Amo Superfund Site,	CA	60566446.2018.1.0601
The state of the	id, Suite 100, Santa Barb:	ara CA, 93117			EDF DELIVERABLE TO (Name, Company, Office Location): Stave Colo ACCOM	E-MAI	
The control of the	OF Report to);				SAMPLER NAME(S) (Pint):		9097727
Contract Contract			lie.doane-allmon@aec	шости	Pitiman	CETED ANALYSIS	
Control Cont	DAYS): □s days			ESULTS NEEDED ON WEEKEND		NON-UNIT	FIELD NOTES:
Contrary Cooker #2 Cooker #3 Cooker #4 Cooke	UST A	☐LEVEL 4	THER (SPECIFY)		38TM +	Fixed	TEMPERATURE ON RECEIPT C°
10 10 10 10 10 10 10 10	Cooler#1		Cooler#3		- Jail Ilu)	9461-	•
SAMPLING WATER WOOK OTHER WOOK WOOK OTHER WOOK OTHER WOOK OTHER WOOK OTHER WOOK WOOK OTHER W	CTIONS OR NOTES: loane-allmon@aecom.com; om.com; steve.j.cole@aecom.co	тоэт	SHELL CONTRACT RATE ARE STATE REPRESENENT RY EDD NOT NEEDED FRECEIPT VERIFICATION RE FROVIDE LEDD DISK	PLIES ATE APPLIES QUESTED	(St LAB-127) VOCs	O bortieM MTZA sesse	Container PID Readings or Laboratory Notes
Sample identification Sample identification	TREACT-MANAGEMENT OF THE PROPERTY OF THE PROPE	SAMPLING					•
31 11 11 12 12 12 12 12	Sample Identification		HCL HNO3	NONE OTHER		-	
36 414118 1050 6 6 6 7 7 8 4 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			air		*	*	
838 41118 1000 6,15	00		air		*	*	
3/5/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	100		ى. ئى: ئى	*	*		
88 411 18 1005 nir	00	4117118 1000	ي ر		*	*	
8 4, 4 11 8 10 0 5 6,17 1 1 1 1 1 1 1 1 1		4112/18 1000	ه بر		*	× -	
1475 PACENING DO SUPPLY (Signature) PACENING DO SUPPLY (Signature) PACENING DO SUPPLY (Signature) PACENING DO SUPPLY (Signature) PACENING DO SUPPLY (Signature)	100	4112118 1005	air		**	*	
1425 O-4(134/18 Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature) Received by: (Signature)							
1425 1425 Received by (Signature) 1425 Received by (Signature) 1426 143/18 143/18 143/18 140/18 140/18 140/18 140/18 140/18							
1425 1425 O4136/18 Received by (Signatura) Received by (Signatura) MAGA 4/12/18 Time: 143/18 Time: 143/18 Time:							
1425 04(136/18 Received by; (Signature) 1425 1425 1413/18 1435 1413/18 1435 1415/18 14							
Received by (Signature) Received by (Signature) Received by (Signature)	ا ا	0	(Signature)	N. K.	Z	11/2/1/	ime.
	1					81/61/19 April 18	1815 Time:
			Received by: (Signature)				

WORK ORDER NUMBER: 1800

SAMPLE RECEIPT CHECKLIST

COOLER	Ó	OF [©]
Con Con Con Street Grown 5 Z	Participation of the Participa	AND R

CLIENT:	/ IECOM			DATE	E: <u>04 //</u>	<u> </u>	<u>2018 </u>
Thermomete □ Sampl	er ID: SC6 (CF: +0.1°C); T e(s) outside temperature c	0°C, not frozen except sedim emperature (w/o CF):	°C (w/ CF): y:)		□ Blank		Sample
i i	•	criteria but received on ice/ch perature; placed on ice for tra	•	r sampling			lacus
	nperature: ☑ Air ☐ Filter	•			Checked	by:	1071
CUSTODY	SEAL:					,	791
Cooler	☐ Present and Intact	☐ Present but Not Intact	☐ Not Present	™ N/A	Checked	by: <u>/</u>	
Sample(s)	☐ Present and Intact	☐ Present but Not Intact	D Not Present	□ N/A	Checked	by:	<u>300)</u>
SAMPLE CO	ONDITION:				Yes	No	N/A
Chain-of-Cu	stody (COC) document(s)	received with samples			4		
COC docum	nent(s) received complete						
		e □ Matrix □ Number of c					
☐ No ana	alysis requested Not re	elinquished No relinquish	ed date 🛮 No relir	nquished time			
Sampler's n	ame indicated on COC				. 🛛		
Sample con	tainer label(s) consistent v	vith COC			. ,		
		d condition			45		
1		sted					
'	· · · · · · · · · · · · · · · · · · ·	equested			_		
	·	· · · · · · · · · · · · · · · · · · ·			_		
		ses received within 15-minut					
1	·	ssolved Sulfide Dissolved	-		. 🗆		Ø
Proper pres	ervation chemical(s) noted	d on COC and/or sample con	tainer		. 🗆		A
1		eceived for certain analyses					
1	e Organics 🛚 Total Meta	•					
1	_	thin acceptable range			. 🗆		1
1	, ,	of headspace					ď
☐ Volatil	e Organics Dissolved	Gases (RSK-175) ☐ Dissol	ved Oxygen (SM 45	500)			
I		Ferrous Iron (SM 3500) 日H					
Tedlar™ ba	g(s) free of condensation				. 🛮		
CONTAINE	R TYPE:		(Trip Blar	nk Lot Numb	er:)
Aqueous:	VOA □ VOAh □ VOAna₂ □] 100PJ □ 100PJ na₂ □ 125AGI	B □ 125AGB h □ 125	AGBp □ 125F	PB 🗆 125PI	3 z nna	(pH9)
□ 250AGB [☐ 250CGB ☐ 250CGB s (pH_	_2) 🗆 250PB 🗆 250PBn (pH	_2) 🗆 500AGB 🗆 50	0AGJ 🗆 500A	GJs (pH2) 🗆 50	00PB
□ 1AGB □ 1	1AGB na₂ □ 1AGB s (pH2)	□ 1AGBs (O&G) □ 1PB □ 1PB	na (pH12) □	D		Π	ACMANDAL MICHAEL MICHA
1		□ Sleeve () □ EnCores® (_					
Air: Tedlar	™ □ Canister □ Sorbent Tu	be DPUF DOthe	r Matrix (): 🗆		_ 🛮 _	O-MOSAGO/ABOM/250************************************
Container: A	= Amber, B = Bottle, C = Cle	ear, E = Envelope, G = Glass, J	= Jar, P = Plastic, and	I Z = Ziploc/Re	sealable Ba	g	2
Preservative:	b = buffered, f = filtered, h =	: HCl, n = HNO ₃ , na = NaOH, na	$\mathbf{a_2} = Na_2S_2O_3, \mathbf{p} = H_3F_3$	O ₄ , Labele	d/Checked	l by: _	<u> </u>
	$s = H_2SO_4$, $u = ultra-pure$, x	= Na ₂ SO ₃ +NaHSO ₄ ,H ₂ O, znna	= Zn (CH ₃ CO ₂) ₂ + Na	ЮH	Reviewed	l by:	834

Calscience

Supplemental Report 3

The original report has been revised/corrected.

WORK ORDER NUMBER: 18-04-1122

The difference is service

AIR | SOIL | WATER | MARINE CHEMISTRY

Analytical Report For

Client: AECOM

Client Project Name: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Attention: Julie Doane-Allmon

130 Robin Hill Road

Suite 100

Santa Barbara, CA 93117-3153

Vikas Patel

Approved for release on 06/20/2018 by:

Vikas Patel **Project Manager**

ResultLink >

Email your PM >

Eurofins Calscience (Calscience) certifies that the test results provided in this report meet all NELAC Institute requirements for parameters for which accreditation is required or available. Any exceptions to NELAC Institute requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

Contents

Client Project Name: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0)601
--	------

Work Order Number: 18-04-1122

1	Work Order Narrative	3
2	Sample Summary	4
3	QC Association Summary	5
4	Detections Summary	6
5	Client Sample Data. 5.1 ASTM D-1946 Fixed Gases (Air). 5.2 EPA TO-15 (M) Full List (Air). 5.3 EPA TO-15 (M) Full List + Oxygenates (Air). 5.4 EPA TO-3 (M) TPH Gasoline (Air). 5.5 SCAQMD 25.1 TGNMO and CH4 (Air).	7 7 8 14 20 21
6	Quality Control Sample Data. 6.1 Sample Duplicate. 6.2 LCS/LCSD.	22 22 23
7	Sample Analysis Summary	29
8	Glossary of Terms and Qualifiers	30
9	Chain-of-Custody/Sample Receipt Form	31

Work Order Narrative

Work Order: 18-04-1122 Page 1 of 1

Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 04/13/18. They were assigned to Work Order 18-04-1122.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

Holding Times:

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

Quality Control:

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

Additional Comments:

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

DoD Projects:

The test results contained in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation ADE-1864.

130 Robin Hill Road, Suite 100

Santa Barbara, CA 93117-3153

Sample Summary

Client: AECOM Work Order: 18-04-1122

> Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 Project Name:

PO Number: 100067 04/13/18 13:30

Date/Time Received:

3 Number of

Containers:

Attn: Julie Doane-Allmon

Sample Identification	Lab Number	Collection Date and Time	Number of Containers	Matrix
VSS01390	18-04-1122-1	04/13/18 11:45	1	Air
VSS01391	18-04-1122-2	04/13/18 11:51	1	Air
VSS01392	18-04-1122-3	04/13/18 11:46	1	Air

QC Association Summary

Work Order: 18-04-1122						Page 1 of 1		
Client Sample ID	Method Name	Туре	Ext Name	Instrument	MS/MSD/SDP	LCS/LCSD		
VSS01390	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180413L01		
VSS01390	EPA TO-15 (M) Full List + Oxygenates		N/A	GC/MS OOO	*2	180414L02		
VSS01390	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180413D01	180413L01		
VSS01390	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180418L02		
VSS01391	EPA TO-15 (M) Full List		N/A	GC/MS OOO	*2	180414L02		
VSS01391	EPA TO-15 (M) Full List	R	N/A	GC/MS OOO	*1	180414L02		
VSS01391	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180413D01	180413L01		
VSS01392	ASTM D-1946 Fixed Gases		N/A	GC 65	*2	180413L01		
VSS01392	EPA TO-15 (M) Full List		N/A	GC/MS OOO	*2	180414L02		
VSS01392	EPA TO-3 (M) TPH Gasoline		N/A	GC 13	180413D01	180413L01		
VSS01392	SCAQMD 25.1 TGNMO and CH4		N/A	GC 14	*2	180418L02		

^{1 =} Dilution analysis performed, no associated matrix QC

^{2 =} Limited sample received, no MS/MSD performed

R = Rerun

Santa Barbara, CA 93117-3153

Detections Summary

Client: AECOM Work Order: 18-04-1122

Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 130 Robin Hill Road, Suite 100 Project Name:

Received: 04/13/18

Attn: Julie Doane-Allmon Page 1 of 1

Client SampleID						
<u>Analyte</u>	Result	Qualifiers	<u>RL</u>	<u>Units</u>	<u>Method</u>	Extraction
VSS01390 (18-04-1122-1)						
Carbon Dioxide	13.8		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	8.40		0.500	%v	ASTM D-1946	N/A
Nitrogen	77.8		0.500	%v	ASTM D-1946	N/A
Acetone	29	J	29*	ppm (v/v)	EPA TO-15M	N/A
Benzene	4800		50	ppm (v/v)	EPA TO-15M	N/A
Cyclohexane	30	J	16*	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	1900		50	ppm (v/v)	EPA TO-15M	N/A
Heptane	320		200	ppm (v/v)	EPA TO-15M	N/A
Tetrachloroethene	16	J	6.7*	ppm (v/v)	EPA TO-15M	N/A
Toluene	43	J	13*	ppm (v/v)	EPA TO-15M	N/A
Methanol	190	J	130*	ppm (v/v)	EPA TO-15M	N/A
Isopropanol	62	J	25*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	15000		100	ppm (v/v)	EPA TO-3M	N/A
Methane	82		1.0	ppm (v/v)	SCAQMD 25.1M	N/A
VSS01391 (18-04-1122-2)						
Acetone	0.36	J	0.11*	ppm (v/v)	EPA TO-15M	N/A
Benzene	19		0.20	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	39		1.0	ppm (v/v)	EPA TO-15M	N/A
Tetrachloroethene	0.029	J	0.027*	ppm (v/v)	EPA TO-15M	N/A
Toluene	0.50	J	0.054*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	220		2.0	ppm (v/v)	EPA TO-3M	N/A
VSS01392 (18-04-1122-3)						
Carbon Dioxide	7.09		0.500	%v	ASTM D-1946	N/A
Oxygen (+ Argon)	14.8		0.500	%v	ASTM D-1946	N/A
Nitrogen	78.1		0.500	%v	ASTM D-1946	N/A
Acetone	20	J	14*	ppm (v/v)	EPA TO-15M	N/A
Benzene	2600		25	ppm (v/v)	EPA TO-15M	N/A
Ethylbenzene	1300		25	ppm (v/v)	EPA TO-15M	N/A
Toluene	25	J	6.7*	ppm (v/v)	EPA TO-15M	N/A
TPH as Gasoline	8900		100	ppm (v/v)	EPA TO-3M	N/A
Methane	45		1.0	ppm (v/v)	SCAQMD 25.1M	N/A

Subcontracted analyses, if any, are not included in this summary.

^{*} MDL is shown

Page 1 of 1

Analytical Report

AECOM Date Received: 04/13/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1122 Santa Barbara, CA 93117-3153 Preparation: N/A Method: **ASTM D-1946** Units:

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01390	18-04-1122-1-A	04/13/18 11:45	Air	GC 65	N/A	04/13/18 20:41	180413L01
Comment(s): - Results were evaluated t	o the MDL (DL), cond	entrations >= t	to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Carbon Dioxide	13.8		0.500	0.139	1.00		
Carbon Monoxide	ND		0.500	0.183	1.00		
Oxygen (+ Argon)	8.40		0.500	0.205	1.00		
Nitrogen	77.8		0.500	0.477	1.00		

VSS01392	18-04-1	122-3-A	04/13/18 11:46	Air	GC 65	N/A	04/13/18 21:02	180413L01
Comment(s):	Results were evaluated to the MDL	(DL), conce	entrations >= t	o the MDL (DL)	but < RL (LOQ), if found, are q	ualified with a ".	J" flag.
<u>Parameter</u>		Result	<u>!</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qu</u>	alifiers
Carbon Dioxide		7.09	(0.500	0.139	1.00		
Carbon Monoxide		ND	(0.500	0.183	1.00		
Oxygen (+ Argon)		14.8	(0.500	0.205	1.00		
Nitrogen		78.1	(0.500	0.477	1.00		

Method Blank	099-16-444-7	66 N/A	Air	GC 65	N/A	04/13/18 10:57	180413L01
Comment(s): - I	Results were evaluated to the MDL (DL),	concentratio	ons >= to the MDL (DL) but < RL (LO	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>!</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u>	<u>ualifiers</u>
Carbon Dioxide	!	ND	0.500	0.139	1.00		
Carbon Monoxide	1	ND	0.500	0.183	1.00		
Oxygen (+ Argon)	1	ND	0.500	0.205	1.00		
Nitrogen	I	ND	0.500	0.477	1.00		

Santa Barbara, CA 93117-3153

Analytical Report

AECOM Date Received: 04/13/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1122

> Preparation: N/A Method: EPA TO-15M

Units: ppm (v/v) Page 1 of 6

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01391	18-04-1122-2-A	04/13/18 11:51	Air	GC/MS 000	N/A	04/15/18 01:39	180414L02
Comment(s): - Results were evaluated to	o the MDL (DL), cond	centrations >=	to the MDL	(DL) but < RL (LOC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Acetone	0.36		20	0.11	400	J	
Benzene	19		0.20	0.034	400		
Benzyl Chloride	ND		0.60	0.020	400		
Bromodichloromethane	ND		0.20	0.025	400		
Bromoform	ND		0.20	0.032	400		
Bromomethane	ND		0.20	0.055	400		
2-Butanone	ND		0.60	0.17	400		
Carbon Disulfide	ND		4.0	0.11	400		
Carbon Tetrachloride	ND		0.20	0.025	400		
Chlorobenzene	ND		0.20	0.027	400		
Chloroethane	ND		0.20	0.096	400		
Chloroform	ND		0.20	0.028	400		
Chloromethane	ND		0.20	0.096	400		
Dibromochloromethane	ND		0.20	0.022	400		
Dichlorodifluoromethane	ND		0.20	0.024	400		
1,1-Dichloroethane	ND		0.20	0.025	400		
1,1-Dichloroethene	ND		0.20	0.080	400		
1,2-Dibromoethane	ND		0.20	0.028	400		
Dichlorotetrafluoroethane	ND		0.80	0.11	400		
1,2-Dichlorobenzene	ND		0.20	0.021	400		
1,2-Dichloroethane	ND		0.20	0.027	400		
1,2-Dichloropropane	ND		0.20	0.076	400		
1,3-Dichlorobenzene	ND		0.20	0.065	400		
1,4-Dichlorobenzene	ND		0.20	0.027	400		
c-1,3-Dichloropropene	ND		0.20	0.026	400		
c-1,2-Dichloroethene	ND		0.20	0.035	400		
t-1,2-Dichloroethene	ND		0.20	0.051	400		
t-1,3-Dichloropropene	ND		0.40	0.028	400		
4-Ethyltoluene	ND		0.20	0.064	400		
Hexachloro-1,3-Butadiene	ND		0.60	0.041	400		
2-Hexanone	ND		0.60	0.18	400		
Methyl-t-Butyl Ether (MTBE)	ND		0.80	0.061	400		
Methylene Chloride	ND		2.0	0.099	400		
4-Methyl-2-Pentanone	ND		0.60	0.15	400		

Analytical Report

AECOM Date Received: 04/13/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1122 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 2 of 6

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Parameter	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
o-Xylene	ND	0.20	0.063	400	
p/m-Xylene	ND	0.80	0.13	400	
Styrene	ND	0.60	0.025	400	
Tetrachloroethene	0.029	0.20	0.027	400	J
Toluene	0.50	2.0	0.054	400	J
Trichloroethene	ND	0.20	0.028	400	
Trichlorofluoromethane	ND	0.40	0.068	400	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.60	0.028	400	
1,1,1-Trichloroethane	ND	0.20	0.032	400	
1,1,2-Trichloroethane	ND	0.20	0.073	400	
1,3,5-Trimethylbenzene	ND	0.20	0.058	400	
1,1,2,2-Tetrachloroethane	ND	0.40	0.055	400	
1,2,4-Trimethylbenzene	ND	0.60	0.061	400	
1,2,4-Trichlorobenzene	ND	0.80	0.050	400	
Vinyl Acetate	ND	0.80	0.039	400	
Vinyl Chloride	ND	0.20	0.089	400	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	100	57-129			
1,2-Dichloroethane-d4	101	47-137			
Toluene-d8	100	78-156			

Client Sample N	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01391		18-04-1122-2-A	04/13/18 11:51	Air	GC/MS 000	N/A	04/15/18 02:30	180414L02
Comment(s):	Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.							
<u>Parameter</u>		Resu	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	<u>Qualifiers</u>
Ethylbenzene		39		1.0	0.29	2000)	

•			
Surrogate	Rec. (%)	Control Limits	Qualifiers
1,4-Bromofluorobenzene	96	57-129	
1,2-Dichloroethane-d4	101	47-137	
Toluene-d8	93	78-156	

04/13/18

N/A

18-04-1122

Page 3 of 6

Analytical Report

AECOM Date Received: 130 Robin Hill Road, Suite 100 Work Order: Santa Barbara, CA 93117-3153 Preparation:

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01392	18-04-1122-3-A	04/13/18 11:46	Air	GC/MS 000	N/A	04/15/18 03:16	180414L02
Comment(s): - Results were evaluated t	o the MDL (DL), cond	centrations >=	to the MDL	(DL) but < RL (LOC	Q), if found, are o	qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	9	Qualifiers
Acetone	20		2500	14	50000		J
Benzene	2600		25	4.2	50000		
Benzyl Chloride	ND		75	2.5	50000		
Bromodichloromethane	ND		25	3.1	50000		
Bromoform	ND		25	4.0	50000		
Bromomethane	ND		25	6.9	50000		
2-Butanone	ND		75	22	50000		
Carbon Disulfide	ND		500	14	50000		
Carbon Tetrachloride	ND		25	3.1	50000		
Chlorobenzene	ND		25	3.4	50000		
Chloroethane	ND		25	12	50000		
Chloroform	ND		25	3.5	50000		
Chloromethane	ND		25	12	50000		
Dibromochloromethane	ND		25	2.7	50000		
Dichlorodifluoromethane	ND		25	3.0	50000		
1,1-Dichloroethane	ND		25	3.2	50000		
1,1-Dichloroethene	ND		25	9.9	50000		
1,2-Dibromoethane	ND		25	3.4	50000		
Dichlorotetrafluoroethane	ND		100	13	50000		
1,2-Dichlorobenzene	ND		25	2.7	50000		
1,2-Dichloroethane	ND		25	3.4	50000		
1,2-Dichloropropane	ND		25	9.5	50000		
1,3-Dichlorobenzene	ND		25	8.1	50000		
1,4-Dichlorobenzene	ND		25	3.4	50000		
c-1,3-Dichloropropene	ND		25	3.3	50000		
c-1,2-Dichloroethene	ND		25	4.4	50000		
t-1,2-Dichloroethene	ND		25	6.4	50000		
t-1,3-Dichloropropene	ND		50	3.5	50000		
Ethylbenzene	1300		25	7.2	50000		
4-Ethyltoluene	ND		25	7.9	50000		
Hexachloro-1,3-Butadiene	ND		75	5.1	50000		
2-Hexanone	ND		75	22	50000		
Methyl-t-Butyl Ether (MTBE)	ND		100	7.6	50000		
Methylene Chloride	ND		250	12	50000		

Toluene-d8

Analytical Report

AECOM Date Received: 04/13/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1122 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 4 of 6

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
4-Methyl-2-Pentanone	ND	75	19	50000	
o-Xylene	ND	25	7.8	50000	
o/m-Xylene	ND	100	17	50000	
Styrene	ND	75	3.2	50000	
etrachloroethene	ND	25	3.4	50000	
oluene	25	250	6.7	50000	J
richloroethene	ND	25	3.5	50000	
richlorofluoromethane	ND	50	8.5	50000	
,1,2-Trichloro-1,2,2-Trifluoroethane	ND	75	3.5	50000	
,1,1-Trichloroethane	ND	25	3.9	50000	
,1,2-Trichloroethane	ND	25	9.1	50000	
,3,5-Trimethylbenzene	ND	25	7.2	50000	
,1,2,2-Tetrachloroethane	ND	50	6.9	50000	
,2,4-Trimethylbenzene	ND	75	7.7	50000	
,2,4-Trichlorobenzene	ND	100	6.2	50000	
inyl Acetate	ND	100	4.9	50000	
/inyl Chloride	ND	25	11	50000	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
,4-Bromofluorobenzene	101	57-129			
,2-Dichloroethane-d4	102	47-137			

78-156

101

Page 5 of 6

Analytical Report

AECOM Date Received: 04/13/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1122 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Method Blank	099-12-981-8459	N/A	Air	GC/MS 000	N/A	04/14/18 14:46	180414L02		
Comment(s): - Results were evaluated to	Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		<u>Qualifiers</u>		
Acetone	ND		0.050	0.00029	1.00				
Benzene	ND		0.00050	0.000085	1.00				
Benzyl Chloride	ND		0.0015	0.000049	1.00				
Bromodichloromethane	ND		0.00050	0.000062	1.00				
Bromoform	ND		0.00050	0.000081	1.00				
Bromomethane	ND		0.00050	0.00014	1.00				
2-Butanone	ND		0.0015	0.00043	1.00				
Carbon Disulfide	ND		0.010	0.00028	1.00				
Carbon Tetrachloride	ND		0.00050	0.000062	1.00				
Chlorobenzene	ND		0.00050	0.000068	1.00				
Chloroethane	ND		0.00050	0.00024	1.00				
Chloroform	ND		0.00050	0.000069	1.00				
Chloromethane	ND		0.00050	0.00024	1.00				
Dibromochloromethane	ND		0.00050	0.000055	1.00				
Dichlorodifluoromethane	ND		0.00050	0.000060	1.00				
1,1-Dichloroethane	ND		0.00050	0.000063	1.00				
1,1-Dichloroethene	ND		0.00050	0.00020	1.00				
1,2-Dibromoethane	ND		0.00050	0.000069	1.00				
Dichlorotetrafluoroethane	ND		0.0020	0.00027	1.00				
1,2-Dichlorobenzene	ND		0.00050	0.000053	1.00				
1,2-Dichloroethane	ND		0.00050	0.000069	1.00				
1,2-Dichloropropane	ND		0.00050	0.00019	1.00				
1,3-Dichlorobenzene	ND		0.00050	0.00016	1.00				
1,4-Dichlorobenzene	ND		0.00050	0.000067	1.00				
c-1,3-Dichloropropene	ND		0.00050	0.000065	1.00				
c-1,2-Dichloroethene	ND		0.00050	0.000087	1.00				
t-1,2-Dichloroethene	ND		0.00050	0.00013	1.00				
t-1,3-Dichloropropene	ND		0.0010	0.000069	1.00				
Ethylbenzene	ND		0.00050	0.00014	1.00				
4-Ethyltoluene	ND		0.00050	0.00016	1.00				
Hexachloro-1,3-Butadiene	ND		0.0015	0.00010	1.00				
2-Hexanone	ND		0.0015	0.00044	1.00				
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	0.00015	1.00				
Methylene Chloride	ND		0.0050	0.00025	1.00				

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

Analytical Report

AECOM Date Received: 04/13/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1122 N/A Santa Barbara, CA 93117-3153 Preparation: Method: EPA TO-15M Units: ppm (v/v) Page 6 of 6

Project: Del Amo Superfund Site, Los Angeles /

6056644	

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
4-Methyl-2-Pentanone	ND	0.0015	0.00037	1.00	
o-Xylene	ND	0.00050	0.00016	1.00	
p/m-Xylene	ND	0.0020	0.00033	1.00	
Styrene	ND	0.0015	0.000064	1.00	
Tetrachloroethene	ND	0.00050	0.000067	1.00	
Toluene	ND	0.0050	0.00013	1.00	
Trichloroethene	ND	0.00050	0.000069	1.00	
Trichlorofluoromethane	ND	0.0010	0.00017	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.0015	0.000070	1.00	
1,1,1-Trichloroethane	ND	0.00050	0.000079	1.00	
1,1,2-Trichloroethane	ND	0.00050	0.00018	1.00	
1,3,5-Trimethylbenzene	ND	0.00050	0.00014	1.00	
1,1,2,2-Tetrachloroethane	ND	0.0010	0.00014	1.00	
1,2,4-Trimethylbenzene	ND	0.0015	0.00015	1.00	
1,2,4-Trichlorobenzene	ND	0.0020	0.00012	1.00	
Vinyl Acetate	ND	0.0020	0.000098	1.00	
Vinyl Chloride	ND	0.00050	0.00022	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	98	57-129			
1,2-Dichloroethane-d4	106	47-137			
Toluene-d8	91	78-156			

Analytical Report

AECOM Date Received: 04/13/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1122 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 Page 1 of 6

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
VSS01390	18-04-1122-1-A	04/13/18 11:45	Air	GC/MS 000	N/A	04/15/18 00:54	180414L02	
Comment(s): - Results were evaluated to the MDL (DL), concentrations >= to the MDL (DL) but < RL (LOQ), if found, are qualified with a "J" flag.								
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>		Qualifiers	
Acetone	29		5000	29	10000	0	J	
Benzene	4800		50	8.5	10000	0		
Benzyl Chloride	ND		150	4.9	10000	0		
Bromodichloromethane	ND		50	6.2	10000	0		
Bromoform	ND		50	8.1	10000	0		
Bromomethane	ND		50	14	10000	0		
1,3-Butadiene	ND		150	33	10000	0		
2-Butanone	ND		150	43	10000	0		
Carbon Disulfide	ND		1000	28	10000	0		
Carbon Tetrachloride	ND		50	6.2	10000	0		
Chlorobenzene	ND		50	6.8	10000	0		
Chloroethane	ND		50	24	10000	0		
Chloroform	ND		50	6.9	10000	0		
Chloromethane	ND		50	24	10000	0		
Cyclohexane	30		50	16	10000	0	J	
Dibromochloromethane	ND		50	5.5	10000	0		
Dichlorodifluoromethane	ND		50	6.0	10000	0		
Diisopropyl Ether (DIPE)	ND		200	6.5	10000	0		
1,1-Dichloroethane	ND		50	6.3	10000	0		
1,1-Dichloroethene	ND		50	20	10000	0		
1,2-Dibromoethane	ND		50	6.9	10000	0		
Dichlorotetrafluoroethane	ND		200	27	10000	0		
1,2-Dichlorobenzene	ND		50	5.3	10000	0		
1,2-Dichloroethane	ND		50	6.9	10000	0		
1,2-Dichloropropane	ND		50	19	10000	0		
1,3-Dichlorobenzene	ND		50	16	10000	0		
1,4-Dichlorobenzene	ND		50	6.7	10000	0		
1,4-Dioxane	ND		1000	42	10000	0		
c-1,3-Dichloropropene	ND		50	6.5	10000	0		
c-1,2-Dichloroethene	ND		50	8.7	10000	0		
t-1,2-Dichloroethene	ND		50	13	10000	0		
t-1,3-Dichloropropene	ND		100	6.9	10000	0		
Ethanol	ND		5000	87	10000	0		
Ethyl Acetate	ND		1000	61	10000	0		

Page 2 of 6

Analytical Report

AECOM Date Received: 04/13/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1122 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Ethyl-t-Butyl Ether (ETBE)	ND	200	5.7	100000	
Ethylbenzene	1900	50	14	100000	
4-Ethyltoluene	ND	50	16	100000	
Heptane	320	200	44	100000	
Hexachloro-1,3-Butadiene	ND	150	10	100000	
Hexane	ND	200	16	100000	
2-Hexanone	ND	150	44	100000	
Methyl-t-Butyl Ether (MTBE)	ND	200	15	100000	
Methylene Chloride	ND	500	25	100000	
4-Methyl-2-Pentanone	ND	150	37	100000	
o-Xylene	ND	50	16	100000	
p/m-Xylene	ND	200	33	100000	
Propene	ND	1000	25	100000	
Styrene	ND	150	6.4	100000	
Tert-Amyl-Methyl Ether (TAME)	ND	200	4.9	100000	
Tert-Butyl Alcohol (TBA)	ND	500	17	100000	
Tetrachloroethene	16	50	6.7	100000	J
Tetrahydrofuran	ND	150	31	100000	
Toluene	43	500	13	100000	J
Trichloroethene	ND	50	6.9	100000	
Trichlorofluoromethane	ND	100	17	100000	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	150	7.0	100000	
1,1,1-Trichloroethane	ND	50	7.9	100000	
1,1,2-Trichloroethane	ND	50	18	100000	
1,2,3-Trichloropropane	ND	500	7.7	100000	
Acrolein	ND	500	28	100000	
Acrylonitrile	ND	100	40	100000	
Methyl Methacrylate	ND	50	11	100000	
Propane	ND	1500	47	100000	
Butane	ND	500	48	100000	
Methanol	190	5000	130	100000	J
2,2,4-Trimethyl Pentane	ND	50	6.7	100000	
Isobutane	ND	500	60	100000	
1,1,1,2-Tetrafluoroethane	ND	200	7.3	100000	
1,3,5-Trimethylbenzene	ND	50	14	100000	
1,1,2,2-Tetrachloroethane	ND	100	14	100000	
1,2,4-Trimethylbenzene	ND	150	15	100000	
1,2,4-Trichlorobenzene	ND	200	12	100000	

Analytical Report

AECOM Date Received: 04/13/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1122 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 3 of 6

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

RL: Reporting Limit.

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Vinyl Acetate	ND	200	9.8	100000	
Vinyl Chloride	ND	50	22	100000	
1,1-Difluoroethane	ND	200	9.3	100000	
Isopropanol	62	5000	25	100000	J
Isopropylbenzene	ND	50	22	100000	
Naphthalene	ND	500	16	100000	
n-Butylbenzene	ND	50	33	100000	
n-Propylbenzene	ND	50	27	100000	
p-Isopropyltoluene	ND	50	26	100000	
sec-Butylbenzene	ND	50	25	100000	
tert-Butylbenzene	ND	50	26	100000	
Surrogate	<u>Rec. (%)</u>	Control Limits	<u>Qualifiers</u>		
1,4-Bromofluorobenzene	101	57-129			
1,2-Dichloroethane-d4	101	47-137			
Toluene-d8	96	78-156			

Santa Barbara, CA 93117-3153

Analytical Report

AECOM Date Received: 04/13/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1122

> Preparation: N/A Method: EPA TO-15M

Units: ppm (v/v) Page 4 of 6

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Method Blank	099-12-981-8459	N/A	Air	GC/MS 000	N/A	04/14/18 14:46	180414L02
Comment(s): - Results were evaluated to	o the MDL (DL), cond	centrations >=	to the MDL (I	DL) but < RL (LOC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>Resu</u>	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>C</u>	<u>Qualifiers</u>
Acetone	ND		0.050	0.00029	1.00		
Benzene	ND		0.00050	0.000085	1.00		
Benzyl Chloride	ND		0.0015	0.000049	1.00		
Bromodichloromethane	ND		0.00050	0.000062	1.00		
Bromoform	ND		0.00050	0.000081	1.00		
Bromomethane	ND		0.00050	0.00014	1.00		
1,3-Butadiene	ND		0.0015	0.00033	1.00		
2-Butanone	ND		0.0015	0.00043	1.00		
Carbon Disulfide	ND		0.010	0.00028	1.00		
Carbon Tetrachloride	ND		0.00050	0.000062	1.00		
Chlorobenzene	ND		0.00050	0.000068	1.00		
Chloroethane	ND		0.00050	0.00024	1.00		
Chloroform	ND		0.00050	0.000069	1.00		
Chloromethane	ND		0.00050	0.00024	1.00		
Cyclohexane	ND		0.00050	0.00016	1.00		
Dibromochloromethane	ND		0.00050	0.000055	1.00		
Dichlorodifluoromethane	ND		0.00050	0.000060	1.00		
Diisopropyl Ether (DIPE)	ND		0.0020	0.000065	1.00		
1,1-Dichloroethane	ND		0.00050	0.000063	1.00		
1,1-Dichloroethene	ND		0.00050	0.00020	1.00		
1,2-Dibromoethane	ND		0.00050	0.000069	1.00		
Dichlorotetrafluoroethane	ND		0.0020	0.00027	1.00		
1,2-Dichlorobenzene	ND		0.00050	0.000053	1.00		
1,2-Dichloroethane	ND		0.00050	0.000069	1.00		
1,2-Dichloropropane	ND		0.00050	0.00019	1.00		
1,3-Dichlorobenzene	ND		0.00050	0.00016	1.00		
1,4-Dichlorobenzene	ND		0.00050	0.000067	1.00		
1,4-Dioxane	ND		0.010	0.00042	1.00		
c-1,3-Dichloropropene	ND		0.00050	0.000065	1.00		
c-1,2-Dichloroethene	ND		0.00050	0.000087	1.00		
t-1,2-Dichloroethene	ND		0.00050	0.00013	1.00		
t-1,3-Dichloropropene	ND		0.0010	0.000069	1.00		
Ethanol	ND		0.050	0.00087	1.00		
Ethyl Acetate	ND		0.010	0.00061	1.00		

Analytical Report

AECOM Date Received: 04/13/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1122 Santa Barbara, CA 93117-3153 Preparation: N/A

> Method: EPA TO-15M Units: ppm (v/v) Page 5 of 6

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

<u>Parameter</u>	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qualifiers</u>
Ethyl-t-Butyl Ether (ETBE)	ND	0.0020	0.000057	1.00	
Ethylbenzene	ND	0.00050	0.00014	1.00	
4-Ethyltoluene	ND	0.00050	0.00016	1.00	
Heptane	ND	0.0020	0.00044	1.00	
Hexachloro-1,3-Butadiene	ND	0.0015	0.00010	1.00	
Hexane	ND	0.0020	0.00016	1.00	
2-Hexanone	ND	0.0015	0.00044	1.00	
Methyl-t-Butyl Ether (MTBE)	ND	0.0020	0.00015	1.00	
Methylene Chloride	ND	0.0050	0.00025	1.00	
4-Methyl-2-Pentanone	ND	0.0015	0.00037	1.00	
o-Xylene	ND	0.00050	0.00016	1.00	
p/m-Xylene	ND	0.0020	0.00033	1.00	
Propene	ND	0.010	0.00025	1.00	
Styrene	ND	0.0015	0.000064	1.00	
Tert-Amyl-Methyl Ether (TAME)	ND	0.0020	0.000049	1.00	
Tert-Butyl Alcohol (TBA)	ND	0.0050	0.00017	1.00	
Tetrachloroethene	ND	0.00050	0.000067	1.00	
Tetrahydrofuran	ND	0.0015	0.00031	1.00	
Toluene	ND	0.0050	0.00013	1.00	
Trichloroethene	ND	0.00050	0.000069	1.00	
Trichlorofluoromethane	ND	0.0010	0.00017	1.00	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.0015	0.000070	1.00	
1,1,1-Trichloroethane	ND	0.00050	0.000079	1.00	
1,1,2-Trichloroethane	ND	0.00050	0.00018	1.00	
1,2,3-Trichloropropane	ND	0.0050	0.000077	1.00	
Acrolein	ND	0.0050	0.00028	1.00	
Acrylonitrile	ND	0.0010	0.00040	1.00	
Methyl Methacrylate	ND	0.00050	0.00011	1.00	
Propane	ND	0.015	0.00047	1.00	
Butane	ND	0.0050	0.00048	1.00	
Methanol	ND	0.050	0.0013	1.00	
2,2,4-Trimethyl Pentane	ND	0.00050	0.000067	1.00	
Isobutane	ND	0.0050	0.00060	1.00	
1,1,1,2-Tetrafluoroethane	ND	0.0020	0.000073	1.00	
1,3,5-Trimethylbenzene	ND	0.00050	0.00014	1.00	
1,1,2,2-Tetrachloroethane	ND	0.0010	0.00014	1.00	
1,2,4-Trimethylbenzene	ND	0.0015	0.00015	1.00	
1,2,4-Trichlorobenzene	ND	0.0020	0.00012	1.00	

Analytical Report

AECOM Date Received: 04/13/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1122 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-15M Units: ppm (v/v) Page 6 of 6

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

<u>Parameter</u>	Result	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
Vinyl Acetate	ND	0.0020	0.000098	1.00	
Vinyl Chloride	ND	0.00050	0.00022	1.00	
1,1-Difluoroethane	ND	0.0020	0.000093	1.00	
Isopropanol	ND	0.050	0.00025	1.00	
Isopropylbenzene	ND	0.00050	0.00022	1.00	
Naphthalene	ND	0.0050	0.00016	1.00	
n-Butylbenzene	ND	0.00050	0.00033	1.00	
n-Propylbenzene	ND	0.00050	0.00027	1.00	
sec-Butylbenzene	ND	0.00050	0.00025	1.00	
tert-Butylbenzene	ND	0.00050	0.00026	1.00	
Surrogate	Rec. (%)	Control Limits	Qualifiers		
1,4-Bromofluorobenzene	98	57-129			
1,2-Dichloroethane-d4	106	47-137			
Toluene-d8	91	78-156			

Page 1 of 1

180413L01

Analytical Report

AECOM Date Received: 04/13/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1122 Santa Barbara, CA 93117-3153 Preparation: N/A Method: EPA TO-3M Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Method Blank

Client Sample N	umber	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01390		18-04-1122-1-A	04/13/18 11:45	Air	GC 13	N/A	04/13/18 20:37	180413L01
Comment(s):	- Results were evaluated to	the MDL (DL), cond	entrations >= 1	to the MDL ([DL) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>		Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Q</u>	<u>Qualifiers</u>
TPH as Gasoline	Э	15000)	100	21	50.0		

VSS01391	18-04-1122-2-/	A 04/13/18 11:51	Air	GC 13	N/A	04/13/18 21:06	180413L01
Comment(s):	- Results were evaluated to the MDL (DL),	concentrations >=	to the MDL	(DL) but < RL (LC	Q), if found, are	qualified with a	"J" flag.
<u>Parameter</u>	<u>R</u>	<u>tesult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	2	<u>Qualifiers</u>
TPH as Gasoline	2	20	2.0	0.43	1.00		

VSS01392	18-04-1122-3-A	04/13/18 11:46	Air	GC 13	N/A	04/13/18 21:28	180413L01
Comment(s):	- Results were evaluated to the MDL (DL), cor	ncentrations >= to	the MDL (DL)	but < RL (LOQ), if found, are o	qualified with a ".	J" flag.
<u>Parameter</u>	Res	<u>ult </u>	<u>L</u>	<u>MDL</u>	<u>DF</u>	<u>Qu</u>	alifiers
TPH as Gasolin	e 890	0 1	00	21	50.0		

Air

GC 13

N/A

04/13/18

					10.	.00
Comment(s):	- Results were evaluated to the MDL (D	L), concentration	s >= to the MDI	(DL) but < RL (LOQ), if	found, are quali	fied with a "J" flag.
<u>Parameter</u>		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qualifiers
TPH as Gasolin	e	ND	2.0	0.43	1.00	

N/A

098-01-005-8411

RL: Reporting Limit. MDL: Method Detection Limit. DF: Dilution Factor.

Page 1 of 1

Analytical Report

AECOM Date Received: 04/13/18 130 Robin Hill Road, Suite 100 Work Order: 18-04-1122 Santa Barbara, CA 93117-3153 Preparation: N/A Method: SCAQMD 25.1M

> Units: ppm (v/v)

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Client Sample I	Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VSS01390		18-04-1122-1-A	04/13/18 11:45	Air	GC 14	N/A	04/18/18 16:30	180418L02
Comment(s):	- Results were evaluated t	to the MDL (DL), cond	centrations >= t	o the MDL (DL) but < RL (LO	Q), if found, are	e qualified with a	a "J" flag.
<u>Parameter</u>		<u>Resu</u>	<u>ılt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>9</u>	<u>Qualifiers</u>
Methane		82		1.0	0.21	1.00		

VSS01392	18-04-1122-3-A	04/13/18 11:46	Air	GC 14	N/A	04/18/18 16:46	180418L02
Comment(s):	- Results were evaluated to the MDL (DL), cor	centrations >=	to the MDL ((DL) but < RL (LO	Q), if found, are	qualified with a	a "J" flag.
<u>Parameter</u>	Res	<u>ult</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>0</u>	<u>Qualifiers</u>
Methane	45		1.0	0.21	1.00		

Method Blank	099-07-024-1542	N/A	Air	GC 14	N/A	04/18/18 10:17	180418L02
Comment(s):	- Results were evaluated to the MDL (DL), cond	entration	s >= to the MDL (DL) but < RL (LC	DQ), if found, are	e qualified with a	a "J" flag.
<u>Parameter</u>	Resu	<u>lt</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>!</u>	<u>Qualifiers</u>
Methane	ND		1.0	0.21	1.00		

Quality Control - Sample Duplicate

04/13/18 **AECOM** Date Received: 130 Robin Hill Road, Suite 100 Work Order: 18-04-1122 Santa Barbara, CA 93117-3153 Preparation:

N/A Method: EPA TO-3M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601 Page 1 of 1

Quality Control Sample ID	Туре	Matrix	Instrument	Date Prepared	Date Analyzed	Duplicate Batch Number
18-04-1056-4	Sample	Air	GC 13	N/A	04/13/18 10:56	180413D01
18-04-1056-4	Sample Duplicate	Air	GC 13	N/A	04/13/18 11:08	180413D01
Parameter		Sample Conc.	DUP Conc.	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline		15460	15350	1	0-20	

Quality Control - LCS/LCSD

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/13/18 18-04-1122 N/A

ASTM D-1946

Page 1 of 6

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре	Mat	rix	Instrument	Date Pre	pared Date	Analyzed	LCS/LCSD Ba	atch Number
099-16-444-766	LCS	Air		GC 65	N/A	04/13	3/18 10:15	180413L01	
099-16-444-766	LCSD	Air		GC 65	N/A	04/13	3/18 10:36	180413L01	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	<u>RPD</u>	RPD CL	Qualifiers
Carbon Dioxide	15.01	14.98	100	15.08	100	80-120	1	0-30	
Carbon Monoxide	7.020	6.746	96	6.752	96	80-120	0	0-30	
Oxygen (+ Argon)	3.990	3.918	98	3.859	97	80-120	2	0-30	
Nitrogen	69.45	64.74	93	64.54	93	80-120	0	0-30	

Quality Control - LCS/LCSD

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/13/18 18-04-1122 N/A EPA TO-15M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Page 2 of 6

Quality Control Sample ID	Туре		Matrix	Instr	ument	Date Prepare	ed Date A	nalyzed	LCS/LCSD Ba	tch Numbe
099-12-981-8459	LCS		Air	GC/I	MS 000	N/A	04/14/1	18 11:51	180414L02	
099-12-981-8459	LCSD		Air	GC/I	MS 000	N/A	04/14/	18 12:42	180414L02	
<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Acetone	0.02500	0.02685	107	0.02890	116	50-150	33-167	7	0-35	
Benzene	0.02500	0.02532	101	0.02540	102	60-156	44-172	0	0-40	
Benzyl Chloride	0.02500	0.02713	109	0.02619	105	50-150	33-167	4	0-35	
Bromodichloromethane	0.02500	0.02553	102	0.02561	102	50-150	33-167	0	0-35	
Bromoform	0.02500	0.02502	100	0.02513	101	50-150	33-167	0	0-38	
Bromomethane	0.02500	0.02450	98	0.02623	105	50-150	33-167	7	0-35	
2-Butanone	0.02500	0.02728	109	0.02714	109	50-150	33-167	1	0-35	
Carbon Disulfide	0.02500	0.02694	108	0.02799	112	50-150	33-167	4	0-35	
Carbon Tetrachloride	0.02500	0.02513	101	0.02528	101	64-154	49-169	1	0-32	
Chlorobenzene	0.02500	0.02619	105	0.02628	105	50-150	33-167	0	0-35	
Chloroethane	0.02500	0.02625	105	0.02789	112	50-150	33-167	6	0-35	
Chloroform	0.02500	0.02512	100	0.02699	108	50-150	33-167	7	0-35	
Chloromethane	0.02500	0.02775	111	0.02946	118	50-150	33-167	6	0-35	
Dibromochloromethane	0.02500	0.02534	101	0.02554	102	50-150	33-167	1	0-35	
Dichlorodifluoromethane	0.02500	0.02966	119	0.03206	128	50-150	33-167	8	0-35	
Diisopropyl Ether (DIPE)	0.02500	0.02592	104	0.02871	115	60-140	47-153	10	0-30	
1,1-Dichloroethane	0.02500	0.02613	105	0.02632	105	50-150	33-167	1	0-35	
1,1-Dichloroethene	0.02500	0.02583	103	0.02744	110	50-150	33-167	6	0-35	
1,2-Dibromoethane	0.02500	0.02693	108	0.02700	108	54-144	39-159	0	0-36	
Dichlorotetrafluoroethane	0.02500	0.02559	102	0.02764	111	50-150	33-167	8	0-35	
1,2-Dichlorobenzene	0.02500	0.02492	100	0.02501	100	34-160	13-181	0	0-47	
1,2-Dichloroethane	0.02500	0.02606	104	0.02738	110	69-153	55-167	5	0-35	
1,2-Dichloropropane	0.02500	0.02629	105	0.02636	105	67-157	52-172	0	0-35	
1,3-Dichlorobenzene	0.02500	0.02480	99	0.02495	100	50-150	33-167	1	0-35	
1,4-Dichlorobenzene	0.02500	0.02413	97	0.02463	99	36-156	16-176	2	0-47	
1,4-Dioxane	0.02500	0.02673	107	0.02701	108	50-150	33-167	1	0-30	
c-1,3-Dichloropropene	0.02500	0.02772	111	0.02779	111	61-157	45-173	0	0-35	
c-1,2-Dichloroethene	0.02500	0.02654	106	0.02615	105	50-150	33-167	1	0-35	
t-1,2-Dichloroethene	0.02500	0.02590	104	0.02579	103	50-150	33-167	0	0-35	
t-1,3-Dichloropropene	0.02500	0.02793	112	0.02826	113	50-150	33-167	1	0-35	
Ethanol	0.1000	0.1005	101	0.1081	108	60-140	47-153	7	0-30	
Ethyl-t-Butyl Ether (ETBE)	0.02500	0.02469	99	0.02611	104	60-140	47-153	6	0-30	
Ethylbenzene	0.02500	0.02681	107	0.02663	107	52-154	35-171	1	0-38	
4-Ethyltoluene	0.02500	0.02730	109	0.02605	104	50-150	33-167	5	0-35	
Hexachloro-1,3-Butadiene	0.02500	0.02585	103	0.02600	104	50-150	33-167	1	0-35	

Quality Control - LCS/LCSD

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

Method:

04/13/18 18-04-1122 N/A EPA TO-15M

Project: Del Amo Superfund Site, Los Angeles /

60566446.2018.1.0601

Page 3 of 6

<u>Parameter</u>	<u>Spike</u> <u>Added</u>	LCS Conc.	LCS <u>%Rec.</u>	LCSD Conc.	LCSD %Rec.	%Rec. CL	ME CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
2-Hexanone	0.02500	0.02860	114	0.02836	113	50-150	33-167	1	0-35	
Methyl-t-Butyl Ether (MTBE)	0.02500	0.02583	103	0.02653	106	50-150	33-167	3	0-35	
Methylene Chloride	0.02500	0.02484	99	0.02624	105	50-150	33-167	5	0-35	
4-Methyl-2-Pentanone	0.02500	0.02728	109	0.02719	109	50-150	33-167	0	0-35	
Naphthalene	0.02500	0.02645	106	0.02691	108	40-190	15-215	2	0-30	
o-Xylene	0.02500	0.02485	99	0.02504	100	52-148	36-164	1	0-38	
p/m-Xylene	0.05000	0.05154	103	0.05173	103	42-156	23-175	0	0-41	
Styrene	0.02500	0.02648	106	0.02612	104	50-150	33-167	1	0-35	
Tert-Amyl-Methyl Ether (TAME)	0.02500	0.02444	98	0.02434	97	60-140	47-153	0	0-30	
Tert-Butyl Alcohol (TBA)	0.05000	0.05132	103	0.05846	117	60-140	47-153	13	0-30	
Tetrachloroethene	0.02500	0.02540	102	0.02532	101	56-152	40-168	0	0-40	
Toluene	0.02500	0.02559	102	0.02540	102	56-146	41-161	1	0-43	
Trichloroethene	0.02500	0.02629	105	0.02633	105	63-159	47-175	0	0-34	
Trichlorofluoromethane	0.02500	0.02533	101	0.02684	107	50-150	33-167	6	0-35	
1,1,2-Trichloro-1,2,2- Trifluoroethane	0.02500	0.02666	107	0.02802	112	50-150	33-167	5	0-35	
1,1,1-Trichloroethane	0.02500	0.02574	103	0.02721	109	50-150	33-167	6	0-35	
1,1,2-Trichloroethane	0.02500	0.02676	107	0.02666	107	65-149	51-163	0	0-37	
1,3,5-Trimethylbenzene	0.02500	0.02531	101	0.02570	103	50-150	33-167	2	0-35	
1,1,2,2-Tetrachloroethane	0.02500	0.02594	104	0.02623	105	50-150	33-167	1	0-35	
1,2,4-Trimethylbenzene	0.02500	0.02563	103	0.02569	103	50-150	33-167	0	0-35	
1,2,4-Trichlorobenzene	0.02500	0.02769	111	0.02830	113	50-150	33-167	2	0-35	
Vinyl Acetate	0.02500	0.02664	107	0.02748	110	50-150	33-167	3	0-35	
Vinyl Chloride	0.02500	0.02610	104	0.02815	113	45-177	23-199	8	0-36	
1,1-Difluoroethane	0.02500	0.02524	101	0.02664	107	60-140	47-153	5	0-30	

0.02779

111

50-150

33-167

8

0-30

Total number of LCS compounds: 60 Total number of ME compounds: 0 Total number of ME compounds allowed: 3 LCS ME CL validation result: Pass

Isopropanol

RPD: Relative Percent Difference. CL: Control Limits

0.02500

0.02574

103

LCS/LCSD - Surrogate

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153 Date Received: Work Order: Preparation:

18-04-1122 N/A

04/13/18

Method:

EPA TO-15M

Page 4 of 6

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре		Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Ba	atch Number
099-12-981-8459	LCS		Air	GC/MS 000	N/A	04/14/18 11:51	180414L02	
099-12-981-8459	LCSD		Air	GC/MS 000	N/A	04/14/18 12:42	180414L02	
Parameter		Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec. CL	Qualifiers
1,4-Bromofluorobenzene		0.02500	0.02497	100	0.02478	99	57-129	
1,2-Dichloroethane-d4		0.02500	0.02481	99	0.02597	104	47-137	
Toluene-d8		0.02500	0.02490	100	0.02494	100	78-156	

Quality Control - LCS

AECOM 130 Robin Hill Road, Suite 100 Santa Barbara, CA 93117-3153

Date Received: Work Order: Preparation: Method:

18-04-1122 N/A

04/13/18

EPA TO-3M Page 5 of 6

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Туре	Matrix	Instrument	Date	Prepared D	Date Analyzed	LCS Batch	Number
098-01-005-8411	LCS	Air	GC 13	N/A	0	4/13/18 09:47	180413L01	
Parameter		Spike Added	Conc. Recov	ered	LCS %Rec.	<u>%Rec.</u>	<u>CL</u>	<u>Qualifiers</u>
TPH as Gasoline		200.0	196.7		98	80-120)	

04/13/18

18-04-1122

Page 6 of 6

Quality Control - LCS/LCSD

AECOM Date Received: 130 Robin Hill Road, Suite 100 Work Order: Santa Barbara, CA 93117-3153

N/A Preparation: Method: SCAQMD 25.1M

Project: Del Amo Superfund Site, Los Angeles / 60566446.2018.1.0601

Quality Control Sample ID	Type	Mat	trix	Instrument	Date Pr	epared	Date	Analyzed	LCS/LCSD B	atch Number
099-07-024-1542	LCS	Air		GC 14	N/A		04/18	3/18 09:46	180418L02	
099-07-024-1542	LCSD	Air		GC 14	N/A		04/18	3/18 10:01	180418L02	
Parameter	Spike Added	LCS Conc.	LCS %Rec.	LCSD Conc.	LCSD %Rec.	%Rec	. CL	RPD	RPD CL	<u>Qualifiers</u>
Methane	101.0	90.97	90	91.21	90	80-12	0	0	0-20	

Sample Analysis Summary Report

Work Order: 18-04-1122	Page 1 of 1			
<u>Method</u>	Extraction	Chemist ID	<u>Instrument</u>	Analytical Location
ASTM D-1946	N/A	1145	GC 65	2
EPA TO-15M	N/A	748	GC/MS OOO	2
EPA TO-15M	N/A	953	GC/MS OOO	2
EPA TO-3M	N/A	1145	GC 13	2
SCAQMD 25.1M	N/A	1145	GC 14	2

Glossary of Terms and Qualifiers

Work Order: 18-04-1122 Page 1 of 1

	-
Qualifiers	<u>Definition</u>
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. The associated LCS recovery was in control.
4	The MS/MSD RPD was out of control due to suspected matrix interference.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.
6	Surrogate recovery below the acceptance limit.
7	Surrogate recovery above the acceptance limit.
В	Analyte was present in the associated method blank.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
CI	See case narrative.
E	Concentration exceeds the calibration range.
ET	Sample was extracted past end of recommended max. holding time.
HD	The chromatographic pattern was inconsistent with the profile of the reference fuel standard.
HDH	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).
HDL	The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons were also present (or detected).
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
JA	Analyte positively identified but quantitation is an estimate.
ME	LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (+/- 4 SD from the mean).
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.

- SG The sample extract was subjected to Silica Gel treatment prior to analysis.
- X % Recovery and/or RPD out-of-range.
- Z Analyte presence was not confirmed by second column or GC/MS analysis.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.

Calscience

WORK ORDER NUMBER: 18 9 42 of 32 of 32 2

	OOLER_	O OF	0
CLIENT: AECOM DATE	≣: <u>04 /</u>	13/20)18
TEMPERATURE: (Criteria: 0.0°C − 6.0°C, not frozen except sediment/tissue) Thermometer ID: SC6 (CF: +0.1°C); Temperature (w/o CF):°C (w/ CF):°C; □ Sample(s) outside temperature criteria (PM/APM contacted by:) □ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling □ Sample(s) received at ambient temperature; placed on ice for transport by courier	□ Blank		
Ambient Temperature: 🗗 Air 🛘 Filter	Checked	d by: <u>6</u>	
CUSTODY SEAL: Cooler □ Present and Intact □ Present but Not Intact □ Not Present □ N/A Sample(s) □ Present and Intact □ Present but Not Intact □ Not Present □ N/A	Checked Checked	d by:	16 4
SAMPLE CONDITION:	Yes	No	N/A
Chain-of-Custody (COC) document(s) received with samples)		
☐ Sampling date ☐ Sampling time ☐ Matrix ☐ Number of containers ☐ No analysis requested ☐ Not relinquished ☐ No relinquished time			
Sampler's name indicated on COC	1		
Sample container label(s) consistent with COC	~		
Sample container(s) intact and in good condition	< ;		
Proper containers for analyses requested	٠,		
Sufficient volume/mass for analyses requested			
Samples received within holding time	* /		
Aqueous samples for certain analyses received within 15-minute holding time	₹		
□ pH □ Residual Chlorine □ Dissolved Sulfide □ Dissolved Oxygen			
Proper preservation chemical(s) noted on COC and/or sample container			d
Unpreserved aqueous sample(s) received for certain analyses			,
☐ Volatile Organics ☐ Total Metals ☐ Dissolved Metals			
Acid/base preserved samples - pH within acceptable range			
Container(s) for certain analysis free of headspace			
☐ Volatile Organics ☐ Dissolved Gases (RSK-175) ☐ Dissolved Oxygen (SM 4500)			-
☐ Carbon Dioxide (SM 4500) ☐ Ferrous Iron (SM 3500) ☐ Hydrogen Sulfide (Hach)			
Tedlar™ bag(s) free of condensation	ø		
CONTAINER TYPE: (Trip Blank Lot Number	er:)
Aqueous: UOA UOAh UOAna2 100PJ 100PJna2 125AGB 125AGBh 125AGBp 125P 250AGB 250CGB 250CGBs (pH_2) 250PB 250PBn (pH_2) 500AGB 500AGJ 500AGJ 500AGG 1AGB 1AGBna2 1AGBs (pH_2) 1AGBs (O&G) 1PB 1PBna (pH_12) 1 Consister 160zCGJ Sleeve () EnCores® () TerraCores® () Air: Tedlar™ Canister Sorbent Tube PUF 1 Consister 100PJna2 125AGBh 125AGBh 125AGBp 125PBn (pH_2) 500AGB 500AGJ 500AGG 5	B	B znna (pH_)	9) B
Container: A = Amber, B = Bottle, C = Clear, E = Envelope, G = Glass, J = Jar, P = Plastic, and Z = Ziploc/Res Preservative: b = buffered, f = filtered, h = HCl, n = HNO ₃ , na = NaOH, na ₂ = Na ₂ S ₂ O ₃ , p = H ₃ PO ₄ , Labeled	ealable Ba(1 by 61	14
Preservative: $\mathbf{b} = \text{buffered}$, $\mathbf{f} = \text{filtered}$, $\mathbf{h} = \text{HCl}$, $\mathbf{n} = \text{HNO}_3$, $\mathbf{na} = \text{NaOH}$, $\mathbf{na_2} = \text{Na}_2\text{S}_2\text{O}_3$, $\mathbf{p} = \text{H}_3\text{PO}_4$, Labelet $\mathbf{s} = \text{H}_2\text{SO}_4$, $\mathbf{u} = \text{ultra-pure}$, $\mathbf{x} = \text{Na}_2\text{SO}_3 + \text{NaHSO}_4$. H ₂ O, $\mathbf{znna} = \text{Zn}$ (CH ₃ CO ₂) ₂ + NaOH	a/Cnecked Reviewed	i by: [0]	53

ATTACHMENT 5 Data Validation Memo

Data Validation Memorandum

999 W Town and Country Road Orange, CA 92868

TO: Julie Doane-Allmon **FILE**: 60566446.2018.1.0601

FROM: Lily Bayati, Senior Project Chemist SITE: Del Amo - SVE Pilot Test

DATE: July 13, 2018

SUBJECT: Summary of Data Validation for Eurofins/Calscience Reports: 18-04-0188, 18-04-0574,

18-04-0819, 18-04-1056, 18-04-1122; and Vista Reports: 1800551, and 1800573

Introduction

This report summarizes the findings of the data validation of 54 vapor samples and one field blank. These samples were collected April 2-13, 2018 as part of the 2018 SVE Pilot Test Vapor Sampling Event at Del Amo Superfund Site. Vista Analytical Laboratory, in El Dorado Hills, California performed the CARB 428 and EPA TO-9A analyses. Eurofins/Calscience Laboratories in Garden Grove, California performed all other analyses. The samples are listed in Table 1 included at the end of this document. The data were reviewed in accordance with AECOM Standard Operating Procedures, applicable analytical methods, and the principles presented in USEPA National Functional Guidelines for Superfund Organic Methods Data Review (EPA, 2017), and USEPA National Functional Guidelines for High Resolution Superfund Methods Data Review (EPA, 2016).

Overall Assessment

The data reported in this package, as qualified are considered to be usable for meeting project objectives. With the exception of the rejected data, all results are considered to be valid; the analytical completeness defined as the ratio of the number of valid analytical results (valid analytical results include values qualified as estimated) to the total number of analytical results requested on samples submitted for analysis, for the project is 95%. Additionally, because all samples in this data set were collected and analyzed under similar prescribed conditions, the data within this set are considered to be comparable.

Data Review Narratives

Forty-two vapor samples were collectively analyzed for volatile organic compounds (VOCs; EPA method TO-15), fixed gases (ASTM D-1946), TPH as gasoline (EPA method TO-3), and methane (SCAQMD 25.1). In addition, six vapor samples and one field blank were analyzed for polychlorinated dibenzo-p-dioxins and dibenzofurans (CARB method 428), and six vapor samples were analyzed for polychlorinated dibenzo-p-dioxins and dibenzofurans (EPA method TO-9A). The laboratory data were reviewed to evaluate compliance with these methods and the quality of the data reported (EPA Superfund Stage 2A validation). Full validation including recalculation (EPA Superfund Stage 4A validation) was performed on 10% of the Eurofins/ Calscience laboratory data. The following summarizes the results of this review.

The areas of review are listed below. A check mark (\checkmark) indicates an area of review in which all data were acceptable. A crossed circle (\otimes) signifies areas where issues were raised during the course of the validation review and should be considered to determine any impact on data quality and usability.

- ✓ Data Completeness
- ⊗ Holding Times and Preservation
- ✓ Calibrations (Full Validation)
- ✓ Internal Standards (Full Validation)
- ✓ GC/MS Instrument Performance Check Samples (Full Validation)
- ✓ Blanks
- ⊗ Labeled Standards (CARB 428, EPA TO-9A)
- ✓ System Monitoring Compounds (Surrogates)
- ✓ Laboratory Control Samples (LCSs)
- ✓ Laboratory Duplicates
- ✓ Target Analyte Identification and Quantitation (Full Validation)

1. Data Completeness

All analyses were performed as requested on the chain-of-custody records (COCs). The laboratory reported all requested analyses and the deliverable data reports were complete.

2. Holding Times and Preservation

All samples were collected and preserved appropriately. In addition, all analyses were performed within the method-specified holding times with the exceptions listed in the following table.

I	Method	Sample	Comment	Qualified Analytes	Qualifier
	EPA TO-15	VSS01367	Due to laboratory oversight, sample was analyzed outside of the holding time.	All Analytes	J/UJ
Ī	EPA TO-9A	A-MT09-2 A-MT09-3	Samples received and extracted outside of the recommended holding time.		

3. <u>Calibration</u> (Full Validation)

3.1 Initial Calibration (IC)

Appropriate initial calibrations were performed for each analyte. Compliance requirements for all methods were met and did not require data qualification.

3.2 Initial Calibration Verification, Continuing Calibration Verification (ICV, CCV)

The acceptance criteria for all ICVs and CCVs were met or did not require qualification.

4. Internal Standards (Full Validation)

All internal standard retention times were within ± 30 seconds of the associated continuing calibration internal standard retention time. All internal standard area counts were within the acceptance criteria (>50% and <200%) of the associated continuing calibrations internal standard area counts.

5. GC/MS Instrument Performance Check Samples (Full Validation)

Compliance requirements for instrument performance check samples were met for EPA method TO-15.

6. Blanks

Method blanks were analyzed at the proper frequency for the number and types of samples analyzed. Target analytes were either not detected in the associated method blanks or did not require data qualification. In addition, target analytes were not detected in the field blank.

7. Labeled Standards (CARB 428, EPA TO-9A)

All internal standard, pre-spike standard and surrogate standard recoveries for all samples were within the laboratory's acceptance ranges with the following exception. The extraction glassware for sample A-MTO9-5 was cracked during the extraction process and significant amount of the extract was lost. Consequently, the internal standard recoveries for sample A-

MT09-5 were lower than acceptance ranges and the pre-spiked standard recoveries were higher than acceptance ranges. Since the direction of bias cannot be determined, the results for this sample are suspect.

Method	Sample	Comment	Qualified Analytes	Qualifier
EPA TO-9A	A-MTO9-5	Sample loss during Extraction	Detected Analytes	J-
			Non-detects	R

8. System Monitoring Compounds (Surrogates)

Appropriate numbers of surrogate compounds were spiked into each sample for EPA TO-15 analyses. All surrogate compound recoveries were within the laboratory's statistically determined acceptance ranges.

9. Laboratory Control Samples (LCSs)

LCSs were prepared and analyzed at the proper frequency. All LCS and LCS duplicate (LCSD) recoveries reported and relative percent differences (RPDs) between the results (for applicable analytical batches) were within the laboratory's statistically determined acceptance ranges. In addition, the recoveries for all ongoing precision and recovery (OPR) samples for CARB method 428 and EPA TO-9A were within laboratory's acceptance ranges.

Laboratory Duplicates

Acceptable analytical precision was demonstrated for all laboratory duplicate analyses.

11. Target Analyte Identification and Quantitation (Full Validation)

All analytes reported and the reporting limits obtained comply with project specifications. All dilutions were appropriate. In addition, this data review process included result recalculation and transcription error checking from the raw data for 10% of the data. All results checked were confirmed.

Table 1
Eurofins/ Calscience Laboratories

Sample	SDG	Sample Number	Date Sampled	Analysis Performed
VSS01361	18-04-0188	18-04-0188-1	4/3/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01362	18-04-0188	18-04-0188-2	4/3/18	EPA TO-15, TO-3
VSS01363	18-04-0188	18-04-0188-3	4/3/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01360	18-04-0188	18-04-0188-4	4/2/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01358	18-04-0188	18-04-0188-5	4/2/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01359	18-04-0188	18-04-0188-6	4/2/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01357	18-04-0188	18-04-0188-7	4/2/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01356	18-04-0188	18-04-0188-8	4/2/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01355	18-04-0188	18-04-0188-9	4/2/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01354	18-04-0188	18-04-0188-10	4/2/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01353	18-04-0188	18-04-0188-11	4/2/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01352	18-04-0188	18-04-0188-12	4/2/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01351	18-04-0188	18-04-0188-13	4/2/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01350	18-04-0188	18-04-0188-14	4/2/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01366	18-04-0574	18-04-0574-1	4/5/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01365	18-04-0574	18-04-0574-2	4/5/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01367	18-04-0574	18-04-0574-3	4/5/18	EPA TO-15, TO-3
VSS01368	18-04-0574	18-04-0574-4	4/6/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01369	18-04-0574	18-04-0574-5	4/6/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01370	18-04-0574	18-04-0574-6	4/6/18	EPA TO-15, TO-3
VSS01371	18-04-0819	18-04-0819-1	4/9/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01372	18-04-0819	18-04-0819-2	4/9/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01373	18-04-0819	18-04-0819-3	4/9/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01374	18-04-0819	18-04-0819-4	4/9/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01375	18-04-0819	18-04-0819-5	4/9/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01376	18-04-0819	18-04-0819-6	4/9/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01377	18-04-0819	18-04-0819-7	4/9/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01378	18-04-0819	18-04-0819-8	4/9/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01379	18-04-0819	18-04-0819-9	4/9/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01380	18-04-0819	18-04-0819-10	4/9/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01381	18-04-0819	18-04-0819-11	4/9/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01382	18-04-0819	18-04-0819-12	4/9/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01383	18-04-0819	18-04-0819-13	4/9/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01384	18-04-1056	18-04-1056-1	4/11/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01385	18-04-1056	18-04-1056-2	4/11/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01386	18-04-1056	18-04-1056-3	4/11/18	EPA TO-15, TO-3
VSS01387	18-04-1056	18-04-1056-4	4/12/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01388	18-04-1056	18-04-1056-5	4/12/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01389	18-04-1056	18-04-1056-6	4/12/18	EPA TO 15, TO 3: ASTM D 1046: SCAOMD 35.1
VSS01390	18-04-1122	18-04-1122-1	4/13/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1
VSS01391	18-04-1122	18-04-1122-2	4/13/18	EPA TO 15, TO 3: ASTM D 1046: SCAOMD 35.1
VSS01392	18-04-1122	18-04-1122-3	4/13/18	EPA TO-15, TO-3; ASTM D-1946; SCAQMD 25.1

Table 1 Vista Analytical Laboratory

			iaiyiicai Labora	,
Sample	SDG	Sample Number	Date Sampled	Analysis Performed
S-1A-M428-1	1800551	1800551-01	4/4/18	CARB Method 428
S-1A-M428-2	1800551	1800551-02	4/5/18	CARB Method 428
S-1A-M428-3	1800551	1800551-03	4/6/18	CARB Method 428
M428-FB (Field Blank)	1800551	1800551-04	4/6/18	CARB Method 428
S-1B-M428-1	1800551	1800551-05	4/11/18	CARB Method 428
S-1B-M428-2	1800551	1800551-06	4/12/18	CARB Method 428
S-1B-M428-3	1800551	1800551-07	4/13/18	CARB Method 428
M428-RB (Reagent Blank)	1800551	1800551-08	4/13/18	Not Analyzed
A-MTO9-2	1800573	1800573-01	4/5/18	EPA TO-9A
A-MTO9-3	1800573	1800573-02	4/5/18	EPA TO-9A
A-MTO9-4	1800573	1800573-03	4/10/18	EPA TO-9A
A-MTO9-5	1800573	1800573-04	4/11/18	EPA TO-9A
A-MTO9-6	1800573	1800573-06	4/12/18	EPA TO-9A
A-MTO9-7	1800573	1800573-07	4/13/18	EPA TO-9A

SDG: Sample Delivery Group

EPA TO-15: Volatile Organic Compounds (VOCs)

EPA TO-3: TPH as Gasoline

EPA TO-9A: Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans in Ambient Air
ASTM D-1946: Fixed Gases (Carbon Dioxide, Carbon Monoxide, Nitrogen, Oxygen+Argon)

SCAQMD 25.1: Methane

CARB Method 428: Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans

ATTACHMENT A DATA VALIDATION QUALIFIER DEFINITIONS AND INTERPRETATION KEY Assigned by AECOM Data Review Team

DATA QUALIFIER DEFINITIONS FOR ORGANIC ANALYES

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

AECOM DATA QUALIFIER DEFINITIONS — REASON CODE DEFINITIONS

- a Analytical sequence deficiency or omission.
- Gross compound breakdown (4,4'-DDT/Endrin).
- c Calibration failure; poor or unstable response.
- d Laboratory duplicate imprecision.
- e Laboratory duplicate control sample imprecision.
- f Field duplicate imprecision.
- g Poor chromatography.
- h Holding time violation.
- i Internal standard failure.
- Poor mass spectrographic performance.
- k Serial dilution imprecision.
- Laboratory control sample recovery failure.
- m Matrix spike/matrix spike duplicate recovery failure.
- n Interference check sample recovery failure.
- o Calibration blank contamination (metals/inorganics only).
- p Preparation blank contamination (metals/inorganics only).
- q Quantitation outside linear range.
- r Linearity failure in initial calibration.
- s Surrogate spike recovery failure (GC organics and GC/MS organics only).
- t Instrument tuning failure.
- u No valid confirmation column (GC Organics only).
- v Value is estimated below the MDA (Rads only).
- w Retention time (RT) outside of RT window.
- x Field blank contamination.
- y Trip blank contamination.
- z Method blank contamination.

INTERPRETATION KEY

The following example shows how an analytical result which includes qualifiers assigned by both the AECOM data review team and the analytical laboratory could be displayed in the data tables:

<5.20 Uz | JB

The qualifier assigned by the AECOM data review team precedes the "|"; the qualifier assigned by the laboratory follows it. In this example, the result is qualified as a non-detection data to the bias introduced by contamination of the associated method blank. Presence of the analyte in the method blank is indicated by the laboratory qualifier (B). The qualifier assigned by the AECOM data review team (Uz) indicates that the analyte concentration is considered to be below the adjusted detection limit (quantitation limit) based on the level of contamination in the method blank.

ATTACHMENT 6 Mass Balance Calculations for SVE-1B Wellhead Flowrate

ATTACHMENT 6

MASS BALANCE CALCULATIONS FOR SVE-1B WELLHEAD FLOW RATE – Deep Zone Soil Vapor Extraction Pilot Test Report

Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

Mass balance to calculate flow at SVE-1B wellhead (Fw)

Fs = Flow at system

Fw = Flow at wellhead

Fda = Flow - dilution air

C = concentration

Fs = Fw + Fda

Fs*Ci,s = Fw*Ci,w + Fda*Ci,da

Ci,da = 0 (assuming no benzene or ethylbenzene in dilution air)

Fw = Fs * (Ci,s/Ci,w)

		CC	omponent, i = b	enzene	cor	component, i = ethylbenzene					
Date	Fs (scfm)	Ci,s (ppmv)	Ci,w (ppmv)	Estimated well head flow rate Fw (scfm) based on benzene	Ci,s (ppmv)	Ci,w (ppmv)	Estimated well head flow rate Fw (scfm) based on ethylbenzene	Average estimated well head flow rate based on B and EB (scfm)			
4/11/2018	116	3,900	7,500	60.3	3,200	4,800	77.3	68.8			
4/12/2018	116	4,100	7,200	66.1	3,400	5,900	66.8	66.5			
4/13/2018	117	2,600	4,800	63.4	1,300	1,900	80.1	71.7			

Average of all estimated values for Fw =	69.0	scfm
Average of VelociCalc values for Fw =	123.0	scfm
Velocicalc overestimated by ~ 75 percent		

Notes:

ppmv = parts per million by volume scfm = standard cubic feet per minute

ATTACHMENT 7 SA-6 Cross Section (2018) and Pre-design Investigation Boring Logs

Section Location Map

BORING LOG

Date	4/26	1+	Cnec	кеа ву						DUKI	NG	LUG
LOCA	O NOITA	F BORI	NG	COX	LE =	BLDG			JOB NUMBER	LOCATION	57.7	064
	10		-				N		60487624.2017.1.3	APN: 7551	POPIN	UD4
	11	P	SBLOS	591					DRILLING METHOD: HAND AD Direct pol Geoprose Limite	1 Accord 2:0	SBL	591
	11								The property of the property o	- 1-001 - 1-3	S	HEET
	V		EAST	EMPL	OYEE	_			SAMPLING METHOD: TERRACO	PEKITS		of 2
DATU	JM	Ì	PURK	JUL	LOC	ELEVATION					DF	ILLING
~	FEET DRIVEN			H~	PID			표	SURFACE CONDITIONS: ASPHA	LT	1	E FINISH TIME
H.	GRED DE FE		岩돈	WS/F	SAMPLE			GRAPH			DATE	1500 DATE
SAMPLER TYPE	FEET DRI	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAM	SAMPLE NUMBER	DEPTH (feet)					74/27/17
												9-1/14
							0	d				
					İ			GW	COMPACTED BRAVEL BO	Krany		
				ļ			1 1	/	VIDEBROWN (1042/2)	SAUDY SIG	M CLI	M W I
	\angle		-				1	1 CL	GENVEL, MOIST, ST	TFF MOTE	PATE	-
					22.5			Y	VIDEBROWN (10482/2) GRANG, MOIST, ST CHEMICAL ODER, LI (15, 20,20,45)	P GAM - WC	ASTIL	ITY
			ļ					ď	(15,20,20,45)			-
							2			7160	-0 ;	
							-	X				
	\vdash				22		-	Y F				
					8.7		3					
								71		******		
-	\leftarrow		<u> </u>					V	THE CALL ICIT CONT.	1/11/11/11		- " - =
					17.6			SM	THE GREENSY EVERY (GLEY SAND W GRAVEL + C MODERATE CHENICAL ODD	11 4/104)	DICIO	CIVS F
					u.		1 4		MODERATE CHEWICAL DOD	R+ STAINIL	45	,
	$\langle - \rangle$		11.5					Λ	(15,50,25,10)			
HA	/-		4.5 - 5.0	_	8.6	55502424						
					-	\	5	7				
	L,					***************************************		N		-		
					45.4			/	A / D Prover TV 1/11/1	- 1017 m	(10,10)	uli
					'1		6	Ĭ	DECREASED BRAVEL +	CLAM	Ciontre	1/4),
	<u>/_</u> ,							XI.	(1050,35,5)			
	:/				46.0		N	SM		2-14/11	مے وہ	
					10.0		7	7	IKYOLOWIN BROWN (1041	VEI WA	2 -1	EUTS-
								7	MODERNIE CHEMICA	- ODOX		
HA	-/	1130	7.5-	_	121	55502425			(5,60,35,0)			
a	4	11 31	0.0		11.0	-320U(L)	8	i	CLEARED TO 8.0' RES BY H	ALD DILETA AL	y 4h	1/17
77. add/StandardStuff/BormgLog-Formacege and	4										•	oli +
o Hão					, -				anere direct pula ges	prope drilling	9 4	1445
oringi					100.5	·	9	\parallel	on 4/2+/17	•		
miling.		.50	-						No gravet objervel	0.60.4	0.0	\rightarrow
dardS									(
J/Stan							10	4				
71_adk	/											
			-									

!	By _(C.E.C.	cker	Chec	ked by	/	Drillin	ig Con	ıtrac	ctor	Gress Drilling	BOR	ING I	OG
		ATION C		_		· -					JOB NUMBER 60487624	LOCATION		
											DRILLING METHOD:		SHI SHI	1591
											SAMPLING METHOD:		- 2	of 2
	DATL	_W_/			Fac	PID	ELEVATION			H.	SURFACE CONDITIONS:		START TIME	LING FINISH TIM
	SAMPLER TYPE	FEE DRIN	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE NUMBER	DEPTI	H	SOIL GRAPH			DATE	1500 H/23/15
								- 10						
		/	1590	10.5	·	148.5	55502475	-	S	M				
								11			@11.0'bgs becomes (10YR 5/6)	yellowin	Scome	
		/				134.2		-						
		3/3				1710		2						
						210.3		13						
								_						
			1510	14.0		330.9	55502476	14						
	····					183.0		15						
								- 13			Boring reached T.D. on 4/27/17. Borelole	of 15.0%	10.5 mill 0.5	1500
								- 6			bentinte chips to 0.	5/495 ax	2 omple	te2
								_			grade.			
								7						
								- 8						
oum								_						
Sormel.oef								9						
dardStuffil								-						
1.1 add StandardStuff BormeLogt oun								- 0						

BORING LOG

LOCA	ATION O	F BORI	NG		7	W.			JOB NUMBER LOCATION
		Co	KE 7	BLDG			N		60487624. 7017.13 APN: 7351-034-057
	il	4 000	1059			11 -		7	Drilling METHOD: HALD AUGER: 0-8/50 BORING NUMBER Direct put Geoprate Limited Acces Rig 5BL 0592
	()		ASTEN		e			_	SHEET
	1	T	AKKIN	18 FO	5				SAMPLING METHOD: TERRACOLE KITS of 2
DATU	1 /			1	I	ELEVATION			DRILLING
盗	FEET DRIVEN		ш	F.E.	PID W	:		GRAPH	SURFACE CONDITIONS: START TIME FINISH TIME O920 0820
SAMPLER	FEET DRIN	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE	DEPTH	비를	DATE DATE
38	/ E.M.	=	200	™ %	<i>\S</i>	NUMBER	(feet)	S	4/22/17 4/28/17
							0	1	ASPHALT
								GW	COMPACTED CORNEL BUSE POCK
					212.7		1		V. DK BRANT (10192/2) SLUTY SLUTY CLAY W/ COXAVEL
							'[a	V. DK BROWN (10192/2) SLUTY SLUTY CLAY W COKAVER MOIST, STIFF, STRONG CHEMICAL OPOR, NOW-MINE DEBRIS - AUTTRICIAL FILL
							N	7	(15, 20, 20, 45)
	$\langle - \rangle$				0.5		2	Ņ	1.
									015" - WEAK CHEMICAL ODOR
								Ÿ	
	$\langle - \rangle$						3	Ŋ	
					18,6			$\langle $	
				-			4	 -	VDr. Ben W (1042-1/2) To Dryun 12 Penny
					165.8			SM.	- (1042 4/4) SILTY, CLAYEY FINE SAND W/ TRACE
HA	-/	1955	4.5-	_	1850	55502416		20	V. DK BROWN (1042-42) TO DKYTHOUGH BROWN (1042-4/4) SILTY, CLAYEY FINE SAND W/ TRACE FINE GRAVEL MOIST, PENSE, STRONG CHEMICAL ONOR
		7 1 33	5.10		7.50	22300110	5	7	(5,45,25,25)
								Ŋ	
									4
					11.1		6	<u>i</u> t -	DKYTILOMAN BLANN (TOUP 4/6) SKTY FINE SAND
				-	440.4			SM	
							7		STROUG CHEWICAL ODGE (S,60,35,0)
							'	Ý	
-	-		4.5-					1	
Ha	/-,	1015	8.0	_	6,114	55502423	8		
	4/4				*	COLLECTED SPLIT TAMPLE FOR CBAI/EPA		211	CLEADED TO 8.0' BGS 89 HAND ALEER ON 4/26/17
		-				CDXI/ETA		SM	
	<u>/_</u>				3130		9 -		
		0810	9.5			55502477			
		, 4/-				MAIN OF 1			
					J.		lo	Ц	

By C	E.E.	cke	ert				Drillir	ng C	ont	racto	or Gregs Drilling		
				cked b	у							RORI	NG LO
LOCAT	FION O	F BOF	RING					-			JOB NUMBER 60487624	LOCATION	NG LU
											DRILLING METHOD:		BORING NUMBER
													SHEET
DATUM	1					ELEVAT	IAOI:				SAMPLING METHOD:		2 of 2
02 1	DRIVEN			F	PID	ZCEVAI	ION			x			DRILLING
SAMPLER TYPE	FEET RECOVERED	TIME	SAMPLE	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE NUMBER		DEP	TH	SOIL GRAPH	SURFACE CONDITIONS:		START TIME FINISH TIME OFF DATE DATE
				1207	0,	NOWBER		(fee	t)	S			4/28/1-
								1 0	,	5M	12 K yellovill from	~ (10YR=	5/6)5:144
	4				1971			1 1			(5,60,35,0)	are I mois	, dese, not
	1				3092		_				14-3/8" gravely observe	el at 11.0	0 698
3	3				2019			1 2					
								1 3					
		-											
								14					
	08:	20 10	5.0	4	2245	5502478	,	1 5		-	Strong Chemica odar		
								-		ı	Drilling operations cea 1/28/17. T.D. 15.0'bg The borelale was boo	sel at c	16 0.5
							-	6		2	20-16 large of hydrat		plug med.
	-	-					-	7		2	natch exolding gran	e and on	nd tions
							-	8		-			
	-							9					
-	-							H					
							(0 -					

Fl add:StandardStafFBormgt,ogForm

BORING LOG

LOCA	ATION C	F BORI	NG				-		JOB NUMBER LOCATION
				Co	KE T	3LDG	N		60487624.2017.113 APN: 7351-034-057
	1	5							DRILLING METHOD: HAND AVGER: 0-8'65 BORING NUMBER Discret pull geoprobe Limited Acces STBL0593 Lig: 8-47'655 SHEET
	1			53	LOS93				Dig: 8-47' Las
		(_			1			SAMPLING METHOD: TERRICORT KITS 1 of 5
DATU	JM	-`	Po	RKIA	10 C	ELEVATION	ŀ		DRILLING
	<u> </u>	1		1	PID		T	Ŧ	SURFACE CONDITIONS: START TIME FINISH TIME
SAMPLER TYPE	FEET DRIVEN RED		<u> </u>	BLOWS/FT. SAMPLER	Щ	ĺ		GRAPH	ACPHAL 1000
PAP H	FEE DRIN	TIME	SAMPLE DEPTH	WW.	SAMPLE	SAMPLE	DEPT	ᅦᆽ	DATE DATE
36	/ ##	F	ω _Ω	<u></u>	Ŝ	NUMBER	(feet))S	4/25/17
	-						- 0	V	ASPHALT
								<u> </u>	
	/							V	V. DKROWHOUR 2/2) (LAM W SAND. GRAVEL MOST STIFF, NOW - NATIVE DEBRIS, MEDIUM PLASTICITY ARTIFIC. AL FILL (15, 20, 0, 55)
\vdash	K						- 1	A	MOST STIFF NON-NATIVE DEBRIS
	1/	İ	e e		7.8			y	MEDIUM PLASTICING APPIPIC. AL FILL
			6.		-		-	V	(1), 20, 0, 65)
		18					2	Ŋ	
					3.4		1	J	
-	<u> </u>	700			3,4		-	Ц	74.444
								YI "	
	/ –						- 3	ď	
								XI	
			=		10		1	 	DK GREENISH GREAT (GIEN I 4/104) SILTY CLASES
	<u>/</u>				79		4	SM	FINE SAID WILLN + TENCEFINE BRAVEL
								X	DK GREENSH GREY (GIEY I Y/DY) SILTY CLAYER FINE SAND W/ CLM + TEALE FINE BRAVEL MOIST TO WET, DENSE, WEAR CHEMICALORDE ISTAN (5,55,25,15)
-	/_/		4.5-		-			4)	(5,45,25,15)
HA	/-	1005	5.0	_	6.5	55502378			
							- 5	VÍ	304
								X	
								VI .	The state of the s
	/ 	ļ					- 6	M	COPE TO 1050 (0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
					3.5			15M	GREENTH GOEN (GLEY I S/164) SILTY FINE SAND WITCH CE FINE BEAVEL, MOIST, DEUSE,
								∜ ```	WAX CHEMICAL OROF + STOINING
- 1	/ 10						7	Ŋ	(5,60,35,0)
								V	
	K		7 ==		 			Y	97.0'- BECOMES BROWN (1042-5/3)
AH _	/-	1020	7.5-	-	5.2	55502396			CLEARED TO 8.0' BGS BY HAND AVEER SU 4/25/17
cnera	4/					- I take were	8		COMEN IN OIL DOS DE MINN WARTE SO 1/25/17
Ē	3.7								
ogi-o			20						
Img.	K-,				5.0		9	\parallel	
II/Bo									
dStr.	\leftarrow						1	\dagger	
anda								il	
T/Ladd/StandardStuff/BormgLogForm-General		ļ					10	1	
I/La									

By C.E.c.ert

Date 1/75/17 Checked by __ Drilling Contractor Gress Dalling **BORING LOG** LOCATION OF BORING JOB NUMBER LOCATION 60487624 DRILLING METHOD: BORING NUMBER SAMPLING METHOD: _ DATUM.... ELEVATION DRILLING PID GRAPH BLOWS/FT. SAMPLER SURFACE CONDITIONS: START TIME FINISH TIME SAMPLE SAMPLE NUMBER DEPTH DATE DATE (feet) 10 1.1 1440 55502390 11.7 No recovery 11.7-12.0/65 12 1 4 1455 15. 55502391 15 0.7 16 0.8 17 18 4.8 19 20

F.Ladd/StandardStuff/BoringLogForm

By C.Ecked

Date 4/25/17 Checked by _____ Drilling Contractor Gregs Prilling **BORING LOG** LOCATION OF BORING LOCATION G0487624 DRILLING METHOD: BORING NUMBER SBL0593 SAMPLING METHOD: DATUM.. **ELEVATION** DRILLING GRAPH BLOWS/FT. SAMPLER SURFACE CONDITIONS: DEPTH (feet) 20 59.3 Yellouish brown (104R 5/4) Poorly graded sand with silt, moist, dense, no oder, some staining (0,90,10,0) 1509 22.0 55502392 22 125.1 2 3 65.3 24 89.1 25 26 1937 27 64.8 28 1530 295 57.9 55502407

add StandardStuff Bormel ogf orm

By C.E. Date 4/2 LOCATION					S S S S S S S S S S S S S S S S S S S				TOP NUMBER	DRING	LOC
									60487624 LOCATIO	NC	
									DRILLING METHOD:	BORING	NUMBER
											593 EET
DATUM					51	F1 (4.T) = 1			SAMPLING METHOD:	4	of 5
FEET DRIVEN	1			Fi.	PID	EVATIO!	1	Ŧ			LING
SAMPLER TYPE FEET FEET RECOVERED	ш	SAMPLE	Ę	BLOWS/FT. SAMPLER	SAMPLE NOW			SOIL GRAPH	SURFACE CONDITIONS:	START TIME	FINISH TIM
₹ <u></u> ##	TIME	SAI		SAN	SAN NUN	APLE ABER	DEP1	SO HI		DATE	DATE
							30				
							1				
				9	,2				Light yellarish brown (2.	546/3)	Well
							3 1	5W	Light yellowish brown (2). graded sand, dry, moders oder or stalking	de desity,	no
		-							(0,00,0,0)		
4			+				32				
14			+								
			-	3.	l		33				
			-							\	
							7				
							34				
				44	1					i e	- 0
							35		light olive from (25%	5/1) < 11	
	540	36.0	-					SM	very file sand, moist, den	se, sligh	Y
4/		36,0	-	165	8 555024	98	36		light olive from (2.57 chemical odor (0,60,4)	(0,0	
4			-								
/							37				
				122	.0						
									Di di		
							38	1	ncreasing fines (0,50,5	10,0)	
15	50	39.0		1/3							
	+	750		160	0 555024	09	3 9				
K											
	-						40				
								-			

By C.Eckert
Date 4/75/17 Checked by ____ Drilling Contractor Gress Hilling **BORING LOG** LOCATION OF BORING JOB NUMBER LOCATION GO487624 DRILLING METHOD: BORING NUMBER SHEET SAMPLING METHOD: DATUM... ELEVATION PID DRILLING GRAPH BLOWS/FT. SAMPLER SURFACE CONDITIONS: SAMPLE DEPTH START TIME FINISH TIME SAMPLE SAMPLE NUMBER DEPTH SOIL (feet) 151.5 Yell anish brown (10 / R 5/4) Paorly sorted fine sound, moist, dense, maderal chemical odor (0,00,0,0) 1600 420 206 55502393 42 136.7 4/4 43 Grown (10YR 4/3) mottled color Gray (10YR 5/1) Silt with sand moist, dense, moderate chemical 1615 44.0 292355502394 44 (0,25,75,0) 45 163.4 46 Shell hash approximately 50% highly broken stell pieces ~0.25" in size 47 Boring ternihael at 1630 T.D: 47.0 bgs 48 Borelde belief Nel Lith 2 50-16 bass of Enviroply melium bentonite chito Lydrated and completed with cold portch asplat to 0.5 bys 49 50

add StandardStuff Bormel og! orm

By C. Eckert
Date 4/24/17 Checked by Drilling Contractor Greeg Prilling **BORING LOG** LOCATION OF BORING JOB NUMBER LOCATION 19875 Pacific DRILLING METHOD: Hand ouger: 0-8++ BORING NUMBER
Airknifed: 0-8'bgs I disheld SBL 0594

Princed push geophobe Limited Accord Rig SHEET

SAMPLING METHOD: Terre Core Kits I of 5

Macrocore liners Coke Building DATUM.... **ELEVATION** DRILLING FEET PID GRAPH SURFACE CONDITIONS: Asphal+ START TIME FINISH TIME SAMPLE DEPTH 1000 1530 SAMPLE NUMBER DEPTH (feet) SOIL DATE 4/24/17 4/26/17 000 (0,80,20,0) 29.0 61.0 492.0 1040 45-50 55502373 579.0 3176 Brownik Yellow (10 /R 6/6) Paorl graded five sand with trace silt, dry, strong ador (0,95,5,0) 5746 T.L. add. StandardStuff Boring Logiforn 4862 55502369 1100 75-80 Cleared to 8.0 bgs on 4/24/17 8 No recovery 8,0-10,5 bgs 9 10

By _ Date	C.E	C/1-	ert 1 Che	cked by	D	rilling Co	ontrac	tor Grego Prilling	DOD	
_		OF BC						JOB NUMBER 60487624	LOCATION	NG L
								DRILLING METHOD:		BORING N
										SKL95
DAT	UM							SAMPLING METHOD:		2 of
	3	1		. PI	ELEVAT	ION				DRILLI
SAMPLER TYPE	FEET DRIVEN	ERED	금본				GRAPH	SURFACE CONDITIONS:		START TIME FII
SAM	<u> </u>	TIME	SAMPLE	BLOWS/F SAMPLEF	SAMPLE NUMBER	DEP*	тн∣ 🚽			DATE
		-	-					0		
				144	9		KP			
						<u> </u>	27			
		-		1719	3	_				
	4/3	1300	13.0		55507434	l 2		Physical Gretaken from	n 12.0-13.	0'695
	/	1	13.0		25502437	7	. !			
_		1310	14.0		55502436	13				
				3369						
		1305	14.0		55502435	- 14		Physical Core taken for	ron 12.0-1	30 by
			1/3-						14.0-1	5.9
						_ \ \ 5				
						-	-			
-	+					_ 16				
-	4					_		Increasing finer		
-		7110	7.	11 Cue		_	~			
		340	17.0	2687	55502438			Grades to:		
				1460	-	18	MI	Olive brown (2.57	4/4)	Sandy
	1			11760		-	11	Silt, dense, moist,	odor	
+	\forall					. (9		(0,30,70,0)		
+	+					-				
+				1584		20				
						0	-			

By _	C.1	-ck	ert 1 Che	cked by		Dri	illing	Con	itraci	or Gregg Vrilling	ORING LOG
		OF BO			-					JOB NUMBER 60487624 LOCA	
										DRILLING METHOD:	BORING NUMBER SIZL 0594 SHEET
DAT	'UM					ELEVATIO	140			SAMPLING METHOD:	3 of 5
띪	FEET	2	ш	TE'R	PID	LLEVATIO		-	GRAPH	SURFACE CONDITIONS:	DRILLING START TIME FINISH TIME
SAMPLER	FEET DRIVEN	TIME	SAMPLE	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE NUMBER		EPTH feet)	SOIL GR		DATE DATE
	4	1345	5				- :	0 0		Increasing fines (0,2	20,80,0)
				7:	55, 1			2 1			
		1400	21.3-			55502440		2 2		1/4"-1/2" diameter rours	del gravels
-							•	- 2		VIO 19910. CS	
				18:	75		2	3			
	44		24.01	26	16	5562441	2	4			
	/4	405					2				
		1425	25.0	369	કેઇ	555 0244 2	- 2	5	\ \\	Grandes to:	
							2	6	امرر	fine sand, moist, der	re, oder
				271	57		2	- 111		Gradesto:	
				χει	18				5P	Olive (5/5/3) very trace silt moist medion (0,95,5,0) poorly	fine sond with
	12						2	8		(u) (7,7)U) poorly	y are d
		435	29.0- 30.0	804		55502443	2			Physical core taken from	29.0-30.0bg
				116	2		3 (5	SW.	Light 9(24 (2.547/2) time to median sand, dry,	well arked very

F3.add/StandardStufFBormgl.ogl om

By_	CE	cke	A Char	oleo d la		Dril	ling (Con	itracto	Gray Drilling	DOD		
				ked b	у						BORI	NG	LOC
LOC	NOITA	OF BOI	KING							JOB NUMBER 60487624	LOCATION		
										DRILLING METHOD:		BORIN	G NUMBER
												SIZLO	594 HEET
												S	of 5
DATI	JM									SAMPLING METHOD:		7	or)
	1	/		ī	PID	ELEVATIO	N						ILLING
띮	PEET		щ_	BLOWS/FT. SAMPLER					GRAPH	SURFACE CONDITIONS:		START TIM	E FINISH TIM
SAMPLER TYPE	FEET DRIN	TIME	SAMPLE DEPTH	OW	SAMPLE	SAMPLE	DE	PTH	E			DATE	DATE
S) L	/ E.R	=	\ <u>\</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	™ %	Ŝ	NUMBER	(fe	et)	SOIL				
								1					
							- 3	0	7	No recovery 30.0-	32.01 675		
	/_		-								7		
							_						
					1		- 3	1					
	<u>/_</u> ,	ļ	<u> </u>				_						
	4/						- 3	2					
	24						_		SW				
		1440	33.0		297	55502444	3	3		1			
	<u> </u>				0.11								
	-						- 3	4					
					1581		_						
1								Н		Till de la la	nrve 1	2) /1	
							- 3	5	SM	Light olive brown (very fine SAND, m	1.515/	3/51	17
	/						_				OTITI COL	10,0	1964
					1023	>		Ш		(0,70,30,0)			
	4/				1407		- 3	6					
	14						_						
							_						
K							3:	7					
		520			4572	55502446							
		500	38.0-			55502445	3 8			Physical core take	Do: 70	0 - 20	2 1/2
			39.0						i	inysical ole Tale	T10h 30	1.0 -5	I'M BOS
	/			k	1466								
							3 9						
_													
		4			2243								
					10 T)		40	#					
	_				İ								

TT add:StandardStuff'Bormgl.ogForm

	C.E.			cked b	У	Dri			BO	RING	L
LOC	CATION (OF BOF	RING						JOB NUMBER 60487624 DRILLING METHOD:	BORING	NIII S
DATU	JM					FI 51 45710			SAMPLING METHOD:	SBLO 5	IEET of
SAMPLER TYPE	FEET DRIVEN RECOVERED	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE TO	SAMPLE NUMBER	DEPTH	SOIL GRAPH	SURFACE CONDITIONS:	START TIME	
	4/0					NOWBER	(feet)	S	No recovery from 40.0.		
							- 41-				7
							4 2				
							43				
							44		Mc Wat and the control of		
							5		T. D. 44.0' bas The barelale was backfill bass of hydrafel Envirople	1950, 7/ 22 with 2 medium	1 5
							6		soutaite chips to 0.5 bgs to with surface grade with	Loll-p	7
							7	-			
							8	-			
							9				
							0				

By R. SHOPE, C. Eckert

Drilling Contractor Gill Denning

BORING LOG Date 4/25/17 Checked by LOCATION OF BORING 60487624.2017.1.3 APN:7351-034-057 COKE BLDG DRILLING METHOD: HAND AUGER 0-8/29 BORING NUMBER SBL0595 Virect Pub Groprobe Limited Accor Rig SHEET 5 5866595 SAMPLING METHOD: TERRALOREKITS PARKING LOT DATUM.... **ELEVATION DRILLING** START TIME FINISH TIME PID GRAPH SURFACE CONDITIONS: SAMPLER TYPE SAMPLE ASAHALT DATE SAMPLE DEPTH 4/25/17 (feet) 0 ASPHALT V. DK BROWN (10482/2) FAT CLAM W SAND + GRAVEL MOIST STIFF NON-MITTER DEBRIS - ACTIFICIAL FILL, HIGH PUSTICITY 0.9 (20,20,0,60) 2 (1) 2.5'- BELONES DECREENISH GREY (GLEY 14/109),
MODERATE CHEMICAL DOOL STAINING 169.4 3 CL GRAVEL, MOIST, STIFF, LOW PLASTICITY MODERATE CHEMILOL OPOL 251.8 (15,20,20,45) 4.5-AH 0845 5.0 32.5 555 02376 5 YELLOWISH BROWN (10425/6) FINE SALM SILT V TRACE FUE GRAVEL MOIST, STORF WELK 43.9 CHEMICAL ODER 6 (5,30,65,6) 1541 7.5-1,001 55502377 19106 8.0 CLEMETD TI 8.0' 865 ON 4/25/17 34 HANDAUGET 8 Direct puts Jelling at samply convenied at 7/Ladd/StandardStuff/BoringLogForn-Ger 195 9 10

Ву	C.Ec	Len				Drillin	ng Con	tractor	Grogg Prilling			
				ked b	У					BORI	NG I	LO(
LC	CATION	OF BOR	RING						JOB NUMBER 60487624 DRILLING METHOD:	LOCATION	BORING	NUMBER
											SUL OF	195
DA	TUM					ELEVATION	1		SAMPLING METHOD:			5
	- en	1			PID	LLLVIIION	· 	天	SUPERCE CONDITIONS		DRIL START TIME	LING
SAMPLER	FEET FEET DRIVEN FEET RECOVERED	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE	DEPTH	SOIL GRAPH	SURFACE CONDITIONS:		DATE	DATE
SI	- /	-	νΩ	mv	S)	NUMBER	(feet)	S				
							- 10	ML	no trace gravel no	ted (0,:	30,70	,0)
		0846	11.0		1520	55502410	\ 1		Strong Chemical Oco			
	/_											
	4/				785		12					
	19	9900	13.0		4187	55507411			Strong Chemical Oc			
					17.00		١3		straty were (2)	3/4 (
							14					
					2542							
				-			١ 5					
	4/						۱ 6	-				
	/4				1594				moderate chemica			
							۱7		maceia (C Duenica	2891		
					1977		18					
					2737							
							19					
							20	-				

T.Ladd/StandardStuff/BoringLogForm

By Date	C.F.	cke	Char			Dri	illing C	Con	tracto	or Gress Drilling	505		
	CATION				'y					JOB NUMBER 60487624	LOCATION	ING	LO
										DRILLING METHOD:		BORING	NUMBE
												SH	595
										SAMPLING METHOD:		3	of 5
DAT	UM	//			DID	ELEVATION	NC					DRI	LLING
SAMPLER	FEET DRIVEN FEET BECOVERED	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE 0	SAMPLE NUMBER	DEF	PTH	SOIL GRAPH	SURFACE CONDITIONS:		START TIME DATE	FINISH T
			0,2	1307	0)	NOMBER	(fe	et)	Š				
	<u>u</u> /						_ 2	0					
	14	A15							ML				
		0925	21.0		mil	22209415	_2	1					
-				4.4			_	H					
	/				*10		2	2					
					6225								
				f									
							- 2:	3	ML	Yellawill Brown 61	040 5/4) Es.	
									1.0	SILT, moist, stiff,	moderate) Fine	cal
					903		124			ador (0,40,60			
	44	2935											
					1017		_					····	
					1567		2 5	; <u> </u>	58-	Yellowish Brown (10	YR 5/6)	Poorly	
									5M	dense, moderate	chamical	timo	15+,
										1090100)	70	
		945	2/ 6		unai	(((,0)))	26			(0, 19, 19, 0	/	<u> </u>	
		777	2617		1716	55502413	-						
							27						
02													
	X				3058								
	4				5028		28		ŀ				
	2						-	#	_	1-1)		^	
		_			329		29	5	sw	Light yellowish bri Well graded five to loose, odor	median	K6/4	moist
\dashv		_					.		F	(0,100,0,0)			
							_						

T/Ladd/StandardStuff/BoringLogForm

By C. Eckert
Date 4/26/13 Checked by Drilling Contractor Grey Villing **BORING LOG** LOCATION OF BORING 60487624 DRILLING METHOD: BORING NUMBER 51320595 SAMPLING METHOD: DATUM. **ELEVATION** GRAPH SURFACE CONDITIONS: SAMPLE NUMBER DEPTH (feet) 30 No recovery 30-32 / 655 31 3 2 13.2 1459 555 02414 33 fine sound, maist, dense, ador (0,60,40,0) 1378 3 4 3 5 Na receivery 35-36.0'555 36 733 3 7 55502419 1035 37,0 259 3 8

71 add/StandardStuff Bormel ogl om

79.9

39

40

By C.Eckert

Date 4/26/17 Checked by _____ Drilling Contractor Gress Villing **BORING LOG** LOCATION OF BORING JOB NUMBER LOCATION 60487624 DRILLING METHOD: BORING NUMBER SBL0595 SAMPLING METHOD: DATUM.... **ELEVATION** DRILLING FEET PID GRAPH SAMPLER TYPE BLOWS/FT. SAMPLER SURFACE CONDITIONS: START TIME FINISH TIME SAMPLE SAMPLE NUMBER SOIL DEPTH (feet) 4/26/17 SP Yellowish red (5/R 5/6) medium danse 87.4 41 1050 420 Increasing fines (0,55,45,0) No recovery 43-44.0695 19.0 43 44 5 6 7 8 9 0

l'Ladd'StandardStufl'BoringLogForm

BORING LOG

	- 1			ked by				_	BURING LUG
LOCA	ATION O	F BORI							JOB NUMBER LOCATION
				DK	5 B	LIVG.	N		60487624. 2017.1.3 APN:
		1-4	SRLO	596					DRILLING METHOD: Hand auger: 0-8/131 BORING NUMBER AIT KVITE: 0-8/135 SBL 0596 Hollow stem auger: 8.25 0.0. SHEET 5
		11.			VB LO	-		_	Hollow stem auger: 8.75 ap
		1	1	Miles.	- 0 - 0		-		SAMPLING METHOD: Terra Ga Kit, of 5 Shelly Tube
DATL	164					ELEVATION	ı		
	7				PID	ELEVATION	1	T	DRILLING START TIME FINISH TIME
띴	FEET DRIVEN TED		 щ	BLOWS/FT. SAMPLER				GRAPH	SURFACE CONDITIONS:
SAMPLER TYPE	FEE DRIN	TIME	SAMPLE DEPTH	NO M	SAMPLE	SAMPLE	DEPTH	1 □	DATE DATE
SA	\ FF.55	TIN	SA	SAB	SA	NUMBER	(feet)		7/12/14
					:				
							0	-	Acoula, -
									ASPHALT
							1 1	, 	VORM DICBROWN
	<u>/</u>						1	1	HOIST STIFF HIGH PUSTICITY, DERUS (NOW-NATIVE) ARTIFICIAL FILL
					0.1			V C+	MOIST STIFF HIGH PLASTICITY, DERUS
4				-	- '		+ 1		(5,0,0,95) ARTIFICIAL FILL
100								NA=	.)
							2		
	<u>/</u>							<u>X</u>	700 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
							1	/	4-0.10
	\leftarrow						3	/-	ASPHALT
								N	DK EDENKH GALL (CIF114/101) (1415) SILT
	1/2				11 1		1 1	SV	4 FINE SAND, MOIST, MED. DENSE, GLASS
	<u> </u>	¥.			4.1		4	50	DREPEARH GAM (GLET 14/101) CLAMEN, SILTE FINE SAND, MOIST, MED. DIENSE, GLASS AND OTHER NON-NATIVE DEBRIS, ELODERATE CHEMICAL DOOR + STAINING, ADTIFICIAL FILL (0,60, 20, 20)
					119.5			AF	.) CHEMICAL ODOR + STAINING, ADTIFICIAL FILL
		9	ilea					_	UDV BROWLUNG-212) FAT (LAM WITHALE
HA	/-	1005	4.5	-	4238	55502374	5	C	V.DK ROOM (10422/2) FAT CLAY WITHALE SAND, MOST, STIFF HIGH PLASTICATY
								X	STRONG CHEMICAL ODOL
				ļ		1			(0,5,0,95)
		3 6						Y	101.
	1	7				75.37%	6	1	86.0'- BECONES DK. YELLOWSH BEONN (10723/6)
	/				1,360			1	TALLE LOAVEL
							1	((5,5,0,90) UBLIONSH ROWN (10/R 5/6) FINE SANDY SILT
·	<i>/</i>						7	J AA I	MEMONSH MONN (1012 3/6) FINE SANDY SILT
					2080			MI	STRONGLIGHT COR DOR MOIST, STIFF,
	-/		7.5-					ı	(5,15,60,20)
HA	/-	1040	8.0	-	4381	55502375	8		(5,15,60,20) CLEHERD TO 8.0' B65 ON 4/24/17
								1	
				-					Shelly Tube pushed from 8.0-9.5' bgs
HA st			8.0-				9		
51		1441	8.0-			55502379			
							1		No recovery 9.5-10' by
							10		7

By C	.Eck	ert	Check	ed by	,	Drillin	g Contr	actor	Grego Prilling BOF	RING LOG
	ATION O					4			JOB NUMBER LOCATION 60487624 DRILLING METHOD:	BORING NUMBER
									SAMPLING METHOD: Terra Core Kit, Shelly Tube	SUL 0596 2 of 5
DATU						ELEVATION	I			START TIME FINISHTIME
SAMPLER TYPE	FEET DRIVEN FEET RECOVERED	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE 0	SAMPLE NUMBER	DEPTH (feet)	SOIL GRAPH	SURFACE CONDITIONS:	DATE DATE
	3/3	1450	1510:		3665	55502380	- 10	SP	Light solive brown (2.54) Light solive brown (2.54) Chenizal odor	5/6) poortyg
			10.5		4581		11		(0,100,0,0)	
					353)		- 12			
		1	13.5-	I	4691	55502381	13		Shelby Tube pulled from 13.	0-15.0'605
ST		1530	15.0			53507382	14		success to the passes to the	
	4/2	1540)		3684		_ {5			
							16			
					1608		17			
							18			
Sormel out out	4		90.		762		19		Increasing fine	
171 add StandardStuff/Bormel ogf om		160	9.0		913	55502383	20			
T adk										

ву(E	ke	ct			Drilling	g Contr	actor	Grego Prilling BORING LOG
				ed by					JOB NUMBER LOCATION
LOCA	TION OF	BORIN	G						60487624
									DRILLING METHOD: BORING NUMBER 53L 0596
									SHEET
									SAMPLING METHOD:
									DRILLING
DATU	M					ELEVATION		T =	START TIME FINISH TIME
04	FEET DRIVEN RED			Ëκ	PID			GRAPH	SURFACE CONDITIONS:
	FEET DRIN FEET RECOVERED		SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE	DEPTH	<u> </u>	DATE DATE
SAMPLER	RECO	TIME	SAN	BLC	SAR	NUMBER	(feet)	SOIL	
						-	20	1	Grades to:
-	\leftarrow							1.,	Olive brown (2.54 4/3) Silt with five sand, moist, dense, slight chemical odor
1			l		514		21	ML	with five sand, moist, dense, slight
									1
	V-						-	1	(0,20,80,0)
					357		100		
-	/			1	777		22	1	
								1	
	/								
	1		-	-			23		Stelly tube pulled from 22.0-25.0
57	2/2	1630	23.0			55502384			3,0,000
	10		710			230270			
							24	30	
	¥-,			-			-	+	
							2 5		
	4/	1/41	1				7 3	Π	
	14	1640			157			Щ	
	/	1			001				
-	/	+		-	214		2 6	H	
								Ш	
	/								
					358		_ 2 7	H	
	1/								
	-	-		+-				H	
					421		_ a 8	3 🖺	0, - 1
	/								Increasing fine sand
E			_					\mathbb{H}	
LogE							10.		
oring	1,1	1.	-				2 9	" \	Grade to.
urffyB	4/	E 165	9						MEN 4 his soul - act
add:StandardStuff/Boring1.ogForm	/							1	Polive som (2.5) 4/4) poorly grade
Stano	_/_	+	-	-			_ 3		
add	1/								(0,100,0,0)

45

1.7 0850 39.0-

55502389

40

J. A. T.									- 4·×
By (CEC	Loi	4			Drillin	a Cont	ractor	Grego Prilling
Date of	4/29/	17	Checl	ked by			9 00111		BORING LOG
_	ATION O							7,110	JOB NUMBER LOCATION
									60487624
									DRILLING METHOD: BORING NUMBER 58L0596
									5 SHEET 5
									SAMPLING METHOD:
DATL	JM					ELEVATION			DRILLING
OK.	FEET DRIVEN RED			E.K.	PID			SOIL GRAPH	SURFACE CONDITIONS:START TIME FINISH TIME
SAMPLER TYPE	FEE DRIV	ш	SAMPLE	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE	DEPTH	L GR	DATE DATE
SAI	REC	TIME	SA	SA	SA	NUMBER	(feet)	S	4/55/19
51		CS 1	99:0-			4 0	40		
١ د	/	USIO	7417		29 On	55502389			
		:					41		No recovery 40.7-41.0/695
	2/				1420		7,		
	2						-	58	
					1354		42		
									-0.5
	\leftarrow		1125-		2446				Areanith themarel Piner, SPSM, Silty Sand 10
		0990	43.5-		596	55502395	43		
									Orilling apprations cented at 0900, 4/35/17
		1			1			-	T.D: 43.0 bgs
	<u>/_</u> ,						4	_	
									of Environly medium bentante chips hydright
									and competed with cold patch asplict to 0.5/bs
	¥			-			5	_	
-	/	-		-			6	-	
	+	-			1		7	-	
								_	
			1	1	1		8	1	
Ē		-	-		-		-		
	1/	1					9		
	/_	-							
ino igorgino inicolario							_ 0		
3		1							

By Da		Ec.	ike	r+ Check	ked by	·	Drillin	g Conf	tracto	or _	Grego Prilling BOR	ING L	_OG
			BORI								JOB NUMBER LOCATION		
										-	GO487624 DRILLING METHOD:	BORING	NUMBER
											Dividento in a triot.	SIZLOS	97
										-		2 SHE	
											SAMPLING METHOD:		
D.	ATUM	4		1	I	1	ELEVATION	1	T _			START TIME	LING
l e	FEET	D NRIVEN		ш	F.H.	PID			GRAPH		SURFACE CONDITIONS:	- STAIRT TIME	I II II II II II II II II II II II II I
MP	TYPE	FEET RECOVERED	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE	DEPT				DATE	DATE
SA	i ≥ /	開器	Ē	SA	₽& SPE	SA	NUMBER	(feet)	S				<u> </u>
										ł		2 1	
		$\overline{}$						10	151	ا ر	Yellowish brown (104R 5, very fine JAND, maist, der or stailing (0,60,40,0)	14) 51	17
L	_/					3.5		-	13/	`\	very fine SAND, maist, de	-se, no	odor
		/									(0.60.40,0)		
								- 1					
-	_/								Щ				
								. 12	H				
	4	4/						12	1 4	M			
-	-/	4		-		-		-		114			
						1.5		\ \ 3					
-	-							-					
								14					
						h v							
-	-					1.1		-					
L	_/							15	Щ				
-	-Y			-				-	H		11		
L	-/					-		- 16					

18

19

20

3.4 55502469

7.8

4.1

1245 175

Increasing fines at 17.5 bys (0,50,50,0)

F.L. add:StandardStuff Bormpl.ogl.orm

B ₂	/(ate ²	1.Ec	kes /17	-\	ed by		Drilling) Contr	actor	Green Prilling BOI	RING L	_OG
			BORIN							JOB NUMBER LOCATION		
										C0487624 DRILLING METHOD:	BORING	
											SULO	
3										SAMPLING METHOD:	3	-
							ELEVATION.		SAMP LING INC INC.	DRIL	LING	
L	DATUM ELEVATION								푽	SURFACE CONDITIONS:		FINISH TIME
	LEK	PEET DRIVEN		느	VS/FT.	뿌			SOIL GRAPH		DATE	DATE
	SAMPLEK TYPE	FEET DRIV	E I	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE NUMBER	DEPTH (feet)	SOIL			
-		/										
-		4/						20				
		74							SM			
								21				
						32.0		0		@ 21.5 gravols 4-1/2" dia	meder about	VPZ
-									1	9.100 / 100		
		<u>/</u>						22	-			
						74.7				Slight obrobrered		
1			395						OF			
1			1					23	1			
		/_	1255	23.5			55507470	_	-			
						106.9		24				
ŀ		113 /	1			1		0 7				

25 22.6 26 73.8 27 81,5 55502471 1310 28.0 28 2.25 L'A add'StandardStuff'BoringLogf oun 60 29 (0,00,00) 94 11.6 30

Ву_	C. Ec	Kerl	<u> </u>			Drilling	g Contr	actor	Gress Prilling	ORING LOG
	ATION OF			ed by						ATION
	ATROIN OF	DOM							DRILLING METHOD:	BORING NUMBER SKLO 597 SHEET
						ELEVATION			SAMPLING METHOD:	4 of 5
	L∰ /			۲a	PID	ELEVATION		GRAPH	SURFACE CONDITIONS:	START TIME FINISH TIME
SAMPLER	FEET DRIVEN FEET RECOVERED	TIME	SAMPLE	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE NUMBER	DEPTH (feet)			DATE DATE
							30		No Recovery 30.29-	37.0' 695
							31	-	Inferred Contact	
	4				5.0		32	sw	Light brown il gray	10YR 6/2) Very
					24.2		3 3		(0,100,0,0)	10 9251 00 STEINING
					58.5		3 4	ML	13 com (10 YR 4/3) v maist, dense, no oder (0,35,65,0)	ery five sandy SILT or stailing
		1330	34.75	7		55502477	3 5		No recovery 34,75-	36.0° bgs
	4/3				85.7		36	MJ		
					181.4		37		Olive from (2.5/4/ sand, moist, stiff, a	3) Lean CLAY with
Е		340	38,0	,	208	3555024 3 3	3 8		(0,20,20,60)	
uff Boungloul or					146=		3 9		Inferred Outset	
17 add-StandardStuffBoringLogl com							40			

By (المارة	ker	1			Drilling	g Contr	act	or _	Gress Vrilling BORING LOG
Date	4/27	1/17	Check	ed by						
	TION OF							JOB NUMBER LOCATION		
LOCA	IIION OF	DOM							-	60487624 BORING NUMBER
								- 1	DRILLING METHOD:	
								Ì	SHEET 5 of 5	
										SAMPLING METHOD:
						ELEVATION				DRILLING
DATU	JM			1	PID	ELEVATION			포	SURFACE CONDITIONS:START TIME FINISH TIME
25	FEET DRIVEN		ш	ER.					GRAPH	1 1/1/6 1
SAMPLER	FEET DRN FEET RECOVERED	ш	SAMPLE	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE	DEPTH	4	SOIL	DATE 4/27/13
SAN	REC	TIME	SA	SA	SA	NUMBER	(feet)	+	ഗ്	
							1			Inferred outset Olive brown (2.57 4/4) Poorly graded Fine SAND with SILT, moist, deure, oder (0,85,15,0)
	11 /						40	K	>-	Olive brown (2.58 4/4) Poorly greet
	4 25								M	Fine SAMP with SILl, most, dente, der
	6.7				-					(0,89,19,0)
				-	1457		41	\mathbb{H}		Grades to:
	1/									
	Y-	1405	41.5		428.3	55502474		TI:	SP	Strong Soum (1.5/4/6) Poorly graded fine sand, moist, dense, oder, reddish
							42		•	fine Sand, mother, dente, oder, terres
	/				01.0		'			(2,100,0,0)
	/_			-	R7.4		-	H		(4)(-)-)-
							43			(9)
	1	1	1							
					-		_	H		
								Ш		1/27/11
-	/	+-					- 44	Π		Baring terminated at 1410 on 4/21/11
								-		1. 1. 49.0 Jan 2 50-16 6-23 of
										Varehole troit replus me l'un pentonite
	/						- :	5 -		Chills to 0.5 by and surface completel
										with call patch applied to motion
-		+		1						surface grande.
							_	6	1	
-			_					t		
								7		
	/							-	-	
								8		
-		1								
=								ļ	-	
10 170										
add Standard Stuff Bormel og lorm		-						9		
#B3on									Ц	
urdStu										
stands								0	Н	
addy										

By C. Ecke	A
Date 4/27/17	Checked by

171 add StandardStuff Bormgl.ogf orm

Drilling Contractor Green Trilling

				into di bij							DOKI	140	EUG
LOC	ATION (OF BOR	RING							JOB NUMBER	LOCATION		
										60487624			
										DRILLING METHOD:			G NUMBER
												30L	0598 HEET
										SAMPLING METHOD:		2	of 5
DATU	MI					ELEVATION	J			Ortin Elito MET(100.			
		1		T	PiD	ELEVATION	<u> </u>		_				ILLING
H.	FEET DRIVEN		Щ	BLOWS/FT. SAMPLER					SOIL GRAPH	SURFACE CONDITIONS:		START TIM	E FINISH TIME
SAMPLER TYPE	FEET DRIN FEET RECOVERED	TIME	SAMPLE DEPTH	MPL	SAMPLE	SAMPLE	DEPT	гы	L GF			DATE	DATE
SA ⊥		F	SA	SA	SA	NUMBER	(feet	t)	SOI				
		-	1		111 0		10						
					4109				SM		>		
		1					-	\parallel		-			
					4108		- 11						
			,				''	\prod		No recovery 11.0-	12.0 /6	3	
	/	-	-				_	H		1			
											F		
	4/						12	111					
	73	ļ							SM				
					3537								
		-	-		377		- 13	\mathbb{H}					
							-	\parallel					
	Ĺ.,				3456		14	Ш					
	-						-	H					
					3209		1 5						
							13			No recovery 15.0-	16.01		
	/						-	\parallel		1			
	4/1						16	Ħ	, ,				
	14							∭ 5	SM				
					11010								
 					1104		[7	\parallel					
									ŀ		-		
Ĭ									İ				
							18			Sub-rounded 3/8-1/4" (51/4 fine sand in (15,55,36,0)	3cerets		
		6900	105		1771	55502447			-	silty time sand w	ith grav	es	
		ספרט	10.7		H1 (22708441			-	(15, 55, 50,0)			
									ŀ				
							19						
					1346				-				
+					الما را		20	1	-		*		
											· ·		

Drilling Contractor Gress Trilling By C. Eclert **BORING LOG** Date 4/27/17 Checked by __ JOB NUMBER LOCATION OF BORING 60487624 DRILLING METHOD: BORING NUMBER 513L0598 SAMPLING METHOD: DATUM **ELEVATION** DRILLING START TIME FINISH TIME PID GRAPH SURFACE CONDITIONS: SAMPLE DATE SAMPLE NUMBER DEPTH (feet) 20 Silty fine sand with gravel noist, dense, odor, gravel 14-13" 21 15,95,30,0 918 22 A10 22.5 1160 55502448 23 774 24 25 4863 26 Grades to: 1147 3241 55502449 0925 28,0 28 add StandardStuff Bormel ogl orm Grades to i 29 1391 (0,100,0,0) 30

By <u>CEckert</u> Drilling Contractor Gress Drilling **BORING LOG** Checked by JOB NUMBER LOCATION LOCATION OF BORING 60487624 BORING NUMBER DRILLING METHOD: **SAMPLING METHOD:** DATUM. **ELEVATION** DRILLING PID START TIME FINISH TIME SURFACE CONDITIONS:

1.1 add StandardStuff Bormgl.ogf orm

TYPE	FEET DRIVE FEET RECOVERED	TIME	SAMPLE	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE NUMBER	DEPTI (feet)	SOIL GRAP	DATE DATE
					1615		30	 SP	
					, , ,		31		
		0955	27.0		1526	55102450	32		
	4/3					17.40) 2	зw	SAND, dry, loose, oder (0,100,0,0)
							33		
		blo	34.0		1285	ऽऽऽ० २५६७	3 4		WET@33.75' Sample taken@34.0' from wet SW Yellanin Your (10YR 5/4) silty fine SA moist, Luse, OTOR (0,60,40,0)
					1458		35	SM	
									No recovery 35,0-36,0 bgs
	4/4						36		
							37	(0	Brown (104R 4/3) Poorly scraled fin
					849.6		38	SP	SAND with trace sift, moist, dente, ovol (0,95,5,0)
					668.)		-		
							39		
		1030	40,0		743	55502466	40		W.

By <u>C. Ecker</u>

Date <u>4/37/17</u> Checked by ____ Drilling Contractor Gres RMy **BORING LOG** LOCATION OF BORING JOB NUMBER 60487624 DRILLING METHOD: **BORING NUMBER** 5BL0598 SAMPLING METHOD: DATUM **ELEVATION** DRILLING FEET DRIVEN PID GRAPH START TIME FINISH TIME BLOWS/FT. SAMPLER SURFACE CONDITIONS: 1030 DATE SAMPLE DEPTH NUMBER (feet) 40 SP 514 Grades to: 41 507 42 155.35550246 1040 43.0 43 44 Drilling operations coased at 1030 on 4/27/17
T.D: 44.0'bgs
Borchole back file 1 Lith 2 50-16 bags of
hydratel Enviroply medium bentoning chips
to 0.5'bgs. Call patch oxight to match
surface grace. 5 6 8 9 0

Tadd StandardStuff Bormet og Form

10

1,2

By C. Ecker	+
Date 4/28/17	Checked by

Drilling Contractor	Gregg	Drilling
---------------------	-------	----------

									JOB NUMBER	LOCATION	NO LOC		
LOCA	ATION O	F BORI	NG						60487624	LOCATION			
									DRILLING METHOD: BORING NUMBER				
											BORING NUMBER		
											2 SHEET		
									SAMPLING METHOD:		M of 7		
DATU	JM					ELEVATION					DRILLING		
	L PID							표	SURFACE CONDITIONS:		START TIME FINISH TIM		
빌	FEET DRIVEN		모	ISF.	Ë			GRAPH					
SAMPLER TYPE	FEET DRIV	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE NUMBER	DEPTH				DATE DATE		
\s_	<u> </u>		SΩ	_ mov	S	NUMBER	(feet)	S					
		:	:				10						
							1 '0	П					
	<u>/</u>												
					1,2								
	K-7	<u> </u>			10		11						
										~			
								SM	Yellowih brown (10)	YK 5/6) Fine to		
	/				14.6		12		median SAND wit	h Silt, ma	it, lewe, no		
	4/4								0 65,35,0)				
	//												
					2.3		13						
	/ 									···			
							14	İ					
	K.,				27								
	K						- 5	H					
	/				1.4		١6	H					
	4/4												
							1	Ħ					
	<u>/</u> ,						17	SM	0.70	-0			
					0.9			"	@17.0'bgs increasin	9 times	0,55,45,0		
	1				10,1		1 -						
							l 8						
	K												
		992	19.0		20	55502479	, ,						
		J . J	1112		, 40	74.40 1/ 1	19						
	<u>/</u>												
n legal of					0								
The acid. Statistical Colonia in the statistical colonia in the statistical	1				0.9		20	4					
1													

By C. Eckert	-		
Date 4/28/17	Checked I	by	

11 add StandardStuff Bormul out orm

Drilling Contractor Grego Milling

LOCA	TION O	F BORI	NG						JOB NUMBER 60487624	LOCATION	· · · · · · · · · · · · · · · · · · ·	
									DRILLING METHOD:		BORING SILOS	NUMBER
												ET
									SAMPLING METHOD:	3 .	5	
DATU					PID	ELEVATION		I			DRIL START TIME	
LER	FEET DRIVEN ERED		무	/S/FT.				SOIL GRAPH	SURFACE CONDITIONS:			
SAMPLER TYPE	FEET DRIN FEET RECOVERED	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE NUMBER	DEPTH (feet)	SOIL			DATE	DATE
							20					
	4/4						2.0	SM				
							21					
					0.4		\ \alpha \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
							22		@ 225 bys color cha	seta O	1.Ve (5	Y5/3
					2.8		23					
				i			23					
					1,9		24					
	44						0.4					
							25					
					10.0			5M				
							26					
									ii ii			
		35			29.3		27					
		_										
		9935	28.0		46.8	55502495	28					
	4/3.5											
					103.3	·	29					
		7					30-		Grades to:			

By	C. E	icke	Chec	ked by	·	Drillin	g Cont	tracto	Gray Millis	RING LOG
$\overline{}$	ATION C								JOB NUMBER 60487621 DRILLING METHOD:	BORING NUMBER
									SAMPLING METHOD:	512-0599 4 of 5
DATU	JM					ELEVATION				DRILLING
SAMPLER TYPE	FEET DRIVEN FEET RECOVERED	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE 0	SAMPLE	DEPTH		SURFACE CONDITIONS:	START TIME FINISH TIME DATE DATE
35	/ 22	F	\ \frac{1}{2} \fra	<u>а</u> у	8	NUMBER	(feet)	SS	(516cr 10:	
					42.3		30	\$2	Olive (574/3) Poorly SAND, novt, Jewes, Odor	(0,00,0,0)
					269		31	5W	Grades to Light Olive Gray graded fine to medium SAM dense (0,120,0,0) No Trovery 31.5-32.0%	(516/2) Well VV. moi A. medican
	4/25				26,1		32		No recovery 31.5-52.0 %	25
			70 T		21.5	// Qu01	33			V 02.
		/m0	53.7			55502491	34	CL	Dark yellonish brown (10 Lean Clay with silt moist (0,30,30,40)	VR4/4) Sand
7. 22					3 8.2		35		No recovery 34.5'-36.0	
							36-			
	43				107.2					
					152.5		37	5M	Yellowish brown (104R5/ silty SAND, moist, dense,	6) Very fine
					132.8		38		(0,60,40,0)	
		620	39.0		192.8	5502493	39		No Tecovery 39.0-40.0	168
									Inferred contact	

I'l add StandardStuff Bormpt ogt orm

	C.E.				y	Drillir	ig Con	acı	<u> </u>	Grego Drilling	BOR	ING	LOG
_	ATION C								T	JOB NUMBER	LOCATION APN:		
										DRILLING METHOD:		SBLG	SNUMBER
									ł	SAMPLING METHOD:			of 5
DAT	JM				,	ELEVATION	1				1,119844	_	ILLING
照	FEET DRIVEN RED		щ_	S/FT.	PID			RAPH	:	SURFACE CONDITIONS:		START TIM	E FINISH TIM
SAMPLER TYPE	FEET DRIV	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE NUMBER	DEPTI (feet)	SOIL GRAPH				DATE	DATE 4/2/17
									7	Inforced Contrat			
	4/25				147.8		40	CL		Olive Gray (545)	2) Lean	CLAY	with
	70.5		41.0		2007	- Jual			-	Very fine sand, moist (0,20,30,50)	dense, D	201	
		1955	41.0		418,0	55502494	412		ł				
									1	Grades to:		A	
	\leftarrow						42	ML	-}	Oilve Gray (5/5/2 Brown (7/5/4/6) =	moffled	WHIL	Strong
	Κ,			-	178.3				-	derre, oder,	7,60,0)	1-1-1-1	~1317
	\angle					27.11.11	43		ŀ	(9) 19			
									ŀ	*			
							44		ŀ				
									7	Boring terminated a	relote by	4/28/ LFM0/	17.
									9	DE 150-12 La & L melium bertate a	1-1/1	nvi Oy	المحالة
						7.00	5		ļ	surface completel "	Th 012-	Post	
									ŀ	orphalt to natch;	SUFFER S	case	
							6		-			-	
	//							-	-		***************************************		
	\leftarrow						7	-	-				
	$/\!\!-$							-	F				
<u> </u>	\angle						8		ļ				· · · · · · · · · · · · · · · · · · ·
	\angle								ŀ				
# # #							9		ł	Color Color	100		
									F				
									ŀ	7 100 A	W-1		
							0		ļ	148 878			

By TR. SHORE, C.ECKEST Drilling Contractor GREGG DRILING Date 4/27/17 Checked by **BORING LOG** JOB NUMBER LOCATION OF BORING COXE BLDG APN: 7351-034-057 60487624.2017.1.3 IN DRILLING METHOD: HAND AUGE C:0-8'000 Vicetpulygoppide Limitel Kess P. BORING NUMBER 58L0600 SBrogon SAMPLING METHOD: TOCPACONE KITS DATUM.... **ELEVATION** DRILLING START TIME FINISH TIME PID GRAPH FEET **SURFACE CONDITIONS:** BLOWS/FT. SAMPLER SAMPLER TYPE 1450 SAMPLE CONCRETE DATE SAMPLE NUMBER SOIL **DEPTH** 4/27/17/5/3/17 (feet) 0 CONCRETE COMPACTED GLAVEL + SAND BASE ROCK V. DKBROWN (10402/2) SILTY, SANDY CLAY W GRAVEL, MOIST, STIFF, LOW MED PLASTICITY, NOW-MATIVE DEFRIS APTIFICAL FILL (15, 25, 25, 35) 0.0 2 0.4 3 0.5 VIDEBROWN (1042/2) SILTY SALD W/ CLAY DON NON MATTIC DEBRIS, ARTICIA FILL 15155.0 0.3 55502481 HA (15,40,30,15 TEACE FINE BENIEL MOIST VISITE (5,25,70,0) 0.2 MELLOWISH RROND (10425/6) SILTY FINE SAND (0,60,40,0) 15258.0 0.155502482 CLEARED TO 80 1365 BY HAW DUEER ON 4/27/17 T/Ladd/StandardStuff/BoringLogForm-Gen-9 0.3 10

Ву	CLE	ck	eA			Drilli	ng Con	tractor	Gress Vrilling		
	2/3/		Chec	ked by	′ <u> </u>		10605	 ,*	JOB NUMBER 60487674 DRILLING METHOD:	ING	LOG
1	~	_				garage 1		×	DRILLING METHOD:	BORING 3510	NUMBER 600
								*	SAMPLING METHOD:		of 5
DAT	JM	1	1	1	PID	ELEVATION	N T	, I		DRIL START TIME	LLING FINISH TIM
SAMPLER TYPE	FEET DRIVEN FEET RECOVERED	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE NUMBER	DEPTH (feet)	SOIL GRAPH	SURFACE CONDITIONS:	DATE	DATE
					-			0,			1
					0.0		10	SM.			
							\1		@ 11, 0' bos increasing five (0,70,30,0)	SAND	
	4/4				0.0		12				
	7						13				
					0.3		14	5P- 5M	Light glive from (25/5/6) gray five SAND with silt wooder or staning (0, 85,15,9)	+) Poor	Leng
					9.0		15		(0) 87(0) 47		
					0.0						
	44						16				
			08 17.5		0.0		17	ale			
							18				
		1005	19.0		9.0	555 0564	19				
					0.0		20				

	C.E			- · · ·		Dril	ling Co	ntracto	or Gress brilling	
				ked b	У					BORING LOG
LOC	ation c)F BOR	ING						JOB NUMBER 60487624	LOCATION
									DRILLING METHOD:	BORING NUMBER
										58L0600
									SAMPLING METHOD:	3 of 5
DAT	JM					ELEVATIO	N			DRILLING
E E	FEET DRIVEN ED		ш	FF.	PID			GRAPH	SURFACE CONDITIONS:	START TIME FINISH TIME
SAMPLER TYPE	FEET DRIVEN FEET RECOVERED	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE NUMBER	DEPT (feet)	비닐		DATE DATE
								, 0,		
	44						20			
	14							36.		
							21	3M		
					00		71			
					0.0	/	-			
							22			
							_			
		1015	23.0		00	55507565				
			05.0		190	33300707	23	1		
								\parallel		
	4				0.0		24			
	74									
							25			
					0.0				01.1. (250.11)	1:/ 1: //
							26	SM	moit deve no oder a) Very fine Sitty SAMP, or stailing, trace graves
									(5,75,20,0)	9. 401
								-	@26.5/65 /24-3/4	any or grands
					0.0		27	-		
	10	20 %	78.0		7.0	5592966				
4	2.5					A1 40 / -	28		@28.29 by object	age to Olive (5/4/3
	dil							-	V	U
							29	-		
					5.7			SP	Olive 9157 (574/2)	Very fine Pagely setted at
								76	grates SAM most, 2	eure trace silt, olar
				-			30		(0,77,7,0)	

1 Ladd StandardStuff Bormel oglorin

By C.Eckert Date 5/3/17 Checked by	
LOCATION OF POPING	_

1.1 add StandardStuff Bormel oglosm

	-1	+-		ited by						DOM				
LOCA	ATION C	F BOR	ING						JOB NUMBER 60487624	LOCATION				
									DRILLING METHOD:		BORING	NUMBER		
									SHEET					
DATU	M					ELEVATION			SAMPLING WEITIOD.					
				Η'n	PID	LELWHON		H	SURFACE CONDITIONS:			LLING FINISH TIME		
SAMPLER TYPE	FEET DRIVEN FEET RECOVERED	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE NUMBER	DEPTH	SOIL GRAPH			DATE	DATE		
SA	RE RE	Ē	SSE	₽8 P	δŞ	NUMBER	(feet)	S						
		1035	30.5 30.5		15.8	22203968(p	30 D	58	No recovery 30.5-	37 0' leas				
							31		110 (0.510 9 54.)	70. 99				
	4				3.0		3 2							
	3.5				4.0		33	58						
	/						34							
					4.9		74	ML	Olive (574/3) 5. file 502, noist, de (0,40,60,0)	we, sligh	LIT Y	47		
					11.5		35					CP-E		
	44				27,4		36		No secovery 35.5-36		Jane	7		
							37		Grades to:					
					34.9		38	SM	Olive 91=4 (5/4) SAND, maist, dense (0,65,35,0)	a) silty	very	tire		
		1050	391.0		36.\	55102569	39							
					24.5		40							
							70							

-	TION OI								JOB NUMBER 624 LOCATI	ORING LOC
									DRILLING METHOD:	BORING NUMBER
									SAMPLING METHOD:	5 of 5
)ATU	IM				,	ELEVATION		1 -		DRILLING START TIME FINISHTI
SAMIPLEN	FEET DRIVEN FEET RECOVERED	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE G	SAMPLE NUMBER	DEPTH (feet)	SOIL GRAPH	SURFACE CONDITIONS:	DATE DATE 5/3/
		,					40			
	3.5				13,2			SM	@40,5 bgs /4-Va" grave	1
							41		10-70,7 55 /4-12 91210	1 OF WAST
	4				3.1					
			1				42			
		1100	42.5		14.7	55502570		OEK		
							43	ML	Olive gray (979/2) SILT danse, reddirestaining (with said mai
					3.5				No TRIONEY 43,5-44,016	
							44		Bring bogminated at 1	100 m 5/3/17
							_		Boring berminated at 1 T.D. 44.0 bas Borelole 1.5 (50-10) bas of hydromedium bentonite chips to	del Environce
							5		medium bentante chips +	morete to mate
							-		Surface completed with a expirate,	
							6			
							-			
							7			
							-			
							- 8			
							9			
						1	-			
		-					- 0			

By P. SHORE, C. Eckert Drilling Contractor GREGG DRILLING **BORING LOG** Date 4/28/17 Checked by JOB NUMBER LOCATION LOCATION OF BORING APN: 7351-034-057 COKE BLDG 60487624.2017.1.3 DRILLING METHOD: HAND AUGER: 0-8'M BORING NUMBER

Pirect pull geoprale Limited Acous Rig SBL 06 01 EAST EMPLOYER SHEET 5 PARKINGLOT SB10601 SAMPLING METHOD: TERRACORT KITS DATUM..... **ELEVATION** START TIME FINISH TIME FEET GRAPH SURFACE CONDITIONS: BLOWS/FT. SAMPLER SAMPLE DEPTH SAMPLE ASPHALT SAMPLE **DEPTH** 4/28/75/1/17 (feet) ASPHALT COMPACTED GRAVEL BUSEPOUX U.DK BLOWN (10/22/2) SANOY SILT W/ CLAY + GRAVEL, MOIT, STIFF, NOW WATER DROMS ARTIFICIAL FILL 15.6 (15 30,40,15) GOENIST GREY GLEY 15/104) SILTY VIFINE SAND W/ GRAVEL, MOIST DONSE, WEAK CHEMICAL MOORE STRINING SM 14.6 (10,60,30,0 03.5'- BECOMES DEMELLOWISH BLOWN (10124/1) HA 1135 5.0 57.255502487 95.0' - MODERATE CHEMICAL ODOR YELLOWSH BROND (104/25/4) V. FINE SAND W TRACE SILT + GRAVEL, MOIST DENSE WEAK CHEMICAL ODOR 1280 (5,90,5,0) 42.0 YELLOWISH BROWN (10-72-5/4) FINE SAND W SILT + TEACE GRAVEL MOIST DENSE MODERATE CHEMICAL OPOR 1150 8.0 88.0 55502488 (5,75,20,0) CLEARED TO 8.0' B65 BY HAND AVEER ON 4/28/17 Begin direct-pul geoprate drilling at 0820 on 5/1/17 Ladd/StandardStuff/BoringLogForm-C 9

1945

10

Ву	C. Ecke	+	
Data	5/1/17	Chacked	3V

Drilling Contractor Grego Prilling

LOC	ATION C	F BORI	NG						JOB NUMBER LOCATION
									DRILLING METHOD: BORING NUMBER SBL 06 01 SHEET
									SAMPLING METHOD: 2 of 5
DATI	JM					ELEVATION	٧		DRILLING
LER	FEET DRIVEN		꾸	BLOWS/FT. SAMPLER	PID			SOIL GRAPH	SURFACE CONDITIONS: START TIME FINISH
SAMPLER TYPE	FEET DRIV FEET RECOVERED	TIME	SAMPLE	SAME	SAMPLE	SAMPLE NUMBER	DEPTH (feet)	SOIL	DATE DAT
							10		
								SM	
					2535		\11		strong odor
	/_,								
					4742		12		
	45								
					6999		13		
	/								
							14		
					227.8			4	No recovery 14.5-16.0' 655
		-		-			15	_	170 (20/07 17,7 (6.0 25)
		`							
	4	-					16	1	@16.0 loc discoved a local age to:
	44							SM	216.0 125 observed a or chase to: 21.10 brown (2.514/3) 216.5': 2" diameter large angular graved
							17		
		0845	17.5		591.3	55502501			
							18		
		-	-		151.2		-		
	/						(9	#	
		-			A1.5				
							20		

By _ Date	C.E.	ckes 117	Check	ked by	/	Drillır	ng Con	tractor	Gross Prilling	BORING LOG
	ATION C									LOCATION
									60487624	
									DRILLING METHOD:	BORING NUMBER
										SHEET
									SAMPLING METHOD:	3 of 9
DAT	UM					ELEVATION	1			DRILLING
	/ KEN	1		Fac	PID			표	SURFACE CONDITIONS:	START TIME FINISH TIME
SAMPLER	FEET DRIVEN FEET RECOVERED	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE NUMBER	DEPTI (feet)			DATE DATE
							20			
	44				^					
		1							Light olive brown	(2.57 5/4) Sonly
	/						21	CL	lear CLAY withg	(2.57 5/4) Sandy ravel mint of sard (1) re sand, rounded 1/4-1/3"
		0855	215		108.3	51102489			most stiff very til	e sand, rounded 14-12
	17	21677	41.0			71104.101		1	gi zvot, o so	
							22	4.	(5, 25, 25, 45)	
-	1				84.6		-			
							23	1		
	1	1					-	1		7 7
					60.3		24			
1	4,5									Des.
	0.1	1								
							25		000-0	1/02.05.00
				i	128.9				@25.0'bgs increar!	19 soud (5,50,75,70
	1	1	-		120.					11.40
							26			
					76.3					
	+ /	1			70.7			H		
							27			
								 	Interred contact	
	1						-		L.	
	1/_						28			(00/10)
	73.5				78.3			5~	Light brown th gray	2.516/d) well
III III	10.5	1)]	great tire to med	Cm JANV, mailt, 1005
lai lai							29		(0,00,0,0)	2.5 × 6/2) well com SAND, moist, loose
E E		0.17	ART		12-11					
rdStruf	\ _ /	9117	29.5		130.4			H		
1.1 add StandardStuff-Bormel ogf oun							30			
) life									7	
=	/	1			1					

Drilling Contractor Gras Dr. 1129 By C. Edicat **BORING LOG** JOB NUMBER LOCATION OF BORING LOCATION G0487674
DRILLING METHOD: BORING NUMBER 513L0601 SAMPLING METHOD: **ELEVATION** DRILLING FEET DRIVEN FEET RECOVERED GRAPH START TIME FINISH TIME SURFACE CONDITIONS: SAMPLER TYPE SAMPLE NUMBER (feet) 30 96.4 No recovery 30.5-32.0 655 31 92 33.0 2111 5502502 33 Grader to: Olive brown (2574/4) very fine sandy SILT, moist dense, odor (0,35,65,0) 771.9 34 321.3 367.2 3 5 No recovery 35.0-36,0 bys Inferred contact 36 Olive brown (2.574/3) silty SAND, very fine sand, moist, dense, trace rounded gravels, a dor (5, 70, 25, 0) 123.3 37 38 219.2 3/8-3/4" rounded gravely observed @ 38.5 /25 39 0930 390 55102503 360.7 40

add StandardStuff Bermel ogt our

Ву	C. E.	cker	+			Drill	ng Con	tracto	Gress Prilling			
				ked by	/				JOB NUMBER	BOR	ING	LOG
LOC	ATION C	F BORI	NG						60487624	LOCATION		
									DRILLING METHOD:		SISLO	NUMBER
									SAMPLING METHOD:			of 5
DAT	UM			1	1	ELEVATIO	N				DRII START TIME	LLING FINISH TIM
띪	FEET DRIVEN		щ_	S/FT.	PID			GRAPH	SURFACE CONDITIONS:		J.A.C. TIME	
SAMPLER	FEET DRIVEN FEET RECOVERED	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE NUMBER	DEPTI (feet)	비 글			DATE	0945 5/VI=
							40	-				
	4/4							SM	,			
					247.8		41		@41.0'635 /2-3/4"	charkerar	evel obs	erve I
					1		71					
	/	0945	425		272.0	55102504	42	MI	Olive (5/4/3) same ist still of or (0,35,65,0)	ndy SILI	, very fi	ne sand
			10.7						(0,35,65,0)			
							43					
					161.2							
					Johra		44.	1	Boring terminated (T.D: 44.0 bgs Bore 2 (50-16) bags & Ly	0945 00	5/1/1	7
									2 (50-16) has fly	Isales En	or land	med.
							5		completed with cold	pata	palt t	0
									match surrace grad			
	17						6					
	17											
	1						7					
		-										
							8					
	1											
ylamos	//	-		-			9					
Hashall		-										
Tadd StandardStuff Bormet ogs om	//						_ 0					
Ē.												

Date	4/28/	17_	Check	ked by			BORING LOG		
LOCA	ATION O	F BORI	NG	CC	WE T	BLDG			JOB NUMBER LOCATION
	T					=			60187624. 2017.13 APN: 7351-034-057
	}		A DL	DITE	1				DRILLING METHOD: HAND NOTE: 0-865 BORING NUMBER Direct pub Geoprabe Limited Access Rig STS-0602 SHEET
		EKST	EMPL	LUT	<i>.</i>				SHEET SHEET
		PAR	.KIPO		P	SBLOGOZ	k)	SAMPLING METHOD: TERRORE KITS OF 5
DATU	JM					ELEVATION	V		DRILLING.
					PID			¥	SURFACE CONDITIONS: START TIME FINISH TIME
띰	FEET DRIVEN RED	g-l	ᄬᅮ	IS/FI	쁘			GRAPH	AS ALACT 0845 1215
SAMPLER TYPE	FEET DRIN PEET RECOVERED	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE NUMBER	DEPTH	ᅦᅥ	DATE DATE
-S⊢	/ <u>r.</u> «	 -	တΩ	യഗ	S	NUMBER	(feet)	ý.	4/28/17/4/28/17
									444,44
							0	Y	BOHALT
								GW	
								VI COM	COMPACTED GROKE BASE POIL
							1	1	DK BROWN (10423/3) SANDY SILT W/ CLAY
	/					***		1	+ FRANEL, MOIST, STIFF, NON-NATTUR
					0.2			ML	DEBRIS ARTIFICIAL FILL
					0,2		2	3	(15,30,40,15)
								X	
					1.5			Y	GREENISH GREY (GLEY I S/104) SILTY V. FINE SAND W BRAVEL, MOIST, DEUSE, WEAK CHEMICAL DOCK STRINING
	\leftarrow				1.2		3	SM	SAND W BRAVEL, MOIST, DEUSE, WEAK
1									(15, 55, 30, 0)
					20			V)	
	Ĺ.,				0.3		4		@3.5' - BECOMES DK YELLOWISH BROWN (10183/6)
								Ÿ	NO ODOR
	-/				,			il -	MELLOWSH BROWN LOUR 5/6) F. ME SAND W
HX	<i>/</i>	805	5.0	_	0.4	95502485	5	N.	GENORA BROWN (OUR 5/6) F. NE SAND W/ BRAVEL + TROCE SILT, MOIST DENSE, NO
								SF	OPOL
							1	9	(15,80,5,6)
							6		MFLLOWISH BROWN (10425/4) SILTY FILE SALD
					95.0	0.0000 18.000		SM	IN TENCT FINE GRAZIMOIST STIFF
	$\overline{}$				1510		-		MODERATE CHEMICAL ODOR
							7	1	(5,55,40,0)
								X .	
-							_	[/]	A 7 5
HA	/-	1020	8.0	_	2,286	55502486			\$7.5'-STRONG CHEMICAL ODOR
	4/						8	Ţ	(LEASED TO 8,0' BOS BY HAND AUGERON 4/28/17
[14						4	\parallel	CHERRED TO 8.0° BOS BYHAND RUSTEDN 4/28/17 Commance direct pub drilling and scapping at 1100 on 4/28/17
a a a a a a a a a a a a a a a a a a a					970.4				1100 on 4/28/17
					1 190		9	#	
1) Ladda Standard Stuff Collected at the] [
The state of the s									
					-		10	4	
Tag									

By CEder-Date 4/28/17 Checked by Drilling Contractor Gress DrMry **BORING LOG** JOB NUMBER LOCATION LOCATION OF BORING 60487674 APN: DRILLING METHOD: **BORING NUMBER** 513L0602 **SAMPLING METHOD:** DATUM.... **ELEVATION** DRILLING GRAPH START TIME FINISH TIME PEET PID SURFACE CONDITIONS: DATE DATE SOIL **DEPTH SAMPLE** NUMBER (feet) 10 3233 11 1006 12 1831 789.0 13 Odas 2553 14 No recovery 14.5-16.0 65 | 5 16 @16.01 bgs boomes (584/3) Olive 1452 1803 17 1221 8 I/Ladd/StandardStuff/BoringLogForm-General 299955502496 1120 190 19 201

OC/	ATION C								JOB NUMBER LOCATION APN:	RING L	
									DRILLING METHOD:	BORING NUI	NBE
									SAMPLING METHOD:	SHEET 3 of	5
DATU	JM					ELEVATION				DRILLIN	
TYPE	FEET DRIVEN FEET RECOVERED	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE G	SAMPLE NUMBER	DEPTH (feet)	SOIL GRAPH	SURFACE CONDITIONS:	DATE	DATI
	4/4				149.1		20	SM	Olive brown (2.51 4/4) SAND, moist, dance, ode	silly very	9- - L
					361.2	10.10	21		(0,55,45,0)		-
					376.2	,	22				
					184.4		23				
	44			e de se decisión como considerante	463.7		24				
		inlate	25.5				25	-			
		145	25.5		F113	5,56,2497	26	_M			
					387.J		27	SM.	Tebra.		-
	4/				57,7		28				
	/2	-			335,7 556.4		29				

В	y(CE	cker	t			Drillir	ng Con	tractor	Gress Prilling			
D	ate	4/29	FIR	Chec	ked by	/					BOR	ING I	LOG
L	OCA	TION O	F BORI	NG						JOB NUMBER 60487624	LOCATION APN:		
										DRILLING METHOD:		BORING	
												SHE	EET
										SAMPLING METHOD:		4.	if 9
Γ	DATU	M					ELEVATION	1	or as sometimes			DRIL	LING
		FEET DRIVEN 3ED			⊢~	PID			F	SURFACE CONDITIONS:		START TIME	
1	SAMPLEK TYPE	FEET DRIN	l	SAMPLE	BLOWS/FT. SAMPLER	SAMPLE			SOIL GRAPH			DATE	DATE
1	ZA	FEET	TIME	SAM	BLO	SAM	SAMPLE NUMBER	DEPTI (feet)	SOIL				5
\vdash								30	Н	No recovery 30.0-	320/t	~<	·
										714 (601017)5.5	2000	9)	
										1921			
\vdash		-				<u> </u>		31					
_		<u>/_</u> ,								- 1		***	
										Ad Minde Manage in Problem (see Inspection and Section 1)			
		4/						32	SW			10	
_		25				1887			1300				
										Grades to: Olive (575/3) si dense, odor	The Rive	< \(\lambda \(\lambda \) \(\lambda \)	ian a (Th
r			_			1		33	5M	dense, odor	117 41016	- 37110	, VP.J1J1
-		<u> </u>	1700	33.5		1854	55502498		4	(0,60,40,0)			
								3 4		(0,60,40,0)			
								74	1	2			
\vdash		\leftarrow		_	-	3865		-	4	No seconory 34.5-3	LotLac		
								3 5	į.	144 (ECONORY 3 (2))	0.0 293		
										• ,			
\vdash		\leftarrow											
								36	Ų l	2000		260	
		4/4							SM				
\vdash													
L		Ĺ,			ļ	1773		37		() 77 0/1 1/ 3/	, A		
										@ 37.0' bys 1/2-3/4	Counded a	sevely.	
								1	1				
		/			-	-		38	#	- 1999		401	
150				7		A 1.4	44 5000	1	1				
High High		\leftarrow	1819	39.0	-	258.4	55502499	39	+	71 - 41 - 41 - 41 - 41 - 41 - 41 - 41 -		=====	
ra IIII													
TOTAL OF						7/2 2							
1000						3627		40	4				

_	1/28/								JOB NUMBER	LOCATION	ING	
									60487624	APN:	1	
									DRILLING METHOD:		SIZL O	BMUN B
									474		5 st	IEET
									SAMPLING METHOD:	***************************************	15	01
	IM				PID	ELEVATION	<u> </u>	T			DRI START TIMI	LLING
۲ ۲	PEET DRIVE		щ_	S/FT.				RAP	SURFACE CONDITIONS:		- OTAKI TIMI	121
TYPE	FEET DRIVEN FEET RECOVERED	TIME	SAMPLE DEPTH	BLOWS/FT. SAMPLER	SAMPLE	SAMPLE NUMBER	DEPT (feet	SOIL GRAPH		111	DATE	4/28
	11.				25)26		40					
	12				291.8		-1					
		1225	41.0		369,2	5502500	41		Incressly finer	Q U) M/ 2/	0 50 5	20.0
						•			Inclusing fine (41.060	79,5	7970
					1525		42				1	
									No recovery: 4	1,0-99,0	bgs	
							43		4	***	The same of the same same	
							-73					
						10-1111-1111-111]					
							44		Boxing terminated	9+ 1215	n 4/2	8/1
						- 1733,000		Н	with 2 (90-16) ba	35 of hydr	ated En	vitap
						5.40	5	Н	Suffice completed	with cold y	2.5 bgs.	spL4
								Н	to made exist	ing grade!		1
	-					· · · · · · · · · · · · · · · · · · ·	6	H				
							-					
		,					7	H				
								H				
							8					
									1/2			
							9					
							3			300		
							0					

ATTACHMENT 8 ROI, Soil Permeability and Pore Gas Velocity Calculations

Del Amo OU1 SVE Pilot Study 4/2/2018 4:55 PM

Test Run: SVE-1A (Shallow) (without VM-1A); end of stepped rate test

From: Johnson et al., 1990. An analytical method for k - air permeability - assuming flow conditions are at steady state or near-steady state.

Monitoring Point Data

_		11101111		
			Depth to	
		Distance	Top of	
		from Test	Screen	Vacuum
	Well ID	Well (ft)	(Feet)	(IWC)
1	VM-2A	10.21	7	0.94
2	VM-3A	15.25	7	0.42
3	VM-4A	20.08	7	0.32
4	VM-5A	29.888	7	0.305
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

slope(m)	intercept (b)	R²					
-0.5778851	2.149742406	0.7592					
x-intercept @ y=0.5 IWC							
17.37	feet						

air permeability (k _{air):}						
2.421E-09	cm ²					
0.242	Darcy					

Del Amo OU1 SVE Pilot Study

Test Run: SVE-1A (Shallow) (without VM-1A); end of stepped rate test

Estimated of Soil Gas Velocity as a function of Radial Distance

From Stumpf, 1992:

Del Amo OU1 SVE Pilot Study 4/3/2018 4:00 PM

Test Run #3: SVE-1A (Shallow) (without VM-1A); day 1 constant rate test

From: Johnson et al., 1990. An analytical method for k - air permeability - assuming flow conditions are at steady state or near-steady state.

Test Well Conditions **Well Flow** (radius of well Well Flow Rw: in inches) 13.3 in Q (SCFM) Screened Interval Atmospheric Thickness Pressure H: 8 ft (feet) Patm 1 (ATM) Well Pressure (vacuum; Top of Screen: ft -156.5 Pwg IWC) Well Absolute Pressure The solution for k is as follows: Pwa 0.615 (ATM) viscosity of air Q · µair · In 1.80E-04 (gm/cm⁻¹ * sec) u_{air} H·π·Pwa· 1

Monitoring Point Data

_		11101111		
			Depth to	
		Distance	Top of	
		from Test	Screen	Vacuum
	Well ID	Well (ft)	(Feet)	(IWC)
1	VM-2A	10.21	7	0.75
2	VM-3A	15.25	7	0.36
3	VM-4A	20.08	7	0.26
4	VM-5A	29.888	7	0.26
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

slope(m)	intercept (b)	R²					
-0.4510381	1.698047349	0.7668					
x-intercept @ y=0.5 IWC							
14.24	feet						

air permeability (k _{air):}						
7.412E-09	cm ²					
0.741	Darcy					

Del Amo OU1 SVE Pilot Study

Test Run #3: SVE-1A (Shallow) (without VM-1A); day 1 constant rate test

Estimated of Soil Gas Velocity as a function of Radial Distance

From Stumpf, 1992:

Del Amo OU1 SVE Pilot Study 4/4/2018 4:45 PM

Test Run #4: SVE-1A (Shallow) (without VM-1A); day 2 constant rate test

From: Johnson et al., 1990. An analytical method for k - air permeability - assuming flow conditions are at steady state or near-steady state.

Test Well Conditions **Well Flow** (radius of well Well Flow Rw: in inches) 11.4 in Q (SCFM) Screened Interval Atmospheric Thickness Pressure H: 8 ft (feet) Patm 1 (ATM) Well Pressure (vacuum; Top of Screen: ft -156.50 Pwg IWC) Well Absolute Pressure The solution for k is as follows: Pwa 0.615 (ATM) viscosity of air Q · µair · In 1.80E-04 (gm/cm⁻¹ * sec) u_{air} H·π·Pwa· 1

Monitoring Point Data

	Well ID	Distance from Test Well (ft)	Depth to Top of Screen (Feet)	Vacuum (IWC)
1	VM-2A	10.21	7	0.83
2	VM-3A	15.25	7	0.42
3	VM-4A	20.08	7	0.3
4	VM-5A	29.888	7	0.26
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

slope(m) -0.5253808	intercept (b) 1.955762599	R ² 0.8322					
x-intercept @ y=0.5 IWC							
15.97	feet						

air permeability (k _{air):}						
6.495E-09	cm ²					
0.650	Darcy					

Del Amo OU1 SVE Pilot Study

Test Run #4: SVE-1A (Shallow) (without VM-1A); day 2 constant rate test

Estimated of Soil Gas Velocity as a function of Radial Distance

From Stumpf, 1992:

Del Amo OU1 SVE Pilot Study 4/5/2018 4:50 PM

Test Run #5: SVE-1A (Shallow) (without VM-1A); day 3 constant rate test

From: Johnson et al., 1990. An analytical method for k - air permeability - assuming flow conditions are at steady state or near-steady state.

Test Well Conditions **Well Flow** (radius of well Well Flow Rw: in inches) 8.15 in Q (SCFM) Screened Interval Atmospheric Thickness Pressure H: 8 ft (feet) Patm 1 (ATM) Well Pressure (vacuum; Top of Screen: ft -149.70 Pwg IWC) Well Absolute Pressure The solution for k is as follows: Pwa 0.632 (ATM) viscosity of air Q · µair · In (gm/cm⁻¹ * sec) 1.80E-04 u_{air} H·π·Pwa· 1

Monitoring Point Data

	Monitoring Point Data			
	Well ID	Distance from Test	Depth to Top of Screen	Vacuum (IWC)
_	_	Well (ft)	(Feet)	` ,
1	VM-2A	10.21	7	0.77
2	VM-3A	15.25	7	0.36
3	VM-4A	20.08	7	0.26
4	VM-5A	29.888	7	0.2
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

slope(m)	intercept (b)	R ²
-0.5208763	1.88787407	0.8420
x-inte	rcept @ y=0.5	IWC
14.36	feet	

air permeability (k _{air):}		
4.835E-09	cm ²	
0.484	Darcy	

Del Amo OU1 SVE Pilot Study

Test Run #5: SVE-1A (Shallow) (without VM-1A); day 3 constant rate test

Estimated of Soil Gas Velocity as a function of Radial Distance

From Stumpf, 1992:

Del Amo OU1 SVE Pilot Study 4/6/2018 2:45 PM

Test Run #6: SVE-1A (Shallow) (without VM-1A); end of constant rate test

From: Johnson et al., 1990. An analytical method for k - air permeability - assuming flow conditions are at steady state or near-steady state.

Test Well Conditions **Well Flow** (radius of well Well Flow 9.58 Rw: in inches) in Q (SCFM) Screened Interval Atmospheric Thickness Pressure H: 8 ft (feet) Patm 1 (ATM) Well Pressure (vacuum; Top of Screen: ft -163.30 Pwg IWC) Well Absolute Pressure The solution for k is as follows: Pwa 0.599 (ATM) viscosity of air Q · µair · In (gm/cm⁻¹ * sec) 1.80E-04 u_{air} H·π·Pwa· 1

Monitoring Point Data

_	monitoring i ont bata			
			Depth to	
		Distance	Top of	
		from Test	Screen	Vacuum
	Well ID	Well (ft)	(Feet)	(IWC)
1	VM-2A	10.21	7	0.76
2	VM-3A	15.25	7	0.33
3	VM-4A	20.08	7	0.23
4	VM-5A	29.888	7	0.18
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

slope(m)	intercept (b)	R ²
-0.5296556	1.890494114	0.8239
x-inte	rcept @ y=0.5	IWC
13.81	feet	

air permeability (k _{air):}		
4.999E-09	cm ²	
0.500	Darcy	

Del Amo OU1 SVE Pilot Study

Test Run #6: SVE-1A (Shallow) (without VM-1A); end of constant rate test

Estimated of Soil Gas Velocity as a function of Radial Distance

From Stumpf, 1992:

Del Amo OU1 SVE Pilot Study 4/11/2018 4:30 PM Test Run #10: SVE-1B (Deep) (all data); end of day 3 constant rate test

From: Johnson et al., 1990. An analytical method for k - air permeability - assuming flow conditions are at steady state or near-steady state.

Test Well Conditions Well Flow (radius of well Well Flow Rw: in inches) 69 in Q (SCFM) Screened Interval Atmospheric Thickness Pressure H: 22 ft (feet) Patm (ATM) Well Pressure (vacuum; Top of Screen: 20 ft -52.00 Pwg IWC) Well Absolute Pressure The solution for k is as follows: Pwa 0.872 (ATM) viscosity of air Q · µair · In 1.80E-04 (gm/cm⁻¹ * sec) u_{air} H·π·Pwa· 1

Monitoring Point Data

-	Midfilloring Foint Data			
			Depth to	
		Distance	Top of	
		from Test	Screen	Vacuum
	Well ID	Well (ft)	(Feet)	(IWC)
1	VM-1B	14.92	20	6.12
2	VM-2B	22.25	20	4.89
3	VM-3B	26.58	19	4.15
4	VM-4B	37.17	20	3.35
5	VM-5B	49.25	20	2.71
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

slope(m)	intercept (b) 13.78704606	R ² 0.9899
	ercept @ y=0.5	
101.68	feet	

air permeability (k _{air):}		
7.115E-08 cm ²		
7.115	Darcy	

Del Amo OU1 SVE Pilot Study

Test Run #10: SVE-1B (Deep) (all data); end of day 3 constant rate test

Estimated of Soil Gas Velocity as a function of Radial Distance

From Stumpf, 1992:

Del Amo OU1 SVE Pilot Study 4/12/2018 5:00 PM

Test Run #11: SVE-1B (Deep) (all data); end of day 4 constant rate test

From: Johnson et al., 1990. An analytical method for k - air permeability - assuming flow conditions are at steady state or near-steady state.

Test Well Conditions Well Flow (radius of well Well Flow Rw: in inches) 67 in Q (SCFM) Screened Interval Atmospheric Thickness Pressure H: 22 ft (feet) Patm 1 (ATM) Well Pressure (vacuum; Top of Screen: 20 ft -52.00 Pwg IWC) Well Absolute Pressure The solution for k is as follows: Pwa 0.872 (ATM) viscosity of air Q · µair · In 1.80E-04 (gm/cm⁻¹ * sec) u_{air} H·π·Pwa· 1

Monitoring Point Data

	Monitoring Point Data			
			Depth to	
		Distance	Top of	
		from Test	Screen	Vacuum
	Well ID	Well (ft)	(Feet)	(IWC)
1	VM-1B	14.92	20	6.12
2	VM-2B	22.25	20	5
3	VM-3B	26.58	19	4.16
4	VM-4B	37.17	20	3.37
5	VM-5B	49.25	20	2.73
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

slope(m)	intercept (b)	R ²
-2.8828421	13.84566057	0.9883
x-inte	rcept @ y=0.5	IWC
102.45	feet	

air permeability (k _{air):}		
6.916E-08	cm ²	
6.916	Darcy	

Del Amo OU1 SVE Pilot Study

Test Run #11: SVE-1B (Deep) (all data); end of day 4 constant rate test

Estimated of Soil Gas Velocity as a function of Radial Distance

From Stumpf, 1992:

Del Amo OU1 SVE Pilot Study 4/13/2018 11:40 AM Test Run #12: SVE-1B (Deep) (all data); end of constant rate test

From: Johnson et al., 1990. An analytical method for k - air permeability - assuming flow conditions are at steady state or near-steady state.

Test Well Conditions Well Flow (radius of well Well Flow 72 Rw: in inches) in Q (SCFM) Screened Interval Atmospheric Thickness Pressure H: 22 ft (feet) Patm 1 (ATM) Well Pressure (vacuum; Top of Screen: 20 ft -52.00 Pwg IWC) Well Absolute Pressure The solution for k is as follows: Pwa 0.872 (ATM) viscosity of air Q·µair·In 1.80E-04 (gm/cm⁻¹ * sec) u_{air} H·π·Pwa· 1

Monitoring Point Data

	Well ID	Distance from Test Well (ft)	Depth to Top of Screen (Feet)	Vacuum (IWC)
1	VM-1B	14.92	20	6.1
2	VM-2B	22.25	20	4.81
3	VM-3B	26.58	19	4.02
4	VM-4B	37.17	20	3.74
5	VM-5B	49.25	20	2.06
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

slope(m) -3.139528	intercept (b) 14.56773537	R ² 0.9532
x-inte	rcept @ y=0.5	IWC
88.31	feet	

air permeability (F	(_{air):}									
7.277E-08 cm										
7.277	Darcy									

Del Amo OU1 SVE Pilot Study

Test Run #12: SVE-1B (Deep) (all data); end of constant rate test

Estimated of Soil Gas Velocity as a function of Radial Distance

From Stumpf, 1992:

ATTACHMENT 9 Pre-design Investigations Soil Sampling Data

TABLE 1
PROPERTY 23 SHALLOW SOIL VOC DATA
Pre-design Investigation
Soil and NAPL Operable Unit
Del Amo Superfund Site

											Detected V	OC Concent	rations (μg/kg)								
Area	Boring	Sample	Depth (ft bgs)	Benzene Bromoform	2-Butanone (MEK)	n-Butylbenzene	sec-Butylbenzene	Carbon Disulfide	Cyclohexane	Ethylbenzene	Isopropylbenzene (Cumene)	p-isopropyltoluene	Naphthalene	n-Propylbenzene	Styrene	PCE	Toluene	1,1,2-Trichloro- 1,2,2-trifluoroethane (Freon 113)	TCE	7	1,3,5-Trimethylbenzene	p/m-Xylene
		SSS02522 SSS02523		3 J <0.74 <3.7 1 J <0.89 <4.4	<15 <18	<0.74 <0.89	<0.74 <0.89	<7.4 <15 <8.9 <18	<37 <44	<0.74	<0.74	<0.74 <0.89	<7.4 <8.9	<1.5 <1.8	<0.74 <0.89		<0.74 <0.89	<7.4 <8.9	<1.5 <1.5 <1.8 <1.8		<0.74 <0.89	<1.5 <1.8
	SBL0578	SSS02525	12.0 9.2		J <18	<0.91	<0.91	<9.1 <18	<46	<0.91	<0.91	<0.91	<9.1	<1.8	<0.91		<0.91	<9.1	<1.8 <1.8		<0.91	<1.8
		SSS02526		9 J <0.83 <4.2	<17	<0.83	<0.83	<8.3 <17	<42	<0.83	<0.83	<0.83	<8.3	<1.7	<0.83		<0.83	<8.3	<1.7 <1.7		<0.83	<1.7
		SSS02537		14 0.33 J <4.4	<18	<0.88	<0.88	1.9 J <18		<0.88 <0.98	<0.88	<0.88	<8.8 <9.8	<1.8	<0.88		<0.88 <0.98	<8.8	<1.8 <1.8 <2.0 <2.0		<0.88 <0.98	<1.8 <2.0
	SBL0579	SSS02538 SSS02540	5.0 20 10.0 8.2	0 J <0.98 <4.9 2 J	<20 <15	<0.98 <0.76	<0.98 <0.76	<9.8 <20 <7.6 <15	<49 <38	<0.98	<0.98	<0.98 <0.76	<9.8 <7.6	<2.0 <1.5	<0.98 <0.76		<0.98	<9.8 <7.6	<2.0 <2.0 <1.5 <1.5		<0.98	<1.5
		SSS02542	14.5 <49	0.23 J <4.9	<20	<0.70	<0.70	<9.8 <20	<49	<0.98	<0.70	<0.70	<9.8	<2.0	<0.78	+	<0.70	<9.8	<2.0 <2.0		<0.98	<2.0
		SSS02397	4.5 8.8	+	<14	<0.68	<0.68	<6.8 <14	<34		<0.68	<0.68	<6.8	<1.4	<0.68		<0.68	<6.8	<1.4 <1.4		<0.68	<1.4
	SBL0580	SSS02398	7.5 6.3	3 J 0.35 J <4.1	<16	<0.81	<0.81	<8.1 <16	<41	<0.81	<0.81	<0.81	<8.1	<1.6	<0.81	0.20 J	<0.81	<8.1	<1.6 <1.6	<1.6	<0.81	<1.6
		SSS02512	10.0 12	2 J 0.24 J <4.8	<19	<0.96	<0.96	<9.6 <19	<48	0.22 J	<0.96	<0.96	<9.6	<1.9	<0.96	<0.96	<0.96	<9.6	<1.9 <1.9	<1.9	<0.96	<1.9
		SSS02402		L J <0.80 <4.0	<16	<0.80	<0.80	<8.0 <16	<40	<0.80	<0.80	<0.80	<8.0	<1.6	<0.80		<0.80	<8.0	<1.6 <1.6	<1.6	<0.80	<1.6
	SBL0581	SSS02403		5 J <0.83 <4.2	<17	<0.83	<0.83	<8.3 <17	<42	<0.83	<0.83	<0.83	<8.3	<1.7	<0.83		<0.83	<8.3	<1.7 <1.7	<1.7	<0.83	<1.7
		SSS02515		L J <0.96 <4.8 2 J 1.3 <4.6	<19	<0.96	<0.96	<9.6 <19	<48 <46	<0.96	<0.96	<0.96	<9.6	<1.9	<0.96 <0.92	+	<0.96	<9.6	<1.9 <1.9		<0.96	<1.9
		SSS02532 SSS02534	5.0 12 8.0 11		<18 <17	<0.92 <0.84	<0.92 <0.84	<9.2 <18 <8.4 <17	<46	<0.84	<0.92 <0.84	<0.92 <0.84	<9.2 <8.4	<1.8 <1.7	<0.92		<0.92 <0.84	<9.2 <8.4	<1.8 <1.8 <1.7 <1.7		<0.92 <0.84	<1.8 <1.7
	SBL0582	SSS02535	10.0 9.6		<17	<0.83	<0.83	<8.3 <17	<42	<0.83	<0.83	<0.83	<8.3	<1.7	<0.83		<0.83	<8.3	<1.7 <1.7		<0.83	<1.7
		SSS02536	14.0 14		<20	<1.0	<1.0	<10 <20	<50	<1.0	<1.0	<1.0	<10	<2.0	<1.0		<1.0	<10	<2.0 <2.0		<1.0	<2.0
		SSS02429) J <0.79 <4.0	<16	<0.79	<0.79	<7.9 <16	<40	<0.79	<0.79	<0.79	<7.9	<1.6	<0.79	0.78 J		<7.9	<1.6 <1.6		<0.79	<1.6
	SBL0583	SSS02430	8.0 7.5	5 J <0.76 <3.8	<15	<0.76	<0.76	<7.6 <15	<38	<0.76	<0.76	<0.76	<7.6	<1.5	<0.76	0.62 J	<0.76	<7.6	<1.5 <1.5	<1.5	<0.76	<1.5
		SSS02516	10.0 14		<19	<0.95	<0.95	<9.5 <19	<47	<0.95	<0.95	<0.95	<9.5	<1.9	<0.95		<0.95	<9.5	<1.9 <1.9	<1.9	<0.95	<1.9
		SSS02399	4.5 7.9		<14	<0.69		<6.9 <14	<35		<0.69	<0.69	<6.9	<1.4	<0.69		<0.69	<6.9	0.66 J <1.4	<1.4	<0.69	<1.4
	SBL0584	SSS02400		12 0.42 J <4.1		<0.81		<8.1 <16	<41		<0.81	<0.81	<8.1	<1.6	<0.81	0.33 J		<8.1	<1.6 <1.6		<0.81	<1.6
Northwest		SSS02401	7.5 33	3 J 0.41 J <4.1 54 0.29 J <4.2	<16 <17	<0.81	<0.84	<8.1 <16	<41 <42		<0.81	<0.81 <0.84	<8.1 <8.4	<1.6 <1.7	<0.81 <0.84		<0.81 <0.84	<8.1 <8.4	0.52 J <1.6	<1.6 <1.7	<0.81 <0.84	<1.6 <1.7
		SSS02517 SSS02426	10.0 6 5.0 <1,600	64 <160	<650	1,100		0.93 J <17 <330 <650	<1,600	2,300		<33		200	120 330			0 <330	<65	70		150 250
		SSS02427	8.0 11		<16	3.5			<40		<0.81	<0.81			0.48 J 0.93			<8.1	<1.6 <1.6		<0.81	0.58 J
	SBL0585	SSS02428	8.0 9.4		<15	1.3		<7.5 <15	<38		<0.75		1.4	19 <1.5	<0.75		<0.75	<7.5	<1.5	4.6 <1.5	<0.75	0.29 J
		SSS02520	10.0 38	3 J 0.25 J <4.2	6.8 J	<0.84	<0.84	<8.4 <17	<42	<0.84	<0.84	<0.84	<8.4	<1.7	<0.84	1.5	<0.84	<8.4	<1.7 <1.7	<1.7	<0.84	<1.7
		SSS02521	15.0 18	3 J 0.28 J <4.3	<17	<0.87	<0.87	<8.7 <17	<43	<0.87	<0.87	<0.87	<8.7	<1.7	<0.87	0.28 J	<0.87	<8.7	<1.7 <1.7	<1.7	<0.87	<1.7
		SSS02453	5.0 9.0		<15	<0.75	<0.75	<7.5 <15	<37		<0.75	<0.75	<7.5	<1.5	<0.75		<0.75	<7.5	<1.5 <1.5		<0.75	<1.5
	SBL0586	SSS02454	8.0 17		<16	<0.82	<0.82	<8.2 <16	<41		<0.82	<0.82	<8.2	<1.6	<0.82		<0.82	<8.2	<1.6 <1.6		<0.82	<1.6
		SSS02544 SSS02460	10.0 15	6 J 0.46 J <5.4 9 J <0.72 <3.6	<21 <14	<1.1 <0.72	<1.1	<11 <21 <7.2 <14	<54 <36	<1.1 <0.72	<1.1	<1.1	<11 <7.2	<2.1 <1.4	<1.1	<1.1 0.48 J	<1.1	<11 <7.2	<2.1 <2.1 <1.4 <1.4		<1.1 <0.72	<2.1
		SSS02460 SSS02480	5.0 19 8.0 18		<14	<0.72	<0.72 <0.77	<7.2 <14 <7.7 <15	<39	<0.72	<0.72 <0.77	<0.72 <0.77	<7.2	<1.4	<0.72 <0.77	0.48 J 0.51 J		<7.2	<1.4 <1.4 <1.5 <1.5		<0.72	<1.4 <1.5
	SBL0587	SSS02508	10.0 12		<16	<0.79	<0.79	<7.9 <16	<40		<0.79	<0.79	<7.9	<1.6	<0.79		<0.79	<7.9	<1.6 <1.6		<0.79	<1.6
		SSS02509		5 J < 0.88 < 4.4	<18	<0.88	<0.88	<8.8 <18	<44		<0.88	<0.88	<8.8	<1.8	<0.88	0.52 J		<8.8	<1.8 <1.8	<1.8	<0.88	<1.8
		SSS02457	5.0 19	0.24 J <4.3	<17	<0.85	<0.85	<8.5 <17	<43	0.25 J	<0.85	<0.85	<8.5	<1.7	<0.85	<0.85	<0.85	<8.5	<1.7 <1.7	<1.7	<0.85	<1.7
	SBL0588	SSS02459	8.0 18	3 J 0.34 J <3.9		<0.78	<0.78	<7.8 <16	<39	<0.78	<0.78	<0.78	<7.8	<1.6	<0.78	<0.78	<0.78	<7.8	<1.6 <1.6	<1.6	<0.78	<1.6
				3 J <0.92 <4.6	<18	<0.92	<0.92	<9.2 <18	<46	<0.92	<0.92	<0.92	<9.2	<1.8	<0.92		<0.92	<9.2	<1.8 <1.8		<0.92	<1.8
			5.0 11			<0.80	<0.80	<8.0 <16	<40	<0.80	<0.80	<0.80	<8.0	<1.6	<0.80		<0.80	<8.0	<1.6 <1.6		<0.80	<1.6
	SBL0589 -	SSS02529	8.0 10		<18	<0.89	<0.89	<8.9 <18	<45	<0.89	<0.89	<0.89	<8.9	<1.8	<0.89		<0.89	<8.9	<1.8 <1.8		<0.89	<1.8
		SSS02530 SSS02531	11.0 <39 15.0 9.4	0.20 J <3.9 1 J 0.36 J <4.3		<0.78 <0.85	<0.78 <0.85	<7.8 <16 <8.5 <17	<39 <43	<0.78 <0.85	<0.78 <0.85	<0.78 <0.85	<7.8 <8.5	<1.6 <1.7	<0.78 <0.85	0.95	<0.78	<7.8 <8.5	<1.6 <1.6 <1.7 <1.7		<0.78 <0.85	<1.6 <1.7
		SSS02531 SSS02455	5.0 9.4 5.7	_		<0.85	<0.85	<7.7 <15	<38	<0.85	<0.85	<0.85	<8.5 <7.7	<1.7	<0.85	0.95 0.71 J		<8.5 <7.7	<1.7 <1.7 <1.7 <1.7		<0.85	<1.7
	SBL0590	SSS02456			<15	<0.75	<0.75	<7.5 <15	<37	<0.75	<0.75	<0.75	<7.5	<1.5	<0.75	0.713 0.23 J		<7.5	<1.5 <1.5		<0.77	<1.5
		SSS02545		_		<0.91		<9.1 <18	<45	<0.91	<0.91	<0.91	<9.1	<1.8	<0.91		<0.91	<9.1	<1.8 <1.8		<0.91	<1.8
1				<u> </u>	1		1	L -	1	1		1				1		<u> </u>	1 1			ı

TABLE 1 PROPERTY 23 SHALLOW SOIL VOC DATA Pre-design Investigation Soil and NAPL Operable Unit Del Amo Superfund Site

														Detect	ted VOC Concentrati	ions (μg/kg)										
Area	Boring	Sample	Depth (ft bgs)	Acetone	Benzene	Bromoform	2-Butanone (MEK)	n-Butylbenzene	sec-Butylbenzene	Carbon Disulfide	Chloromethane	Cyclohexane	Ethylbenzene	 Sopropylbenzene	p-isopropyltoluene	Naphthalene	n-Propylbenzene	Styrene	PCE	Toluene	1,1,2-Trichloro- 1,2,2-trifluoroethane (Freon 113)	TCE	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	o-Xylene	p/m-Xylene
		SSS02370	2.5	<21,000		<2,100	<8,500	<420	<420	<4,200	<8,500	<21,000		<420	<420	<4,200	<850	<420	<420	<420	<180 Uz	<850	<850	<850	<420	<850
Northeast	SBL0605	SSS02371		<100,000	<2,100	<10,000	<41,000	<2,100	<2,100	<21,000	<41,000	<100,000		<2,100	<2,100	<21,000	<4,100	<2,100	<2,100	1,700 J	<890 Uz	<4,100	<4,100	<4,100	<2,100	<4,100
		SSS02372		<1,100,000	2,900 J	<110,000	<430,000	<22,000	<22,000	<220,000	<430,000	<1,100,000		<22,000	<22,000	<220,000	<43,000	<22,000	<22,000		<9,800 Uz	<43,000	<43,000	<43,000	<22,000	<43,000
		SSS02505 SSS02424		<200,000 <2,000	<3,900	<20,000	<79,000	<3,900	<3,900	<39,000	<79,000	<200,000	, ,	<3,900	<3,900	<39,000	<7,900	<3,900 <41	<3,900	-,	<39,000	<7,900	<7,900	<7,900	<3,900	<7,900
		SSS02424 SSS02425		<2,000		<200 <200	<810 <800		46	39 J 24 J 47 <400	<14 Uz <800	<2,000 <2.000	3,500	<41	<41 <40	<410 <400	<81 <80	<41	<41 <40	<41 <40	<410 <400	<81 <80	<81 <80	<81 <80	<41 <40	<81 <80
	SBL0591			,	-,					28 J <400		,	-,			<400										
		SSS02475	10.5		8,900		<800		21 J 78	28 J <400 97 <400	<800	<2,000	3,900 3,500		<40	<400	<80 <80	<40 <40	<40 <40		<400	<80 <80	<80	<80	<40	<80
		SSS02476		<2,000	4,400		<800				<800	<2,000	140,000		27 J <40	1	1	- 10	1		<400		<80	<80	<40	<80
		SSS02416		<18,000	, , , , , , , , , , , , , , , , , , , ,	<1,800	<7,400	58,0		5,000 <3,700	<7,400	<18,000	=,		2,100 <370	300 J		<370	<370		<3,700	<740	<740	<740	<370	<740
	SBL0592	SSS02423	7.5	940 J	-,	<700	<2,800	61,0		6,000 <1,400	<2,800	1,900	720,000 530.000		4,800 <140	140 J	4,600		<140		<1,400	<280	<280	<280	170	120 J
		SSS02477		<190,000	· ·	<19,000	<78,000	22,0		1,000 <39,000	<78,000	<190,000	,		900 J <3,900	<39,000		<3,900	<3,900	2,100 J	<2,000 Uz	<7,800	<7,800	<7,800	<3,900	<7,800
		SSS02478		<770,000	.00,000	<77,000	<310,000	58,0	000 8:	1,000 <150,000	<310,000	<770,000	2,300,000	/	100 J <15,000	<150,000	-,	<15,000	<15,000	,	<7,700 Uz	<31,000	<31,000	<31,000	<15,000	<31,000
		SSS02378	4.5	16 J			<15 <17	<0.76 <0.83		3.6 1.5 J 2.3 <8.3		<38	90		1.2 < 0.76	<7.6 <8.3	<1.5 <1.7	<0.76	<0.19 Uz	<0.76	<7.6	<1.5 <1.7	<1.5 <1.7	<1.5 <1.7	<0.76	<1.5 <1.7
	SBL0593	SSS02396	7.5	11 J					3.1		<17	<41	97		0.75 J <0.83			<0.83	<0.83	<0.83	<8.3				<0.83	
		SSS02390	11.7	10 J		<3.6	<14				<14	<36			1.5 < 0.71	<7.1		<0.71	<0.20 Uz	<0.71	<7.1			<1.4	<0.71	<1.4
		SSS02391	15.0	53				<0.77		0.59 J 0.42 J		<38		<0.77	<0.77	<7.7	<1.5	<0.77	<0.21 Uz	<0.77	<7.7	<1.5		<1.5	<0.77	<1.5
East		SSS02373		<12,000	· · · · · · · · · · · · · · · · · · ·	<1,200	<4,900 <47,000)O 1	260 <2,400 3,000 <23,000	<4,900	<12,000	29,000 2,100,000		<240	<2,400	<490	<240	<240		<2,400	<490 <4,700	<490	<490	<240	<490 <4,700
	SBL0594	SSS02369		<120,000	· · · · · · · · · · · · · · · · · · ·	<12,000	<u> </u>	26,0		0,000 <35,000	<47,000	<120,000	2,100,000		9,200 <2,300 4,000 <3,500	<23,000	6,500 20,000		<2,300		<1,000 Uz		<4,700		<2,300	<7.000
		SSS02437		<170,000	· · · · · · · · · · · · · · · · · · ·	<17,000	<70,000	43,0		·	<70,000	<170,000			· · · · · · · · · · · · · · · · · · ·	<35,000		<u> </u>	<3,500		<35,000	<7,000	<7,000	<7,000	<3,500	,
		SSS02436		<82,000	· · · · · ·	<8,200	<33,000	53,0	7:	5,000 <16,000	<33,000	<82,000	5,400,000		9,000 <1,600	<16,000	24,000	,	<1,600		<16,000	<3,300	<3,300	<3,300	<1,600	2,000 J
		SSS02376		<4,300	3,600		<1,700	<85	200 1	64 J <850	<1,700	<4,300	3,800 440,000		71 J <85	<850	<170	<85	<85	<85	<850	<170	<170	<170	<85	<170
	SBL0595	SSS02377		<46,000		<4,600	<18,000 <89.000	9,2		1,000 <9,100	<18,000	<46,000	460,000		4,000 <910 5,000 <4,400	<9,100 <44.000	4,900		<910		<9,100	<1,800 <8.900	<1,800	<1,800	<910	<1,800 <8.900
		SSS02410		<220,000	· · · · · ·	<22,000	,	,		8,000 <44,000	<89,000	<220,000	,		· · · · · · · · · · · · · · · · · · ·	,		<4,400	<4,400		<44,000	-,	<8,900	<8,900	<4,400	-,
		SSS02411		<210,000	,	<21,000	<83,000	81,0		0,000 <41,000	<83,000	<210,000	2,200,000		4,000 <4,100	<41,000	34,000	,	<4,100	16,000	1,600 J	<8,300	<8,300	<8,300	<4,100	<8,300
		SSS02374		<7,300	· · · · · ·	<730	<2,900		590	390 <1,500	<2,900	<7,300	80,000		110 J <150	<1,500	<290	<150	<150	84 J	<1,500	<290	<290	<290	<150	<290
	SBL0596	SSS02375		<130,000		<13,000 <90,000	<52,000	27,0 48.0		1,000 <26,000	<52,000	<130,000 <900.000	1,800,000		3,000 <2,600	<26,000		<2,600	<2,600		<1,000 Uz	<5,200	<5,200	<5,200 <36,000	<2,600	<5,200
		SSS02380		<900,000	· · · · · ·		<360,000	-,		5,000 <180,000	<360,000	/			<18,000	<180,000	<36,000	<18,000	<18,000	<18,000	<7,200 Uz	<36,000	<36,000	,	<18,000	<36,000
		SSS02381		<420,000	-,	<42,000 <3.400	<170,000	43,0 30.0		7,000 <85,000	<170,000	<420,000	1,500,000 590.000	<8,500	<8,500	<85,000 <6.800		<8,500	<8,500 <680	<8,500	<4,000 Uz	<17,000	<17,000	<17,000	<8,500	<17,000 <1.400
	SBL0598	SSS02404 SSS02405		<34,000 <88.000	35,000 35.000	<3,400 <8.800	<14,000 <35.000	30,0		9,000 <6,800 1,000 <18,000	<14,000	<34,000 <88.000	830,000	_	3,200 <680 4,400 <1.800	<6,800 <18.000		<680 <1.800	<680 <1.800		<6,800 <18,000	<1,400 <3.500	<1,400 <3,500	<1,400 <3,500	<680 <1.800	<1,400 <3.500
		SSS02405 SSS02546	7.5 5.0	,	,	<8,800 <3.8	<35,000 <15	<0.76	<0.76	<7.6	<35,000 <15	<88,000 <38	<0.76	<0.76	<0.76	<18,000 <7.6		<0.76	/	4.5 < 0.76	<18,000 <7.6	<3,500 <1.5	<3,500 <1.5	<3,500 <1.5	<1,800 <0.76	<3,500 <1.5
		SSS02546 SSS02553	8.0			<3.8 <4.3	<15	<0.76	<0.76	<7.6 <8.5	<15 <17	<43	<0.76	<0.76	<0.76	<7.6 <8.5	<1.5 <1.7	<0.76		4.5 < 0.76 i9 Jf < 0.85	<7.6 <8.5	<1.5 <1.7		<1.5 <1.7	<0.76	<1.5
	SBL0603	SSS02553 SSS02555	11.0		<0.28 Uz	<4.3 <4.2	<17	<0.85	<0.85	<8.5 <8.5	<17	<43	<0.85	<0.85	<0.85	<8.5 <8.5	<1.7	<0.85		0.85 (0.85)	<8.5 <8.5	<1.7 <1.7		<1.7 <1.7	<0.85 <0.85	<1.7
Southwest		SSS02556 SSS02557	13.0 5.0	37		<4.0	<16 <14	<0.81 <0.72	<0.81 <0.72	<8.1 <7.2	<16 <14	<40 <36	<0.81	<0.81	<0.81 <0.72	<8.1 <7.2	<1.6 <1.4	<0.81		29 J <0.81 23 <0.72	<8.1 <7.2			<1.6 <1.4	<0.81 <0.72	<1.6 <1.4
		SSS02557 SSS02558	8.0			<3.6 <4.5	<14	<0.72	<0.72	<7.2 <9.1	<14	<35 <45	<0.72	<0.72	<0.72	<9.1	<1.4	<0.72		23 <0.72 2.0 <0.91	<9.1			<1.4	<0.72	<1.4
	SBL0604	-				<4.5						<45				<8.3	<1.8	<0.91		40 J <0.83	<9.1 <8.3			<1.8		
		SSS02561	10.5				<17	<0.83	<0.83	<8.3	<17		<0.83	<0.83	<0.83							<1.7			<0.83	<1.7
DOD 4-4: :		SSS02563	14.0	630.000.000	<0.12 Uz	<4.4	<18	<0.88	<0.88	<8.8	<18	<44	<0.88	<0.88	<0.88	<8.8	<1.8	<0.88	<0.88	<0.88	<8.8	<1.8	<1.8	<1.8	<0.88	<1.8
KUD ACTION LE	vel/Cleanup Go	ai or 2012 KS	L	030,000,000	5,400	220,000	200,000,000	51,000,00	00 non	e 3,700,000	500,000	29,000,000	27,000	11,000,	000 none	18,000	21,000,000	36,000,000	2,600	45,000,000	180,000,000	6,400	260,000	10,000,000	19,000,000	

<u>Notes</u>

VOC

Concentrations in RED exceed ROD Action Level/Cleanup Goal/2012 RSL J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

ft bgs feet below ground surface f Field duplicate imprecision.

volatile organic compound U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

μg/kg micrograms per kilogram z Method blank contamination.
RSL Regional Screening Level

Eurofins/Calscience Reports:

17-04-1898 17-04-1973

17-04-2107

17-04-2216

17-04-2255

17-05-0081 17-05-0219

17-05-0231

2 of 2

TABLE 2 PROPERTY 23 SHALLOW SOIL PHYSICAL PROPERTIES

Pre-design Investigation Soil and NAPL Operable Unit Del Amo Superfund Site

				B.O Saturna	Takal	Air Perme	eability			Grain Size	Distribu	ution		
Area	Soil Boring	Depth	Sample	Moisture Content	Total Porosity	Horizontal	Vertical			(%	wt)			
Alea	Soil Bornig	(ft. bgs)	Number	(% wt)	(%Vb)	(md)	(md)	Gravel	Coarse Sand	Medium Sand	Fine Sand	Silt	Clay 19.39	Silt & Clay
	CDI OFO4	12.0	SSS02434	12.6	37.7	2.89	4.08	0.00	0.00	0.00	24.59	56.02	19.39	75.41
East	SBL0594	14.0	SSS02435	14.1	38.0	78.2	32.5	0.00	0.00	0.16	21.86	66.53	11.44	77.98
Last	SBL0596	8.0	SSS02379	14.8		15.1	68.7	0.00	0.00	0.72	25.30	43.36	30.63	73.98
	3610390	13.0	SSS02382	12.2	42.3	167	93.3	0.00	0.00	2.54	24.88	53.48	19.10	72.58
Northeast	SBL0605	9.4	SSS02507	14.3	35	0.73	0.49	0.00	0.00	0.00	14.49	49.17	36.34	85.51
Northeast	3010003	14.0	SSS02506	12.1	36.5	11.3	56.7	0.00	0.00	0.96	27.93	59.33	11.79	71.11

Notes

ft. bgs = feet below ground surface

% wt = % weight

Vb = bulk volume

md = millidarcy

TABLE 1 DEEP SOIL PHYSICAL PROPERTIES AT SOURCE AREA 6 PRE-DESIGN INVESTIGATION SOIL AND NAPL OPERABLE UNIT DEL AMO SUPERFUND SITE

Soil Boring	Donth	Sample	Moisture Content	Total Porosity	Vertical Air permeability	Horizontal Air Permeability			Grain Size D (Wt			
3011 BOTTING	Depth	Number	(% wt)	(%Vb)	(md)	(md)	Gravel	Coarse Sand	Medium Sand	Fine Sand	Silt	Clay
	21.3	SSS02440	32.5	49.5	1.86	71.2	0.00	0.00	0.00	1.06	39.50	59.43
SBL0594	29.0	SSS02443	7.7	44.2	10600	8340	0.00	0.00	11.08	74.02	10.26	4.64
	38.0	SSS02445	17.5	41.4	426	1.71	0.00	0.00	0.82	35.18	49.61	14.39
	23.0	SSS02384	28.0	45.8	6.28	1.49	0.00	0.00	0.00	2.43	46.69	50.88
SBL0596	33.0	SSS02387	23.0	43.5	2.22	1.68	0.00	0.00	0.51	12.99	68.42	18.09
	39.0	SSS02389	19.6	42.9	40.1	11.3	0.00	0.00	1.00	34.99	44.72	19.29

Notes

ft. bgs = feet below ground surface

% wt = % weight

Vb = bulk volume

md = millidarcy

TABLE 2 DEEP SOIL VOC CONCENTRATIONS AT SOURCE AREA 6 PRE-DESIGN INVESTIGATION DEL AMO SUPERFUND SITE

SSSI-2409 30.0 8.100 15,000 160 450 4500 4									Det	ected VOC Cor	ncentrations (μ	g/kg)						
Septiment Sept	Boring	Sample		Acetone	Benzene	utyl	5	Chloromethane	Ethylbenzene	enzen	opylb	Styrene	PCE	Toluene	1,1,2-Trichloro- 1,2,2-trifluoroethane (Freon 113)	o-Xylene	p/m-Xylene	>
SECTION SECT		SSS02392	22.5	<2,100	4,200	<41	50	<820	2,400	28 J	<82	<41	<12 Uz	<41	<410	<41	<82	6,700
\$2502.093 \$2502.093 \$2.0 \$7.00 \$1.00				<2,200	1,200	<43	31 J	<860	870	<43	<86	<43	<9.0 Uz	<43				2,100
SS02449 39.0 61,000 15,000 160 c160 c150 c1,000 c160 c1,000 c160 c1,000 c160 c1,000 c160 c1,000 c160 c1,000 c	SBL0593	SSS02408			12,000				· ·							<150		20,000
SSS02348 170																		24,000
SSS0248 17.0 77.00 460,000 67.000 93,000 29,000 65,000,000 33,000 10,0000 4,000 77.000 47.000				-	-										· ·			24,000
\$810594 \$8502441 \$2.0 \$200,000 \$60,000 \$10,000 \$20,000 \$20,000 \$60,000 \$60,000 \$60,000 \$60,000 \$7,700 \$42,000 \$77,000 \$23,000 \$23,000 \$30,000 \$23,000 \$30,000 \$23,000 \$30,000 \$23,000 \$30,000 \$23,000 \$30,000 \$23,000 \$30,000 \$23,000 \$30,000 \$23,000 \$30,000 \$23,000 \$23,000 \$23,000 \$20,00															· '			32,000
SS002442 25.0 200.000 410.000 120.000 120.000 120.000 120.000 130.000 130.000 52.000 52.000 52.000 52.000 23.000 23.000 23.000 33.000 33.000 35.000 55							-				•			-				7,300,000
SSS02441 33.0 41,000 4,600 15,000 17,000 16,000 130,000 3,300 3,300 3,300 43,00 11,000 43,00 43,00 3,00 3,00	CDL OF OA				,	-	-			· · · · · · · · · · · · · · · · · · ·				1	1			7,400,000
SS02441 37.5 66,000 500,000 88,000 110,000 26,000 2,800,000 37,000 4,300 4,300 4,300 4,300 4,300 2,300 4,700	SBL0594					-	•				· · · · · · · · · · · · · · · · · · ·			-				5,000,000
SS002412 2.10 -88,000 72,000 1,300 1,800 24,000 130,000 2,300 2,700 2,300 2,700 2,300 2,700 2,300 2,700 2,300 2,700 2,300 2,700 2,300 2,700 2,300 2,700 2,300 2,700 2,300 2,700 2,300 2,700 2,300 2,700 2,300 2,700 2,300 2,700 2,300 2,700 2,30						•					· · ·		1		-			170,000
SS002413 26.5 S.500041 3.52 3.5000 760,000 200,000 200,000 200,000 4,100,000 4,100,000 13,000 35,000 48,400 48,400 48,400 47,000 5,600 4,500 4					,	,	-							· ·		-		3,600,000
SSU0245 3.2 490,000 150,000 44,000 58,000 47,000 1,300,000 18,000 58,000 43,000 58,000 47,000 1,300,000 58,					· · · · · ·	•	-	-	,	-	1	<u> </u>		•	,			210,000
SSS02415 37.0 218,000 28,000 1,700 1,900 7,100 43,000 580 450 360 360 450 3,600 360 470 3,600 360 35	SRI 0595			-		-	-	-				-		-		-		5,600,000 1,600,000
SS02431 42.0 c11,000 25,000 421 c230 c4,500 11,000 c230 c450 c23	3620333						-		1 1		1		1	-				76,000
SSD02383 19.0 39,000 15,000 5,100 6,100 6,15,000 140,000 1				•		-	-											36,000
SSI0.5986 SSI0.2386 SSI0.2386 SSI0.2386 SSI0.2388 SSI0			_		_													170,000
\$\frac{\text{Si0198}}{\text{Si02388}}\$\frac{\text{3}}{\text{Si0}}\$\frac{\text{Si0}}{\text{Si0}}\$,	-									· ·			7,200
\$\$502395 42.5 < \(\frac{1}{9},000 \) \$\(\frac{3}{5},000 \) \$\(\frac{2}{9}0 \) \$\(\	SBL0596								1									530,000
SSS02470 23.5 2,100 3,800 63 77 830 7,200 23 83 441 441 31 4410 441 83 4410 441 83 4410 441 83 4410 441 83 4410 441 44							-				•			•	,	<390		48,000
SS02471 28.0 <4,100 5,200 56.1 66.5 <1,600 7,600 <81 <160 <81 <81 <81 56.5 <810 <81 <160 <15 <15 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <17 <		SSS02469	17.5	6.7 J	69	2.7	4.7	<17	510	1.2	0.64 J	<0.87	<0.87	0.91	<8.7	<0.87	<1.7	600
SSS02472 34.8 <4,100 10,000 53 77 <1,700 11,000 <83 <170 <83 <83 110 <830 <83 <170 <285 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <85 <8		SSS02470	23.5	<2,100	3,800	63	77	<830	7,200	23 J	<83	<41	<41	31 J	<410	<41	<83	11,000
SSS02472 34.8 <4.100 10,000 53 77 <1.700 11,000 63 <170 <83 <83 <83 110 <830 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <83 <83 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170 <170	SPLOE07	SSS02471	28.0	<4,100	5,200	56 J	66 J	<1,600	7,600	<81	<160	<81	<81	56 J	<810	<81	<160	13,000
SSS02474 41.5 <2,700 2,400 55 71 <1,100 3,200 <54 <110 <54 <54 <54 <54 <540 <540 <54 <110 <110 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120 <120	3010337	SSS02472	34.8	<4,100	10,000	53 J	77 J	<1,700	11,000	<83	<170	<83	<83	110	<830	<83	<170	21,000
SSS02447 18.5 <380,000 54,000 32,000 43,000 <150,000 1,100,000 4,500 <15,000 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,600 <7,			38.0	<9,700	26,000	85 J	130 J	<3,900	16,000	<190				160 J		<190	<390	42,000
SBL0598 SBL0599 SBL059																		5,700
SBL0598 28.0 <1,100,000 76,000 87,000 130,000 <460,000 2,800,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <23,000 <						-	-	-			1		1	•	· · · · · · · · · · · · · · · · · · ·			1,200,000
SBL0598					-	-	-		-		1			1	1			330,000
SS02465 34.0 <120,000 9,100 20,000 29,000 <48,000 380,000 2,200 J 2,600 J 2,400 <2,400 1,300 J 24,000 <2,400 <4,800 44,800 44,800	CD1 C====					-					1		1	1	1	·		3,100,000
SSS02466 40.0 <97,000 47,000 7,900 11,000 <39,000 290,000 <1,900 <1,900 <1,800 J <19,000 <1,900 <3,900 36 SSS02467 43.0 <17,000	SBL0598					-							+	1	1		1	160,000
SSS02467 43.0 <17,000 37,000 400 520 <6,900 28,000 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340 <340						-												440,000
SBL0599 19.0 <38 0.25 J <0.77 <15 0.28 J 0.28 J <1.5 <0.77 <0.77 <0.77 <0.77 <0.35 Uz <0.77 <1.5 <0.55 Uz <0.77 <0.55 Uz <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77 <0.77					-	-	-	-						1	1			360,000
SBL0599					-				1					1	1			66,000
SBL0599 SSS02491 33.5 41 J 33 1.0 1.5 <20 52 0.69 J <2.0 <0.98 <0.98 <0.98 0.44 J <0.98 <2.0 SSS02493 39.0 <3,700																		1
SSS02493 39.0 <3,700 10,000 <74 69 J 40 J 7,000 63 J 37 J <74 <74 <74 <74 <74 <150 1	SRINEGO				<u> </u>										1			1,300
	3010333																	17,000
SSS02494 41.0 <9,800 23,000 93 J 150 J <3,900 12,000 <200 <200 <200 <200 <2,000 <200 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390 <390		SSS02494				93 J						<200	<200	<200	<2,000	<200	<390	35,000

TABLE 2 DEEP SOIL VOC CONCENTRATIONS AT SOURCE AREA 6 PRE-DESIGN INVESTIGATION DEL AMO SUPERFUND SITE

								Det	tected VOC Cor	ncentrations (μ	g/kg)						
Boring	Sample	Depth (ft bgs)	Acetone	Benzene	n-Butylbenzene	sec-Butylbenzene	Chloromethane	Ethylbenzene	Isopropylbenzene (Cumene)	n-Propylbenzene	Styrene	PCE	Toluene	1,1,2-Trichloro- 1,2,2-trifluoroethane (Freon 113)	o-Xylene	p/m-Xylene	Total VOCs
	SSS02564	19.0	<43	<0.20 Uz	<0.86	<0.86	<17	<0.86	<0.86	<1.7	<0.86	<0.86	<0.86	<8.6	<0.86	<1.7	0.20
	SSS02565	23.0	5.9 J	<0.19 Uz	<0.84	<0.84	<17	<0.84	<0.84	<1.7	<0.84	<0.84	<0.84	<8.4	<0.84	<1.7	6.1
SBL0600	SSS02566	28.0	<42	<0.30 Uz	<0.84	<0.84	<17	<0.84	<0.84	<1.7	<0.84	<0.84	<0.84	<8.4	<0.84	<1.7	0.30
3820000	SSS02567	30.5	9.6 J	66 Jf	<0.86	<0.86	<17	<0.86	<0.86	<1.7	<0.86	<0.86	<0.86	<8.6	<0.86	<1.7	76
	SSS02569	39.0	<1,900	1,800	<37	<37	<750	<37	<37	<75	<37	<37	<37	<370	<37	<75	1,800
	SSS02570	42.5	<2,200	1,300	<43	<43	<860	<43	<43	<86	<43	<43	<43	<430	<43	<86	1,300
	SSS02501		<9,300	7,500	240	360	<3,700	16,000	180 J	180 J	<190	<190	140 J	<1,900	<190	<370	25,000
	SSS02489		<3,900	9,800	150		<1,500	15,000				<77		<770	<77	<150	26,000
SBL0601	SSS02490		<2,500	640	470	480	<980	3,800	90	100	<49		<49	<490	<49	<98	5,600
3520001	SSS02502	32.0	<24,000	3,600	10,000	-	<9,500	110,000					<480	<4,800	<480	<950	150,000
	SSS02503	39.0	<3,900	14,000	220		<1,600	15,000			<78		<78	<780	<78	<160	30,000
	SSS02504	42.5	<9,500	21,000	1,200	1,800	<3,800	29,000	630	670	<190	<190	<190	<1,900	<190	<380	54,000
	SSS02496	19.0	<200,000	38,000	13,000		<79,000	390,000	,	-	<3,900	<3,900	4,900		<3,900	<7,900	470,000
	SSS02497	25.5	<190,000	58,000	30,000	35,000	<77,000	510,000	9,100	6,900 J	<3,800	<3,800	3,800 J	<38,000	<3,800	<7,700	650,000
SBL0602	SSS02498	33.5	<96,000	39,000	11,000		<38,000	210,000		2,600 J		<1,900	-	<19,000	<1,900	<3,800	280,000
	SSS02499	39.0	<7,200	17,000	120 J		<2,900	12,000		<290	<140	43 J		<1,400	<140	<290	30,000
	SSS02500	41.0	<9,800	24,000	<200	<200	<3,900	14,000	<200	<390	<200	<200	260	<2,000	<200	<390	38,000

Notes:

TCE

ft bgs	feet below ground surface	J	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
VOC	volatile organic compound	f	Field duplicate imprecision.
μg/kg	micrograms per kilogram	1	Laboratory control sample recovery failure.

RSL Regional Screening Level U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.

PCE Tetrachloroethene z Method blank contamination.

Eurofins/Calscience Reports:

Trichloroethene

17-04-1898 17-04-1973 17-04-2107 17-04-2216 17-04-2255 17-05-0081 17-05-0231

ATTACHMENT 10 VOC Mass Removal Rates – Shallow and Deep Zone

ATTACHMENT 10 VOC MASS REMOVAL RATES – Shallow and Deep Zone Soil Vapor Extraction Pilot Test Report Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

Benzene and Ethylbenzene Mass Removal Rates

Influent Sample	Sample ID	Sample Date	Time	Benzene	Ethylbenzene	Average Flow Rate	Benzene Rate	Ethylbenzene Rate	Total VOC Rate (Benzene + Ethylbenzene)
				(ppmv)	(ppmv)	(scfm)	(lbs/hr)	(lbs/hr)	(lbs/hr)
		Molecular Wei	ght (g/mol)	78.1	106.16				
Shallow Zone									
Shallow Constant Rate Test; Initial	VSS01363	04/03/18	915	330	83	100.7	0.41	0.14	0.55
Shallow Constant Rate Test; Midpoint	VSS01366	04/05/18	1200	980	670	100.7	1.22	1.13	2.35
Shallow Constant Rate Test; Final	VSS01369	04/06/18	1500	660	320	100.7	0.82	0.54	1.36
Average				657	358	100.7	0.82	0.61	1.42
Deep Zone									
Deep Constant Rate Test; Midpoint Hour 32.75	VSS01385	04/11/18	1025	3,900	3,200	116.7	5.63	6.28	11.90
Deep Constant Rate Test; Midpoint Hour 56.3	VSS01388	04/12/18	1000	4,100	3,400	116.7	5.92	6.67	12.58
Deep Constant Rate Test; Final Hour 82	VSS01392	04/13/18	1156	2,600	1,300	116.7	3.75	2.55	6.30
Average				3,533	2,633	116.7	5.10	5.16	10.26

Notes:

ppmv = parts per million by volume scfm = standard cubic feet per minute lbs/hr = pounds per hour

Following formula used to calculate rates:

$$\frac{(ppmv)(10^{-6})(scfm)(60\frac{min}{hr})(molecular\ weight\frac{lbs}{mole})}{379\frac{scf}{mole}} = \left(\frac{lbs}{hr}\right)$$

FIGURE 10-1
MASS REMOVAL RATES
Shallow Zone Constant Rate Testing; SVE Pilot Test Report
Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

FIGURE 10-2
MASS REMOVAL RATES
Deep Zone Constant Rate Testing; SVE Pilot Test Report
Del Amo Superfund Site Soil & NAPL Operable Unit (OU-1)

ATTACHMENT 11 HRA Spreadsheets and Input Data

Site: Property 23/SA-6 (Del Amo), 19875 Pacific Gateway Dr., Torrance, California 90502.

				HRA Resul	lts			
_	Tie	r I			Tier 2			
Table 1. D/F only HRA ¹	Cancer/ chronic ASI	Acute ACI	Cancer Residential ²	Cancer Worker ²	Cancer Burden	Acute	chronic	8 hour Chronic
SCAQMD Limit:	1.0	1.0	1.0E-06	1.0E-06	0.5	1.0	1.0	1.0
Scenario 1, Case 13	1.24	0.00	2.33E-08	5.81E-09	N/A	0.00	0.00	0.00
Scenario 1, Case 24	3.14	0.00	5.89E-08	1.51E-08	N/A	0.00	0.00	0.00

	HRA Results													
	Tie	Tier I Tier 2 Tier 3												
Table 2. D/F and TACs HRA ¹	Cancer/ chronic ASI	Acute ACI	Cancer Residential ²	Cancer Worker ²	Cancer Burden	Acute	chronic	8 hour Chronic	Cancer Residential ²	Cancer Worker ²	Cancer Burden	Acute	chronic	8 hour Chronic
SCAQMD Limit:	1.0	1.0	1.0E-06	1.0E-06	0.5	1.0	1.0	1.0	1.0E-06	1.0E-06	0.5	1.0	1.0	1.0
Scenario 2, Case 1 ⁵	474.80	5.68	5.92E-06	6.59E-06	0.10	0.82	1.58	1.58	5.37E-07	2.46E-07	N/A	0.07	0.06	0.06
Scenario 2, Case 2 ⁶	841.98	10.07	1.05E-05	1.17E-05	0.28	1.45	2.80	2.80	9.51E-07	4.37E-07	N/A	0.12	0.10	0.10

Notes:

N/A = Cancer Burden calculation "Not Applicable" if residential and worker cancer risk below one in a million.

- 1. See Image 1 for HRA Tier 1 and Tier 2 Input Data. See image 2 for additional Teir 3 Input Data.
- 2. A thermal oxidizer is considered T-BACT for VOC and TACs which raises the HRA allowable limit from 1.0E-06 to 10.0E-06. However for purposes of alleviating residential concerns, a limit of 1.0E-06 (no TBACT) is used in this evaluation for conservatism.
- 3. D/F emissions based on worst-case of blended concentrations from exhaust samples and includes shallow wells run 2 (150 dscf) and deep wells run 1 (350 dscf).
- 4. D/F emissions based on worst-case single test run including shallow wells run 2 (at 500 dscf).
- 5. D/F emissions based on Scenario 1, Case 1. TACs based on blended Shallow [150 scfm x worst-case concentrations from shallow test (B = 1.3, EB = 2.2, T = 0.033 ppmv (April 5 data))] and Deep [350 scfm x representative concentrations from deep test (B = 19, EB = 39, T = 0.5 ppmv (April 13 data))].
- 6. D/F emissions based on Scenario 1, Case 1. TACs based on 25 ppmv Benzene and 50 ppmv Ethylbenzene total exhaust concentrations.

Color Key:

Red - Not Passing Green - Passing (no TBACT, i.e. 1 in a million limit)

Image 1. Tier 1, 2, 3 HRA Input Data

1. Stack Data	Input	Units
Hours/Day	24	hrs/day
Days/Week	7	days/wk
Weeks/Year	52	wks/yr
Control Efficiency	0.000	
Does source have T-BACT?	NO	×
Source type (Point or Volume)	P	P or V
Stack Height or Building Height	20	feet
Building Area	5000	ft^2
Distance-Residential	400	meters
Distance-Commercial	50	meters
Meteorological Station	Hawtho	rne Airport
Project Duration (Short term options: 2, 5, or 9 years; Else 30 years)	5	years

Image 2. Additional Teir 3 HRA Input Data

SCREEN INPUT DATA - BRITISH UNITS

Temperature	1550.00	°F
Stack diameter	18.00	in
Stack height	20.00	ft
Actual exhaust rate	500.00	acfm
Modeling emissions rate	0.04	lb/hr

Possible location of full-scale SVE system is more than 50 meters away from nearest commercial receptors and approximately 400 meters from nearest residential receptor

0 1,000 2,000

Scale in Feet

Source: AirPhotoUSA dated February 2006

FIGURE 1

SITE LOCATION MAP

SVE Pilot Test Report Soil and NAPL Operable Unit - OU1 Del Amo Superfund Site

TIER 1/TIER 2 SCREENING RISK ASSESSMENT DATA INPUT

(Procedure Version 8.1 & Package N, September 1, 2017) - Risk Tool V1.1

Application Deemed Complete Date	06/25/18
A/N	Scenario 1, Case 1
Facility Name	Del Amo Torrance

1. Stack Data	Input	Units
Hours/Day	24	hrs/day
Days/Week	7	days/wk
Weeks/Year	52	wks/yr
Control Efficiency	0.000	
Does source have T-BACT?	NO	
Source type (Point or Volume)	P	P or V
Stack Height or Building Height	20	feet
Building Area	5000	ft ²
Distance-Residential	400	meters
Distance-Commercial	50	meters
Meteorological Station	Hawthorn	ne Airport
Project Duration (Short term options: 2, 5, or 9 years; Else 30 years)	5	years

Source Type	Otl	her
Screening Mode (NO = Tier 1 or Tier 2; YES = Tier 3)	NO	

From

1 feet

To

0.3048 meter

FOR SOURCE TYPE OTHER THAN BOILER, CREMATORY, ICE, PRESSURE WASHER, OR SPRAY BOOTH, FILL IN THE USER DEFINED TABLE BELOW

Fac Name: Del Amo Torrance A/N: :enario 1, Case 1

TAC Code	Compound	Emission Rate (lbs/hr)	Molecular Weight	R1 - Uncontrolled (lbs/hr)	Efficiency Factor (Fraction range 0-1)	R2-Controlled (lbs/hr)
B1	Benzene		78.11		0.00000	
E3	Ethyl Benzene		106.16		0.00000	
C3	Carbon Disulfide		76.14		0.00000	
S6	Styrene		104.16		0.00000	
P2	Perchloroethylene (Tetrachloroethylene)		165.83		0.00000	
Т3	Toluene		92.13		0.00000	
Т8	Trichloroethylene		130.4		0.00000	
X3	o-Xylene		106.18		0.00000	
X4	p-Xylene		106.17		0.00000	
P22	Polychlorinated Dibenzo-p-Dioxins (PCDD)		459.7548		0.00000	
P23	2,3,7,8-Tetrachlorodibenzo-p-Dioxin	9.63E-13	321.9744	9.63E-13	0.00000	9.62946E-13
P24	1,2,3,7,8-Pentachlorodibenzo-p-Dioxin	2.62E-12	356.4195	2.62E-12	0.00000	2.61994E-12
P25	1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin	1.64E-12	390.8646	1.64E-12	0.00000	1.6389E-12
P26	1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin	2.13E-12	390.8646	2.13E-12	0.00000	2.12771E-12
P27	1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin	1.93E-12	390.8646	1.93E-12	0.00000	1.93279E-12
P28	1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin	9.09E-12	425.3097	9.09E-12	0.00000	9.09066E-12
P29	1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin	1.74E-11	459.7548	1.74E-11	0.00000	1.74245E-11
P30	Polychlorinated Dibenzofurans (PCDF)		443.76		0.00000	
P31	2,3,7,8-Tetrachlorodibenzofuran	1.04E-11	305.97156	1.04E-11	0.00000	1.04361E-11
P32	1,2,3,7,8-Pentachlorodibenzofuran	1.12E-11	340.4201	1.12E-11	0.00000	1.11685E-11
P33	2,3,4,7,8-Pentachlorodibenzofuran	4.51E-12	340.4201	4.51E-12	0.00000	4.51081E-12
P34	1,2,3,4,7,8-Hexachlorodibenzofuran	8.86E-12	374.8652	8.86E-12	0.00000	
P35	1,2,3,6,7,8-Hexachlorodibenzofuran	9.32E-12	374.8652	9.32E-12	0.00000	
P37	2,3,4,6,7,8-Hexachlorodibenzofuran	6.40E-12	374.8652	6.40E-12	0.00000	
P36	1,2,3,7,8,9-Hexachlorodibenzofuran	1.60E-12	374.8652	1.60E-12	0.00000	1.6012E-12
P38	1,2,3,4,6,7,8-Heptachlorodibenzofuran	1.86E-11	409.3103	1.86E-11	0.00000	
P39	1,2,3,4,7,8,9-Heptachlorodibenzofuran	3.07E-12	409.3103	3.07E-12	0.00000	3.07462E-12
P40	1,2,3,4,6,7,8,9-Octachlorodibenzofuran	8.20E-12	443.7554	8.20E-12	0.00000	8.1973E-12

TIER 1 SCREENING RISK ASSESSMENT REPORT

Application deemed complete date:

6/25/2018

(Procedure Version 8.1 & Package N, September 1, 2017)

A/N Scenario 1, Case 1, Del Amo Torrance

Equipment Type	Other	No T-BACT
Nearest Receptor Distance (actual)	50	meters
Receptor Distance (Table 1 Emission look up)	50	meters

Tier 1 Results						
Cancer/Chronic ASI	Acute ASI					
1.24E+00						
FAILED	PASSED					

APPLICATION SCREENING INDEX CALCULATION

Compound	Average Annual Emission Rate (lbs/yr)	Max Hourly Emission Rate (lbs/hr)	Cancer/Chronic Pollutant Screening Level (lbs/yr) from Table 1	Acute Pollutant Screening Level (lbs/hr) from Table 1	Cancer/Chronic Pollutant Screening Index (PSI)	Acute Pollutant Screening Index (PSI)
Benzene			1.94E+00	1.49E-02		
Ethyl Benzene			2.22E+01			
Carbon Disulfide			1.05E+05	3.41E+00		
Styrene			1.18E+05	6.61E-02		
Perchloroethylene (Tetrachloroethylene)			9.22E+00	1.10E+01		
Toluene			3.93E+04	2.04E+01		
Trichloroethylene			2.77E+01			
o-Xylene			9.18E+04	1.21E+01		
p-Xylene			9.18E+04	1.21E+01		
Polychlorinated Dibenzo-p-Dioxins (PCDD)			5.79E-08			
2,3,7,8-Tetrachlorodibenzo-p-Dioxin	8.41E-09	9.63E-13	5.79E-08		1.45E-01	
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin	2.29E-08	2.62E-12	5.79E-08		3.95E-01	
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin	1.43E-08	1.64E-12	5.79E-07		2.47E-02	
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin	1.86E-08	2.13E-12	5.79E-07		3.21E-02	
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin	1.69E-08	1.93E-12	5.79E-07		2.92E-02	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin	7.94E-08	9.09E-12	5.79E-06		1.37E-02	
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin	1.52E-07	1.74E-11	1.93E-04		7.89E-04	
Polychlorinated Dibenzofurans (PCDF)			8.19E-08			
2,3,7,8-Tetrachlorodibenzofuran	9.12E-08	1.04E-11	8.19E-07		1.11E-01	
1,2,3,7,8-Pentachlorodibenzofuran	9.76E-08	1.12E-11	2.73E-06		3.57E-02	
2,3,4,7,8-Pentachlorodibenzofuran	3.94E-08	4.51E-12	2.73E-07		1.44E-01	
1,2,3,4,7,8-Hexachlorodibenzofuran	7.74E-08	8.86E-12	8.19E-07		9.45E-02	
1,2,3,6,7,8-Hexachlorodibenzofuran	8.14E-08	9.32E-12	8.19E-07		9.94E-02	
2,3,4,6,7,8-Hexachlorodibenzofuran	5.59E-08	6.40E-12	8.19E-07		6.82E-02	
1,2,3,7,8,9-Hexachlorodibenzofuran	1.40E-08	1.60E-12	8.19E-07		1.71E-02	
1,2,3,4,6,7,8-Heptachlorodibenzofuran	1.62E-07	1.86E-11	8.19E-06		1.98E-02	
1,2,3,4,7,8,9-Heptachlorodibenzofuran	2.69E-08	3.07E-12	8.19E-06		3.28E-03	
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	7.16E-08	8.20E-12	2.73E-04		2.62E-04	
TOTAL (APPLICATION SCREENING INDEX)		l			1.24E+00	

TIER 2 SCREENING RISK ASSESSMENT REPORT

A/N: :: enario 1, Case 1

(Procedure Version 8.1 & Package N, September 1, 2017) - Risk Tool V1.1

1. Stack Data		
Equipment Type	Other	_
Combustion Eff	0.0	_
	No T-BACT	_
Operation Schedule	24 7 52	_hrs/day _days/week _weeks/year
Stack Height	20	_ft
Distance to Residential	400	_m
Distance to Commercial	50	_m
Meteorological Station	Hawthorne A	Airport

2. Tier 2 Data

Fac: Del Amo Torrance

Dispersion Factors tables	Point Source
For Chronic X/Q	Table 6
For Acute X/Q max	Table 6.4

Dilution Factors

Receptor	X/Q (µg/m³)/(tons/yr)	X/Q max $(\mu g/m^3)/(lbs/hr)$		
Residential	0.33	15.54		
Commercial - Worker	12.84	261.46		

Application deemed complete date: 6/25/2018

Intake and Adjustment Factors

	Residential	Worker
Year of Exposure	5	
Combined Exposure Factor (CEF) - Table 4	389.23	11.17
Worker Adjustment Factor (WAF) - Table 5	1	1.00

3. Rule 1401 Compound Data

Compound	R1 - Uncontrolled (lbs/hr)	R2 - Controlled (lbs/hr)	CP (mg/kg-day) ⁻¹	MP MICR Resident	MP MICR Worker	MP Chronic Resident	MP Chronic Worker	REL Chronic (µg/m³)	REL 8-hr Chronic (μg/m³)	REL Acute (μg/m³)	MWAF
Benzene			1.00E-01	1.00	1.00	1.00	1.00	3.00E+00	3.00E+00	2.70E+01	
Ethyl Benzene			8.70E-03	1.00	1.00	1.00	1.00	2.00E+03			
Carbon Disulfide				1.00	1.00	1.00	1.00	8.00E+02		6.20E+03	
Styrene				1.00	1.00	1.00	1.00	9.00E+02		2.10E+04	
Perchloroethylene (Tetrachloroethylene)			2.10E-02	1.00	1.00	1.00	1.00	3.50E+01		2.00E+04	
Toluene				1.00	1.00	1.00	1.00	3.00E+02		3.70E+04	
Trichloroethylene			7.00E-03	1.00	1.00	1.00	1.00	6.00E+02			
o-Xylene				1.00	1.00	1.00	1.00	7.00E+02		2.20E+04	
p-Xylene				1.00	1.00	1.00	1.00	7.00E+02		2.20E+04	
Polychlorinated Dibenzo-p-Dioxins (PCDD)		1.30E+05	39.91	7.27	307.60	6.73	4.00E-05			
2,3,7,8-Tetrachlorodibenzo-p-Dioxin	9.63E-13	9.63E-13	1.30E+05	39.91	7.27	307.60	6.73	4.00E-05			
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin	2.62E-12	2.62E-12	1.30E+05	39.91	7.27	307.60	6.73	4.00E-05			
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin	1.64E-12	1.64E-12	1.30E+04	39.91	7.27	307.60	6.73	4.00E-04			
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin	2.13E-12	2.13E-12	1.30E+04	39.91	7.27	307.60	6.73	4.00E-04			
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin	1.93E-12	1.93E-12	1.30E+04	39.91	7.27	307.60	6.73	4.00E-04			-
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin	9.09E-12	9.09E-12	1.30E+03	39.91	7.27	307.60	6.73	4.00E-03			
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin	1.74E-11	1.74E-11	3.90E+01	39.91	7.27	302.95	6.64	1.30E-01			
Polychlorinated Dibenzofurans (PCDF)			1.30E+05	26.80	7.27	154.97	6.73	4.00E-05			
2,3,7,8-Tetrachlorodibenzofuran	1.04E-11	1.04E-11	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			
1,2,3,7,8-Pentachlorodibenzofuran	1.12E-11	1.12E-11	3.90E+03	26.80	7.27	152.63	6.64	1.30E-03			
2,3,4,7,8-Pentachlorodibenzofuran	4.51E-12	4.51E-12	3.90E+04	26.80	7.27	152.63	6.64	1.30E-04			
1,2,3,4,7,8-Hexachlorodibenzofuran	8.86E-12	8.86E-12	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			
1,2,3,6,7,8-Hexachlorodibenzofuran	9.32E-12	9.32E-12	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			
2,3,4,6,7,8-Hexachlorodibenzofuran	6.40E-12	6.40E-12	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			·
1,2,3,7,8,9-Hexachlorodibenzofuran	1.60E-12	1.60E-12	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			
1,2,3,4,6,7,8-Heptachlorodibenzofuran	1.86E-11	1.86E-11	1.30E+03	26.80	7.27	154.97	6.73	4.00E-03			
1,2,3,4,7,8,9-Heptachlorodibenzofuran	3.07E-12	3.07E-12	1.30E+03	26.80	7.27	154.97	6.73	4.00E-03			
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	8.20E-12	8.20E-12	3.90E+01	26.80	7.27	152.63	6.64	1.30E-01			
				_							
				_							
						_					

7/12/2018

4. Emission Calculations

4. Emission Calculations						
Compound	R1 (lbs/hr)	R2 (lbs/hr)	R1 (lbs/day)	R2 (lbs/day)	R2 (lbs/yr)	R2 (tons/yr)
Benzene						
Ethyl Benzene						
Carbon Disulfide						
Styrene						
Perchloroethylene (Tetrachloroethylene)						
Toluene						
Trichloroethylene						
o-Xylene						
p-Xylene						
Polychlorinated Dibenzo-p-Dioxins (PCDD						
2,3,7,8-Tetrachlorodibenzo-p-Dioxin	9.63E-13	9.63E-13	2.31E-11	2.31E-11	8.41E-09	4.21E-12
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin	2.62E-12	2.62E-12	6.29E-11	6.29E-11	2.29E-08	1.14E-11
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin	1.64E-12	1.64E-12	3.93E-11	3.93E-11	1.43E-08	7.16E-12
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin	2.13E-12	2.13E-12	5.11E-11	5.11E-11	1.86E-08	9.29E-12
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin	1.93E-12	1.93E-12	4.64E-11	4.64E-11	1.69E-08	8.44E-12
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin	9.09E-12	9.09E-12	2.18E-10	2.18E-10	7.94E-08	3.97E-11
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin	1.74E-11	1.74E-11	4.18E-10	4.18E-10	1.52E-07	7.61E-11
Polychlorinated Dibenzofurans (PCDF)						
2,3,7,8-Tetrachlorodibenzofuran	1.04E-11	1.04E-11	2.50E-10	2.50E-10	9.12E-08	4.56E-11
1,2,3,7,8-Pentachlorodibenzofuran	1.12E-11	1.12E-11	2.68E-10	2.68E-10	9.76E-08	4.88E-11
2,3,4,7,8-Pentachlorodibenzofuran	4.51E-12	4.51E-12	1.08E-10	1.08E-10	3.94E-08	1.97E-11
1,2,3,4,7,8-Hexachlorodibenzofuran	8.86E-12	8.86E-12	2.13E-10	2.13E-10	7.74E-08	3.87E-11
1,2,3,6,7,8-Hexachlorodibenzofuran	9.32E-12	9.32E-12	2.24E-10	2.24E-10	8.14E-08	4.07E-11
2,3,4,6,7,8-Hexachlorodibenzofuran	6.40E-12	6.40E-12	1.54E-10	1.54E-10	5.59E-08	2.79E-11
1,2,3,7,8,9-Hexachlorodibenzofuran	1.60E-12	1.60E-12	3.84E-11	3.84E-11	1.40E-08	6.99E-12
1,2,3,4,6,7,8-Heptachlorodibenzofuran	1.86E-11	1.86E-11	4.46E-10	4.46E-10	1.62E-07	8.12E-11
1,2,3,4,7,8,9-Heptachlorodibenzofuran	3.07E-12	3.07E-12	7.38E-11	7.38E-11	2.69E-08	1.34E-11
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	8.20E-12	8.20E-12	1.97E-10	1.97E-10	7.16E-08	3.58E-11
Total	1.18E-10	1.18E-10	2.83E-09	2.83E-09	1.03E-06	5.15E-10

Tier 2 Report -HRA.Scen1Case1.DFonly

5a. MICR

MICR Resident = CP (mg/(kg-day))^-1 * Q (ton/yr) * (X/Q) Resident * CEF Resident * MP Resident * 1e-6 * MWAF

MICR Worker = CP (mg/(kg-day))^-1 * Q (ton/yr) * (X/Q) Worker * CEF Worker * MP Worker * WAF Worker * 1e-6 * MWAF

Compound	Residential	Commercial
Benzene		
Ethyl Benzene		
Carbon Disulfide		
Styrene		
Perchloroethylene (Tetrachloroethylene)		
Toluene		
Trichloroethylene		
o-Xylene		
p-Xylene		
Polychlorinated Dibenzo-p-Dioxins (PCDD		
2,3,7,8-Tetrachlorodibenzo-p-Dioxin	2.80E-09	5.70E-10
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin	7.63E-09	1.55E-09
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin	4.77E-10	9.70E-11
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin	6.19E-10	1.26E-10
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin	5.63E-10	1.14E-10
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin	2.65E-10	5.38E-11
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin	1.52E-11	3.10E-12
Polychlorinated Dibenzofurans (PCDF)		
2,3,7,8-Tetrachlorodibenzofuran	2.04E-09	6.18E-10
1,2,3,7,8-Pentachlorodibenzofuran	6.55E-10	1.98E-10
2,3,4,7,8-Pentachlorodibenzofuran	2.65E-09	8.01E-10
1,2,3,4,7,8-Hexachlorodibenzofuran	1.73E-09	5.24E-10
1,2,3,6,7,8-Hexachlorodibenzofuran	1.82E-09	5.52E-10
2,3,4,6,7,8-Hexachlorodibenzofuran	1.25E-09	3.79E-10
1,2,3,7,8,9-Hexachlorodibenzofuran	3.13E-10	9.48E-11
1,2,3,4,6,7,8-Heptachlorodibenzofuran	3.63E-10	1.10E-10
1,2,3,4,7,8,9-Heptachlorodibenzofuran	6.01E-11	1.82E-11
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	4.81E-12	1.46E-12
Total	2.33E-08	5.81E-09
1	PASS	PASS

Tier 2 Report -HRA.Scen1Case1.DFonly 5b. Is Cancer Burden Calculation Needed (MICR >1E-6)?

NO

New X/Q at which MICR_{70yr} is one-in-a-million [$(\mu g/m^3)/(tons/yr)$]: New Distance, interpolated from X/Q table using New X/Q (meter): Zone Impact Area (km²): Zone of Impact Population (7000 person/km²): Cancer Burden:

Page 4 of 7 7/12/2018

6. Hazard Index Summary

A/N: Scenario 1, Case 1

Application deemed complete date: 06/25/18

HIA = [Q(lb/hr) * (X/Q)max * MWAF]/Acute REL

HIC = [Q(ton/yr) * (X/Q) * MP * MWAF] / Chronic REL

HIC 8-hr= [Q(ton/yr) * (X/Q) * WAF * MWAF] / 8-hr Chronic REL

Target Organs	Acute	Chronic	8-hr Chronic	Acute Pass/Fail	Chronic Pass/Fail	8-hr Chronic Pass/Fail
Alimentary system (liver) - AL		9.28E-05		Pass	Pass	Pass
Bones and teeth - BN				Pass	Pass	Pass
Cardiovascular system - CV				Pass	Pass	Pass
Developmental - DEV		9.28E-05		Pass	Pass	Pass
Endocrine system - END		9.28E-05		Pass	Pass	Pass
Eye				Pass	Pass	Pass
Hematopoietic system - HEM		9.28E-05		Pass	Pass	Pass
Immune system - IMM				Pass	Pass	Pass
Kidney - KID				Pass	Pass	Pass
Nervous system - NS				Pass	Pass	Pass
Reproductive system - REP		9.28E-05		Pass	Pass	Pass
Respiratory system - RES		9.28E-05		Pass	Pass	Pass
Skin				Pass	Pass	Pass

Page 5 of 7 7/12/2018 10 of 48

6a. Hazard Index Acute - Resident

HIA = [Q(lb/hr) * (X/Q)max resident * MWAF] / Acute REL

	HIA - Residential									
Compound	AL	CV	DEV	EYE	HEM	IMM	NS	REP	RESP	SKIN
Benzene										
Ethyl Benzene										
Carbon Disulfide										
Styrene										
Perchloroethylene (Tetrachloroethylene)										
Toluene										
Trichloroethylene										
o-Xylene										
p-Xylene										
Polychlorinated Dibenzo-p-Dioxins (PCDD										
2,3,7,8-Tetrachlorodibenzo-p-Dioxin										
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin										
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin										
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin										
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin										
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin										
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin										
Polychlorinated Dibenzofurans (PCDF)										
2,3,7,8-Tetrachlorodibenzofuran										
1,2,3,7,8-Pentachlorodibenzofuran										
2,3,4,7,8-Pentachlorodibenzofuran										
1,2,3,4,7,8-Hexachlorodibenzofuran										
1,2,3,6,7,8-Hexachlorodibenzofuran										
2,3,4,6,7,8-Hexachlorodibenzofuran										
1,2,3,7,8,9-Hexachlorodibenzofuran										
1,2,3,4,6,7,8-Heptachlorodibenzofuran										
1,2,3,4,7,8,9-Heptachlorodibenzofuran										
1,2,3,4,6,7,8,9-Octachlorodibenzofuran										
Total										

HIA = [Q(lb/hr) * (X/Q)max Worker * MWAF] / Acute REL

A/N: Scenario 1, Case 1

Application deemed complete date: 06/25/18

HIA - Commercial										
Compound	AL	CV	DEV	EYE	HEM	IMM	NS	REP	RESP	SKIN
Benzene										
Ethyl Benzene										
Carbon Disulfide										
Styrene										
Perchloroethylene (Tetrachloroethylene)										
Toluene										
Trichloroethylene										
o-Xylene										
p-Xylene										
Polychlorinated Dibenzo-p-Dioxins (PCDD										
2,3,7,8-Tetrachlorodibenzo-p-Dioxin										
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin										
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin										
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin										
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin										
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin										
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin										
Polychlorinated Dibenzofurans (PCDF)										
2,3,7,8-Tetrachlorodibenzofuran										
1,2,3,7,8-Pentachlorodibenzofuran										
2,3,4,7,8-Pentachlorodibenzofuran										
1,2,3,4,7,8-Hexachlorodibenzofuran										
1,2,3,6,7,8-Hexachlorodibenzofuran										
2,3,4,6,7,8-Hexachlorodibenzofuran										
1,2,3,7,8,9-Hexachlorodibenzofuran										
1,2,3,4,6,7,8-Heptachlorodibenzofuran										
1,2,3,4,7,8,9-Heptachlorodibenzofuran										
1,2,3,4,6,7,8,9-Octachlorodibenzofuran										
Total										
10001										<u> </u>

DF Emissions for Scenario 1, Case 1:

Dataset: Worst-case concentrations with blended flowrates [deep soil run 1 @ 350 scfm flowrate + shallow soil run 2 @ 150 scfm]

Sampling Location: STACK SVE1B Run Number: S-1B-M428-1 Run Date: 04/11/18

Run Date:	04/11/18								
Parameter	Catch Weight		Concentration	าร	Emissi	on Rate	Shallow Run 2	@ 150 scfm	For HRA
	(pg)	(ng/DSCM)	(12% CO ₂)	(@ 7% O ₂)	(gms/sec)	(lbs/hr)	(lbs/hr)		(lbs/hr)
PCDDs	•								
2,3,7,8-TCDD	1.7	3.27E-04	3.49E-04	3.93E-04	5.40E-14	4.29E-13	5.3417E-13		9.629E-13
Other TCDD	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.41453E-12		9.415E-12
1,2,3,7,8-PeCDD	2.76	5.31E-04	5.66E-04	6.37E-04	8.77E-14	6.96E-13	1.92381E-12		2.62E-12
Other PeCDD		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.21026E-12		8.21E-12
1,2,3,4,7,8-HxCDD	2.54	4.89E-04	5.21E-04	5.87E-04	8.07E-14	6.41E-13	9.98259E-13		1.639E-12
1,2,3,6,7,8-HxCDD	2.43	4.67E-04	4.99E-04	5.61E-04	7.72E-14	6.13E-13	1.51481E-12		2.128E-12
1,2,3,7,8,9-HxCDD	2.48	4.77E-04	5.09E-04	5.73E-04	7.88E-14	6.26E-13	1.30728E-12		1.933E-12
Other HxCDD	14.15	2.72E-03	2.90E-03	3.27E-03	4.50E-13	3.57E-12	1.10399E-11		1.461E-11
1,2,3,4,6,7,8-HpCDD	13.1	2.52E-03	2.69E-03	3.02E-03	4.16E-13	3.30E-12	5.78657E-12		9.091E-12
Other HpCDD	14.8	2.85E-03	3.04E-03	3.42E-03	4.70E-13	3.73E-12	5.04431E-12		8.777E-12
OCDD	23.8	4.58E-03	4.88E-03	5.50E-03	7.56E-13	6.00E-12	1.14217E-11		1.742E-11
TOTAL PCDDs	77.76	1.50E-02	1.60E-02	1.80E-02	2.47E-12	1.96E-11	5.72295E-11		7.684E-11
PCDFs									
2,3,7,8-TCDF	3.9	7.50E-04	8.00E-04	9.01E-04	1.24E-13	9.84E-13	9.45241E-12		1.044E-11
Other TCDF	26	5.00E-03	5.34E-03	6.00E-03	8.26E-13	6.56E-12	2.10195E-10		2.168E-10
1,2,3,7,8-PeCDF	2.72	5.23E-04	5.58E-04	6.28E-04	8.64E-14	6.86E-13	1.04825E-11		1.117E-11
2,3,4,7,8-PeCDF	3.23	6.21E-04	6.63E-04	7.46E-04	1.03E-13	8.15E-13	3.69613E-12		4.511E-12
Other PeCDF	17.85	3.43E-03	3.66E-03	4.12E-03	5.67E-13	4.50E-12	7.27714E-11		7.727E-11
1,2,3,4,7,8-HxCDF	7.43	1.43E-03	1.52E-03	1.72E-03	2.36E-13	1.87E-12	6.98327E-12		8.857E-12
1,2,3,6,7,8-HxCDF	5.41	1.04E-03	1.11E-03	1.25E-03	1.72E-13	1.36E-12	7.95274E-12		9.317E-12
2,3,4,6,7,8-HxCDF	1.64	3.15E-04	3.37E-04	3.79E-04	5.21E-14	4.14E-13	5.98349E-12		6.397E-12
1,2,3,7,8,9-HxCDF	1.85	3.56E-04	3.80E-04	4.27E-04	5.88E-14	4.67E-13	1.13459E-12		1.601E-12
Other HxCDF	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0		0
1,2,3,4,6,7,8-HpCDF	25.2	4.85E-03	5.17E-03	5.82E-03	8.01E-13	6.36E-12	1.22245E-11		1.858E-11
1,2,3,4,7,8,9-HpCDF	1.8	3.46E-04	3.69E-04	4.16E-04	5.72E-14	4.54E-13	2.62062E-12		3.075E-12
Other HpCDF	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.39294E-12		4.393E-12
OCDF	11.6	2.23E-03	2.38E-03	2.68E-03	3.69E-13	2.93E-12	5.27153E-12		8.197E-12
TOTAL PCDFs	108.63	2.09E-02	2.23E-02	2.51E-02	3.45E-12	2.74E-11			
TOTAL PCDDs and PCDFs	186.39	3.59E-02	3.82E-02	4.30E-02	5.92E-12	4.70E-11			

TIER 1/TIER 2 SCREENING RISK ASSESSMENT DATA INPUT

(Procedure Version 8.1 & Package N, September 1, 2017) - Risk Tool V1.1

Application Deemed Complete Date	06/26/18
A/N	Scenario 1, Case 2
Facility Name	Del Amo Torrance

1. Stack Data	Input	Units
Hours/Day	24	hrs/day
Days/Week	7	days/wk
Weeks/Year	52	wks/yr
Control Efficiency	0.000	
Does source have T-BACT?	NO	
Source type (Point or Volume)	P	P or V
Stack Height or Building Height	20	feet
Building Area	5000	ft^2
Distance-Residential	400	meters
Distance-Commercial	50	meters
Meteorological Station	Hawthor	ne Airport
Project Duration (Short term options: 2, 5, or 9 years; Else 30 years)	5	years

Source Type	Otl	her
Screening Mode (NO = Tier 1 or Tier 2; YES = Tier 3)	NO	

From

1 feet

To

0.3048 meter

FOR SOURCE TYPE OTHER THAN BOILER, CREMATORY, ICE, PRESSURE WASHER, OR SPRAY BOOTH, FILL IN THE USER DEFINED TABLE BELOW

Fac Name: Del Amo Torrance A/N: enario 1, Case 2

TAC Code	Compound	Emission Rate (lbs/hr)	Molecular Weight	R1 - Uncontrolled (lbs/hr)	Efficiency Factor (Fraction range 0-1)	R2-Controlled (lbs/hr)
B1	Benzene		78.11		0.00000	
E3	Ethyl Benzene		106.16		0.00000	
C3	Carbon Disulfide		76.14		0.00000	
S6	Styrene		104.16		0.00000	
P2	Perchloroethylene (Tetrachloroethylene)		165.83		0.00000	
Т3	Toluene		92.13		0.00000	
Т8	Trichloroethylene		130.4		0.00000	
X3	o-Xylene		106.18		0.00000	
X4	p-Xylene		106.17		0.00000	
P22	Polychlorinated Dibenzo-p-Dioxins (PCDD)		459.7548		0.00000	
P23	2,3,7,8-Tetrachlorodibenzo-p-Dioxin	1.78E-12	321.9744	1.78E-12	0.00000	1.78057E-12
P24	1,2,3,7,8-Pentachlorodibenzo-p-Dioxin	6.41E-12	356.4195	6.41E-12	0.00000	
P25	1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin	3.33E-12	390.8646	3.33E-12	0.00000	3.32753E-12
P26	1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin	5.05E-12	390.8646	5.05E-12	0.00000	5.04936E-12
P27	1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin	4.36E-12	390.8646	4.36E-12	0.00000	4.3576E-12
P28	1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin	1.93E-11	425.3097	1.93E-11	0.00000	1.92886E-11
P29	1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin	3.81E-11	459.7548	3.81E-11	0.00000	3.80722E-11
P30	Polychlorinated Dibenzofurans (PCDF)		443.76		0.00000	
P31	2,3,7,8-Tetrachlorodibenzofuran	3.15E-11	305.97156	3.15E-11	0.00000	3.1508E-11
P32	1,2,3,7,8-Pentachlorodibenzofuran	3.49E-11	340.4201	3.49E-11	0.00000	3.49416E-11
P33	2,3,4,7,8-Pentachlorodibenzofuran	1.23E-11	340.4201	1.23E-11	0.00000	1.23204E-11
P34	1,2,3,4,7,8-Hexachlorodibenzofuran	2.33E-11	374.8652	2.33E-11	0.00000	2.32776E-11
P35	1,2,3,6,7,8-Hexachlorodibenzofuran	2.65E-11	374.8652	2.65E-11	0.00000	
P37	2,3,4,6,7,8-Hexachlorodibenzofuran	1.99E-11	374.8652	1.99E-11	0.00000	
P36	1,2,3,7,8,9-Hexachlorodibenzofuran	3.78E-12	374.8652	3.78E-12	0.00000	
P38	1,2,3,4,6,7,8-Heptachlorodibenzofuran	4.07E-11	409.3103	4.07E-11	0.00000	
P39	1,2,3,4,7,8,9-Heptachlorodibenzofuran	8.74E-12	409.3103	8.74E-12	0.00000	8.7354E-12
P40	1,2,3,4,6,7,8,9-Octachlorodibenzofuran	1.76E-11	443.7554	1.76E-11	0.00000	1.75718E-11

TIER 1 SCREENING RISK ASSESSMENT REPORT

Application deemed complete date:

6/26/2018

(Procedure Version 8.1 & Package N, September 1, 2017)

A/N Scenario 1, Case 2, Del Amo Torrance

 Equipment Type
 Other
 No T-BACT

 Nearest Receptor Distance (actual)
 50
 meters

 Receptor Distance (Table 1 Emission look up)
 50
 meters

Tier 1 Results					
Cancer/Chronic ASI	Acute ASI				
3.14E+00					
FAILED	PASSED				

APPLICATION SCREENING INDEX CALCULATION

Compound	Average Annual Emission Rate (lbs/yr)	Max Hourly Emission Rate (lbs/hr)	Cancer/Chronic Pollutant Screening Level (lbs/yr) from Table 1	Acute Pollutant Screening Level (lbs/hr) from Table 1	Cancer/Chronic Pollutant Screening Index (PSI)	Acute Pollutant Screening Index (PSI)
Benzene			1.94E+00	1.49E-02		
Ethyl Benzene			2.22E+01			
Carbon Disulfide			1.05E+05	3.41E+00		
Styrene			1.18E+05	6.61E-02		
Perchloroethylene (Tetrachloroethylene)			9.22E+00	1.10E+01		
Toluene			3.93E+04	2.04E+01		
Trichloroethylene			2.77E+01			
o-Xylene			9.18E+04	1.21E+01		
p-Xylene			9.18E+04	1.21E+01		
Polychlorinated Dibenzo-p-Dioxins (PCDD)			5.79E-08			
2,3,7,8-Tetrachlorodibenzo-p-Dioxin	1.56E-08	1.78E-12	5.79E-08		2.69E-01	
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin	5.60E-08	6.41E-12	5.79E-08		9.68E-01	
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin	2.91E-08	3.33E-12	5.79E-07		5.02E-02	
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin	4.41E-08	5.05E-12	5.79E-07		7.62E-02	
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin	3.81E-08	4.36E-12	5.79E-07		6.57E-02	
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin	1.69E-07	1.93E-11	5.79E-06		2.91E-02	
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin	3.33E-07	3.81E-11	1.93E-04		1.72E-03	
Polychlorinated Dibenzofurans (PCDF)			8.19E-08			
2,3,7,8-Tetrachlorodibenzofuran	2.75E-07	3.15E-11	8.19E-07		3.36E-01	
1,2,3,7,8-Pentachlorodibenzofuran	3.05E-07	3.49E-11	2.73E-06		1.12E-01	
2,3,4,7,8-Pentachlorodibenzofuran	1.08E-07	1.23E-11	2.73E-07		3.94E-01	
1,2,3,4,7,8-Hexachlorodibenzofuran	2.03E-07	2.33E-11	8.19E-07		2.48E-01	
1,2,3,6,7,8-Hexachlorodibenzofuran	2.32E-07	2.65E-11	8.19E-07		2.83E-01	
2,3,4,6,7,8-Hexachlorodibenzofuran	1.74E-07	1.99E-11	8.19E-07		2.13E-01	
1,2,3,7,8,9-Hexachlorodibenzofuran	3.30E-08	3.78E-12	8.19E-07		4.03E-02	
1,2,3,4,6,7,8-Heptachlorodibenzofuran	3.56E-07	4.07E-11	8.19E-06		4.35E-02	
1,2,3,4,7,8,9-Heptachlorodibenzofuran	7.63E-08	8.74E-12	8.19E-06		9.32E-03	
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	1.54E-07	1.76E-11	2.73E-04		5.62E-04	
TOTAL (APPLICATION SCREENING INDEX)					3.14E+00	

TIER 2 SCREENING RISK ASSESSMENT REPORT

A/N: :: enario 1, Case 2

(Procedure Version 8.1 & Package N, September 1, 2017) - Risk Tool V1.1

1. Stack Data		
Equipment Type	Other	_
Combustion Eff	0.0	_
	No T-BACT	· _
Operation Schodule	24	hra/dav
Operation Schedule	24 7	_hrs/day _days/week
	52	_weeks/year
Stack Height	20	_ft
Distance to Residential	400	m
Distance to Commercial	50	 m
Meteorological Station	Hawthorne A	- \irnort

2. Tier 2 Data

Fac: Del Amo Torrance

Dispersion Factors tables	Point Source		
For Chronic X/Q	Table 6		
For Acute X/Q max	Table 6.4		

Dilution Factors

Receptor	X/Q (µg/m³)/(tons/yr)	X/Qmax (µg/m³)/(lbs/hr)	
Residential	0.33	15.54	
Commercial - Worker	12.84	261.46	

Application deemed complete date: 6/26/2018

Intake and Adjustment Factors

	Residential	Worker
Year of Exposure	5	
Combined Exposure Factor (CEF) - Table 4	389.23	11.17
Worker Adjustment Factor (WAF) - Table 5	1	1.00

3. Rule 1401 Compound Data

Compound	R1 - Uncontrolled (lbs/hr)	R2 - Controlled (lbs/hr)	CP (mg/kg-day) ⁻¹	MP MICR Resident	MP MICR Worker	MP Chronic Resident	MP Chronic Worker	REL Chronic (µg/m³)	REL 8-hr Chronic (µg/m³)	REL Acute (μg/m³)	MWAF
Benzene			1.00E-01	1.00	1.00	1.00	1.00	3.00E+00	3.00E+00	2.70E+01	1
Ethyl Benzene			8.70E-03	1.00	1.00	1.00	1.00	2.00E+03			1
Carbon Disulfide				1.00	1.00	1.00	1.00	8.00E+02		6.20E+03	1
Styrene				1.00	1.00	1.00	1.00	9.00E+02		2.10E+04	
Perchloroethylene (Tetrachloroethylene)			2.10E-02	1.00	1.00	1.00	1.00	3.50E+01		2.00E+04	
Toluene				1.00	1.00	1.00	1.00	3.00E+02		3.70E+04	1
Trichloroethylene			7.00E-03	1.00	1.00	1.00	1.00	6.00E+02			1
o-Xylene				1.00	1.00	1.00	1.00	7.00E+02		2.20E+04	1
p-Xylene				1.00	1.00	1.00	1.00	7.00E+02		2.20E+04	1
Polychlorinated Dibenzo-p-Dioxins (PCDD			1.30E+05	39.91	7.27	307.60	6.73	4.00E-05			1
2,3,7,8-Tetrachlorodibenzo-p-Dioxin	1.78E-12	1.78E-12	1.30E+05	39.91	7.27	307.60	6.73	4.00E-05			1
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin	6.41E-12	6.41E-12	1.30E+05	39.91	7.27	307.60	6.73	4.00E-05			Ţ
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin	3.33E-12	3.33E-12	1.30E+04	39.91	7.27	307.60	6.73	4.00E-04			1
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin	5.05E-12	5.05E-12	1.30E+04	39.91	7.27	307.60	6.73	4.00E-04			Ţ
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin	4.36E-12	4.36E-12	1.30E+04	39.91	7.27	307.60	6.73	4.00E-04			1
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin	1.93E-11	1.93E-11	1.30E+03	39.91	7.27	307.60	6.73	4.00E-03			Ţ
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin	3.81E-11	3.81E-11	3.90E+01	39.91	7.27	302.95	6.64	1.30E-01			1
Polychlorinated Dibenzofurans (PCDF)			1.30E+05	26.80	7.27	154.97	6.73	4.00E-05			1
2,3,7,8-Tetrachlorodibenzofuran	3.15E-11	3.15E-11	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			
1,2,3,7,8-Pentachlorodibenzofuran	3.49E-11	3.49E-11	3.90E+03	26.80	7.27	152.63	6.64	1.30E-03			
2,3,4,7,8-Pentachlorodibenzofuran	1.23E-11	1.23E-11	3.90E+04	26.80	7.27	152.63	6.64	1.30E-04			
1,2,3,4,7,8-Hexachlorodibenzofuran	2.33E-11	2.33E-11	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			
1,2,3,6,7,8-Hexachlorodibenzofuran	2.65E-11	2.65E-11	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			
2,3,4,6,7,8-Hexachlorodibenzofuran	1.99E-11	1.99E-11	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			
1,2,3,7,8,9-Hexachlorodibenzofuran	3.78E-12	3.78E-12	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			
1,2,3,4,6,7,8-Heptachlorodibenzofuran	4.07E-11	4.07E-11	1.30E+03	26.80	7.27	154.97	6.73	4.00E-03			
1,2,3,4,7,8,9-Heptachlorodibenzofuran	8.74E-12	8.74E-12	1.30E+03	26.80	7.27	154.97	6.73	4.00E-03			
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	1.76E-11	1.76E-11	3.90E+01	26.80	7.27	152.63	6.64	1.30E-01			
				-				-			
				-				·			
				-				-			
				·							
				<u> </u>						-	

4. Emission Calculations

4. Emission Calculations						
Compound	R1 (lbs/hr)	R2 (lbs/hr)	R1 (lbs/day)	R2 (lbs/day)	R2 (lbs/yr)	R2 (tons/yr)
Benzene						
Ethyl Benzene						
Carbon Disulfide						
Styrene						
Perchloroethylene (Tetrachloroethylene)						
Toluene						
Trichloroethylene						
o-Xylene						
p-Xylene						
Polychlorinated Dibenzo-p-Dioxins (PCDD						
2,3,7,8-Tetrachlorodibenzo-p-Dioxin	1.78E-12	1.78E-12	4.27E-11	4.27E-11	1.56E-08	7.78E-12
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin	6.41E-12	6.41E-12	1.54E-10	1.54E-10	5.60E-08	2.80E-11
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin	3.33E-12	3.33E-12	7.99E-11	7.99E-11	2.91E-08	1.45E-11
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin	5.05E-12	5.05E-12	1.21E-10	1.21E-10	4.41E-08	2.21E-11
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin	4.36E-12	4.36E-12	1.05E-10	1.05E-10	3.81E-08	1.90E-11
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin	1.93E-11	1.93E-11	4.63E-10	4.63E-10	1.69E-07	8.43E-11
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin	3.81E-11	3.81E-11	9.14E-10	9.14E-10	3.33E-07	1.66E-10
Polychlorinated Dibenzofurans (PCDF)						
2,3,7,8-Tetrachlorodibenzofuran	3.15E-11	3.15E-11	7.56E-10	7.56E-10	2.75E-07	1.38E-10
1,2,3,7,8-Pentachlorodibenzofuran	3.49E-11	3.49E-11	8.39E-10	8.39E-10	3.05E-07	1.53E-10
2,3,4,7,8-Pentachlorodibenzofuran	1.23E-11	1.23E-11	2.96E-10	2.96E-10	1.08E-07	5.38E-11
1,2,3,4,7,8-Hexachlorodibenzofuran	2.33E-11	2.33E-11	5.59E-10	5.59E-10	2.03E-07	1.02E-10
1,2,3,6,7,8-Hexachlorodibenzofuran	2.65E-11	2.65E-11	6.36E-10	6.36E-10	2.32E-07	1.16E-10
2,3,4,6,7,8-Hexachlorodibenzofuran	1.99E-11	1.99E-11	4.79E-10	4.79E-10	1.74E-07	8.71E-11
1,2,3,7,8,9-Hexachlorodibenzofuran	3.78E-12	3.78E-12	9.08E-11	9.08E-11	3.30E-08	1.65E-11
1,2,3,4,6,7,8-Heptachlorodibenzofuran	4.07E-11	4.07E-11	9.78E-10	9.78E-10	3.56E-07	1.78E-10
1,2,3,4,7,8,9-Heptachlorodibenzofuran	8.74E-12	8.74E-12	2.10E-10	2.10E-10	7.63E-08	3.82E-11
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	1.76E-11	1.76E-11	4.22E-10	4.22E-10	1.54E-07	7.68E-11
Total	2.98E-10	2.98E-10	7.14E-09	7.14E-09	2.60E-06	1.30E-09

Tier 2 Report -HRA.Scen1Case2.DFonly

5a. MICRMICR Resident = CP (mg/(kg-day))^-1 * Q (ton/yr) * (X/Q) Resident * CEF Resident * MP Resident * 1e-6 * MWAF
MICR Worker = CP (mg/(kg-day))^-1 * Q (ton/yr) * (X/Q) Worker * CEF Worker* MP Worker* WAF Worker* 1e-6 * MWAF

Compound	Residential	Commercial
Benzene		
Ethyl Benzene		
Carbon Disulfide		
Styrene		
Perchloroethylene (Tetrachloroethylene)		
Toluene		
Trichloroethylene		
o-Xylene		
p-Xylene		
Polychlorinated Dibenzo-p-Dioxins (PCDD		
2,3,7,8-Tetrachlorodibenzo-p-Dioxin	5.18E-09	1.05E-09
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin	1.87E-08	3.80E-09
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin	9.69E-10	1.97E-10
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin	1.47E-09	2.99E-10
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin	1.27E-09	2.58E-10
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin	5.61E-10	1.14E-10
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin	3.32E-11	6.76E-12
Polychlorinated Dibenzofurans (PCDF)		
2,3,7,8-Tetrachlorodibenzofuran	6.16E-09	1.87E-09
1,2,3,7,8-Pentachlorodibenzofuran	2.05E-09	6.21E-10
2,3,4,7,8-Pentachlorodibenzofuran	7.22E-09	2.19E-09
1,2,3,4,7,8-Hexachlorodibenzofuran	4.55E-09	1.38E-09
1,2,3,6,7,8-Hexachlorodibenzofuran	5.18E-09	1.57E-09
2,3,4,6,7,8-Hexachlorodibenzofuran	3.90E-09	1.18E-09
1,2,3,7,8,9-Hexachlorodibenzofuran	7.39E-10	2.24E-10
1,2,3,4,6,7,8-Heptachlorodibenzofuran	7.97E-10	2.41E-10
1,2,3,4,7,8,9-Heptachlorodibenzofuran	1.71E-10	5.17E-11
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	1.03E-11	3.12E-12
Total	5.89E-08	1.51E-08
	PASS	PASS

Tier 2 Report -HRA.Scen1Case2.DFonly **5b. Is Cancer Burden Calculation Needed (MICR >1E-6)?**

NO

New X/Q at which MICR_{70yr} is one-in-a-million [$(\mu g/m^3)/(tons/yr)$]: New Distance, interpolated from X/Q table using New X/Q (meter): Zone Impact Area (km²): Zone of Impact Population (7000 person/km²): Cancer Burden:

6. Hazard Index Summary

A/N: Scenario 1, Case 2

Application deemed complete date: 06/26/18

HIA = [Q(lb/hr) * (X/Q)max * MWAF]/ Acute REL

HIC = [Q(ton/yr) * (X/Q) * MP * MWAF] / Chronic REL

HIC 8-hr= [Q(ton/yr) * (X/Q) * WAF * MWAF] / 8-hr Chronic REL

Target Organs	Acute	Chronic	8-hr Chronic	Acute Pass/Fail	Chronic Pass/Fail	8-hr Chronic Pass/Fail
Alimentary system (liver) - AL		2.40E-04		Pass	Pass	Pass
Bones and teeth - BN				Pass	Pass	Pass
Cardiovascular system - CV				Pass	Pass	Pass
Developmental - DEV		2.40E-04		Pass	Pass	Pass
Endocrine system - END		2.40E-04		Pass	Pass	Pass
Eye				Pass	Pass	Pass
Hematopoietic system - HEM		2.40E-04		Pass	Pass	Pass
Immune system - IMM				Pass	Pass	Pass
Kidney - KID				Pass	Pass	Pass
Nervous system - NS				Pass	Pass	Pass
Reproductive system - REP		2.40E-04		Pass	Pass	Pass
Respiratory system - RES		2.40E-04		Pass	Pass	Pass
Skin				Pass	Pass	Pass

Page 5 of 7 7/12/2018 21 of 48

6a. Hazard Index Acute - Resident

HIA = [Q(lb/hr) * (X/Q)max resident * MWAF] / Acute REL

	HIA - Residential									
Compound	AL	CV	DEV	EYE	HEM	IMM	NS	REP	RESP	SKIN
Benzene										
Ethyl Benzene										
Carbon Disulfide										
Styrene										
Perchloroethylene (Tetrachloroethylene)										
Toluene										
Trichloroethylene										
o-Xylene										
p-Xylene										
Polychlorinated Dibenzo-p-Dioxins (PCDD										
2,3,7,8-Tetrachlorodibenzo-p-Dioxin										
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin										
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin										
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin										
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin										
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin										
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin										
Polychlorinated Dibenzofurans (PCDF)										
2,3,7,8-Tetrachlorodibenzofuran										
1,2,3,7,8-Pentachlorodibenzofuran										
2,3,4,7,8-Pentachlorodibenzofuran										
1,2,3,4,7,8-Hexachlorodibenzofuran										
1,2,3,6,7,8-Hexachlorodibenzofuran										
2,3,4,6,7,8-Hexachlorodibenzofuran										
1,2,3,7,8,9-Hexachlorodibenzofuran										
1,2,3,4,6,7,8-Heptachlorodibenzofuran										
1,2,3,4,7,8,9-Heptachlorodibenzofuran										
1,2,3,4,6,7,8,9-Octachlorodibenzofuran										
Total										

6a. Hazard Index Acute - Worker

A/N: Scenario 1, Case 2

HIA = [Q(lb/hr) * (X/Q)max Worker * MWAF] / Acute REL

	HIA - Commercial									
Compound	AL	CV	DEV	EYE	HEM	IMM	NS	REP	RESP	SKIN
Benzene										
Ethyl Benzene										
Carbon Disulfide										
Styrene										
Perchloroethylene (Tetrachloroethylene)										
Toluene										
Trichloroethylene										
o-Xylene										
p-Xylene										
Polychlorinated Dibenzo-p-Dioxins (PCDD										
2,3,7,8-Tetrachlorodibenzo-p-Dioxin										
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin										
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin										
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin										
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin										
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin										
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin										
Polychlorinated Dibenzofurans (PCDF)										
2,3,7,8-Tetrachlorodibenzofuran										
1,2,3,7,8-Pentachlorodibenzofuran										
2,3,4,7,8-Pentachlorodibenzofuran										
1,2,3,4,7,8-Hexachlorodibenzofuran										
1,2,3,6,7,8-Hexachlorodibenzofuran										
2,3,4,6,7,8-Hexachlorodibenzofuran										
1,2,3,7,8,9-Hexachlorodibenzofuran										
1,2,3,4,6,7,8-Heptachlorodibenzofuran										
1,2,3,4,7,8,9-Heptachlorodibenzofuran										
1,2,3,4,6,7,8,9-Octachlorodibenzofuran										
Total										
Total										

Application deemed complete date: 06/26/18

DF Emissions for Scenario 1, Case 2:

Worst-case concentrations (i.e., shallow soil Run 2) x 500 scfm flowrate Dataset:

STACK SVE1A Sampling Location: Run Number: S-1A-M428-2 Run Date: 04/05/18

Run Date:	04/05/18					
Parameter	Catch Weight		Concentration	ıs	Emissi	on Rate
	(pg)	(ng/DSCM)	(12% CO ₂)	(@ 7% O ₂)	(gms/sec)	(lbs/hr)
PCDDs						
2,3,7,8-TCDD	3.75	9.51E-04	2.68E-03	2.02E-03	2.24E-13	1.78E-12
Other TCDD	62.15	1.68E-02	4.72E-02	3.57E-02	3.95E-12	3.14E-11
1,2,3,7,8-PeCDD	12.7	3.42E-03	9.64E-03	7.29E-03	8.08E-13	6.41E-12
Other PeCDD	54.2	1.46E-02	4.12E-02	3.11E-02	3.45E-12	2.74E-11
1,2,3,4,7,8-HxCDD	6.59	1.78E-03	5.00E-03	3.78E-03	4.19E-13	3.33E-12
1,2,3,6,7,8-HxCDD	10	2.70E-03	7.59E-03	5.74E-03	6.36E-13	5.05E-12
1,2,3,7,8,9-HxCDD	8.63	2.33E-03	6.55E-03	4.95E-03	5.49E-13	4.36E-12
Other HxCDD	72.88	1.96E-02	5.53E-02	4.18E-02	4.64E-12	3.68E-11
1,2,3,4,6,7,8-HpCDD	38.2	1.03E-02	2.90E-02	2.19E-02	2.43E-12	1.93E-11
Other HpCDD	33.3	8.98E-03	2.53E-02	1.91E-02	2.12E-12	1.68E-11
OCDD	75.4	2.03E-02	5.73E-02	4.33E-02	4.80E-12	3.81E-11
TOTAL PCDDs	377.80	1.02E-01	2.87E-01	2.17E-01	2.40E-11	1.91E-10
PCDFs						
2,3,7,8-TCDF		1.68E-02	4.74E-02	3.58E-02	3.97E-12	3.15E-11
Other TCDF		3.74E-01	1.05E+00	7.96E-01	8.83E-11	7.01E-10
1,2,3,7,8-PeCDF		1.87E-02	5.25E-02	3.97E-02	4.40E-12	3.49E-11
2,3,4,7,8-PeCDF		6.58E-03	1.85E-02	1.40E-02	1.55E-12	1.23E-11
Other PeCDF	480.4	1.30E-01	3.65E-01	2.76E-01	3.06E-11	2.43E-10
1,2,3,4,7,8-HxCDF		1.24E-02	3.50E-02	2.65E-02	2.93E-12	2.33E-11
1,2,3,6,7,8-HxCDF	52.5	1.42E-02	3.99E-02	3.01E-02	3.34E-12	2.65E-11
2,3,4,6,7,8-HxCDF		1.06E-02	3.00E-02	2.27E-02	2.51E-12	1.99E-11
1,2,3,7,8,9-HxCDF		2.02E-03	5.69E-03	4.30E-03	4.77E-13	3.78E-12
Other HxCDF		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
1,2,3,4,6,7,8-HpCDF	80.7	2.18E-02	6.13E-02	4.63E-02	5.13E-12	4.07E-11
1,2,3,4,7,8,9-HpCDF		4.66E-03	1.31E-02	9.93E-03	1.10E-12	8.74E-12
Other HpCDF	29	7.82E-03	2.20E-02	1.66E-02	1.85E-12	1.46E-11
OCDF	34.8	9.38E-03	2.64E-02	2.00E-02	2.21E-12	1.76E-11
TOTAL PCDFs	2331.39	6.28E-01	1.77E+00	1.34E+00	1.48E-10	1.18E-09
TOTAL PCDDs and PCDFs	2709.19	7.30E-01	2.06E+00	1.55E+00	1.72E-10	1.37E-09

TIER 3 SCREENING RISK ASSESSMENT DATA INPUT

(Procedure Version 8.1 & Package N, September 1, 2017) - Risk Tool VI.1

Application Deemed Complete Date	06/26/18
A/N	Scenario 2, Case 1
Facility Name	Del Amo Torrance

1. Stack Data	Input	Units
Hours/Day	24	hrs/day
Days/Week	7	days/wk
Weeks/Year	52	wks/yr
Control Efficiency	0.000	
Does source have T-BACT?	NO	
Source type (Point or Volume)	P	P or V
Stack Height or Building Height	20	feet
Building Area	5000	ft^2
Distance-Residential	400	meters
Distance-Commercial	50	meters
Meteorological Station	Hawthor	ne Airport
Project Duration (Short term options: 2, 5, or 9 years; Else 30 years)	5	years

Source Type	Ot	her
Screening Mode (NO = Tier 1 or Tier 2; YES = Tier 3)	YES	

Conversion Units (select units

From

1 feet

To

0.3048 meter

FOR SOURCE TYPE OTHER THAN BOILER, CREMATORY, ICE, PRESSURE WASHER, OR SPRAY BOOTH, FILL IN THE USER DEFINED TABLE BELOW

Fac Name: Del Amo Torrance A/N: :enario 2, Case 1

TAC Code	Compound	Emission Rate (lbs/hr)	Molecular Weight	R1 - Uncontrolled (lbs/hr)	Efficiency Factor (Fraction range 0-1)	R2-Controlled (lbs/hr)
B1	Benzene	8.46E-02	78.11	8.46E-02	0.00000	0.084632375
E3	Ethyl Benzene	2.35E-01	106.16	2.35E-01	0.00000	0.234952528
C3	Carbon Disulfide		76.14		0.00000	
S6	Styrene		104.16		0.00000	
P2	Perchloroethylene (Tetrachloroethylene)		165.83		0.00000	
Т3	Toluene	2.62E-03	92.13	2.62E-03	0.00000	0.002624896
Т8	Trichloroethylene		130.4		0.00000	
X3	o-Xylene		106.18		0.00000	
X4	p-Xylene		106.17		0.00000	
P22	Polychlorinated Dibenzo-p-Dioxins (PCDD)		459.7548		0.00000	
P23	2,3,7,8-Tetrachlorodibenzo-p-Dioxin	9.63E-13	321.9744	9.63E-13	0.00000	9.62946E-13
P24	1,2,3,7,8-Pentachlorodibenzo-p-Dioxin	2.62E-12	356.4195	2.62E-12	0.00000	2.61994E-12
P25	1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin	1.64E-12	390.8646	1.64E-12	0.00000	1.6389E-12
P26	1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin	2.13E-12	390.8646	2.13E-12	0.00000	2.12771E-12
P27	1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin	1.93E-12	390.8646	1.93E-12	0.00000	1.93279E-12
P28	1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin	9.09E-12	425.3097	9.09E-12	0.00000	9.09066E-12
P29	1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin	1.74E-11	459.7548	1.74E-11	0.00000	1.74245E-11
P30	Polychlorinated Dibenzofurans (PCDF)		443.76		0.00000	
P31	2,3,7,8-Tetrachlorodibenzofuran	1.04E-11	305.97156	1.04E-11	0.00000	1.04361E-11
P32	1,2,3,7,8-Pentachlorodibenzofuran	1.12E-11	340.4201	1.12E-11	0.00000	1.11685E-11
P33	2,3,4,7,8-Pentachlorodibenzofuran	4.51E-12	340.4201	4.51E-12	0.00000	4.51081E-12
P34	1,2,3,4,7,8-Hexachlorodibenzofuran	8.86E-12	374.8652	8.86E-12	0.00000	8.85727E-12
P35	1,2,3,6,7,8-Hexachlorodibenzofuran	9.32E-12	374.8652	9.32E-12	0.00000	9.31726E-12
P37	2,3,4,6,7,8-Hexachlorodibenzofuran	6.40E-12	374.8652	6.40E-12	0.00000	6.39714E-12
P36	1,2,3,7,8,9-Hexachlorodibenzofuran	1.60E-12	374.8652	1.60E-12	0.00000	1.6012E-12
P38	1,2,3,4,6,7,8-Heptachlorodibenzofuran	1.86E-11	409.3103	1.86E-11	0.00000	1.85805E-11
P39	1,2,3,4,7,8,9-Heptachlorodibenzofuran	3.07E-12	409.3103	3.07E-12	0.00000	3.07462E-12
P40	1,2,3,4,6,7,8,9-Octachlorodibenzofuran	8.20E-12	443.7554	8.20E-12	0.00000	8.1973E-12

TIER 3 SCREEN INPUT & CANCER BURDEN CALCULATION

(Procedure Version 8.1 & Package N, September 1, 2017) - Risk Tool V1.1

Screening program used	AERSCREEN
Convert 1-hr to Annual Conc. Factor	0.1

Instructions: Run a screening program at 1 lb/hr rate to get the max 1-hr concentrations at residential & commercial receptors. Enter values into the yellow highlighted cells in the table below. Review risk result in Tier 3 Report.

Modeling emissions rate	0.1260	g/sec
Modeling emissions rate	1.00	lbs/hr
Modeling emissions rate	4.38	tons/yr
Max Hours per day	24	hr/day
Days per week	7	dy/wk
Weeks per year	52	wk/yr

MODELING RESULTS - MAX ONE HOUR

Distance residential	400	meters
Max. 1-hr Conc. at Residential receptor	1.31E+00	$\mu g/m^3$
Annualized Conc. Residential	0.13	$\mu g/m^3$
Distance Commerical	50	meters
Max. 1-hr Conc. at Comm. receptor	2.10E+01	$\mu g/m^3$
Annualized Conc. Commercial	2.10	$\mu g/m^3$

Annualized X/Q

X/Q Residential	0.030	$(\mu g/m^3)/(tons/yr)$
X/Q Commercial	0.480	$(\mu g/m^3)/(tons/yr)$

Hourly X/Q (X/Q Max)

X/Q Residential	1.311	$(\mu g/m^3)/(lbs/hr)$
X/Q Commercial	21.019	$(\mu g/m^3)/(lbs/hr)$

A/N: Scenario 2, Case 1 Fac: Del A	Amo Torrance
------------------------------------	--------------

SCREEN INPUT DATA - BRITISH UNITS

Temperature	1550.00	°F
Stack diameter	18.00	in
Stack height	20.00	ft
Actual exhaust rate	500.00	acfm
Modeling emissions rate	1.00	lb/hr

SCREEN INPUT DATA - METRIC UNITS

Temperature	1116.333	K
Stack diameter	0.457	meters
Stack area	0.164	m ²
Stack height	6.096	meters
Stack velocity	1.438	m/s
Modeling emissions rate	0.12611	g/s

Tier 3 Screen Input - Procedure Version 8.1
HRA.Scen2Case 1.DF&TACs
27 of 48
7/12/2018

TIER 3 SCREENING RISK ASSESSMENT REPORT

A/N: :: enario 2, Case 1

(Procedure Version 8.1 & Package N, September 1, 2017) - Risk Tool V1.1

1. Stack Data		
Equipment Type	Other	_
Combustion Eff	0.0	_
	No T-BACT	· _
Operation Schedule	24	hrs/day
Operation Schedule	7 52	_days/week weeks/year
Stack Height	20	_ weeks/year
Distance to Residential		_
Distance to Residential Distance to Commercial	<u>400</u> 50	_m m
Meteorological Station	Hawthorne A	_

2. Tier 3 Data

Fac: Del Amo Torrance

Dispersion Factors tables	Point Source
For Chronic X/Q	Table 6
For Acute X/Q max	Table 6.4

Dilution Factors

Receptor	X/Q (µg/m³)/(tons/yr)	X/Qmax (μg/m³)/(lbs/hr)
Residential	0.03	1.31
Commercial - Worker	0.48	21.02

Application deemed complete date: 6/26/2018

Intake and Adjustment Factors

	Residential	Worker
Year of Exposure	5	
Combined Exposure Factor (CEF) - Table 4	389.23	11.17
Worker Adjustment Factor (WAF) - Table 5	1	1.00

A/N: Scenario 2, Case 1

3. Rule 1401 Compound Data

Compound	R1 - Uncontrolled (lbs/hr)	R2 - Controlled (lbs/hr)	CP (mg/kg-day) ⁻¹	MP MICR Resident	MP MICR Worker	MP Chronic Resident	MP Chronic Worker	REL Chronic (µg/m³)	REL 8-hr Chronic (μg/m³)	REL Acute (μg/m³)	MWAF
Benzene	8.46E-02	8.46E-02	1.00E-01	1.00	1.00	1.00	1.00	3.00E+00	3.00E+00	2.70E+01	1
Ethyl Benzene	2.35E-01	2.35E-01	8.70E-03	1.00	1.00	1.00	1.00	2.00E+03			
Carbon Disulfide				1.00	1.00	1.00	1.00	8.00E+02		6.20E+03	
Styrene				1.00	1.00	1.00	1.00	9.00E+02		2.10E+04	
Perchloroethylene (Tetrachloroethylene)			2.10E-02	1.00	1.00	1.00	1.00	3.50E+01		2.00E+04	
Toluene	2.62E-03	2.62E-03		1.00	1.00	1.00	1.00	3.00E+02		3.70E+04	
Trichloroethylene			7.00E-03	1.00	1.00	1.00	1.00	6.00E+02			1
o-Xylene				1.00	1.00	1.00	1.00	7.00E+02		2.20E+04	1
p-Xylene				1.00	1.00	1.00	1.00	7.00E+02		2.20E+04	j
Polychlorinated Dibenzo-p-Dioxins (PCDD			1.30E+05	39.91	7.27	307.60	6.73	4.00E-05			
2,3,7,8-Tetrachlorodibenzo-p-Dioxin	9.63E-13	9.63E-13	1.30E+05	39.91	7.27	307.60	6.73	4.00E-05			
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin	2.62E-12	2.62E-12	1.30E+05	39.91	7.27	307.60	6.73	4.00E-05			
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin	1.64E-12	1.64E-12	1.30E+04	39.91	7.27	307.60	6.73	4.00E-04			1
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin	2.13E-12	2.13E-12	1.30E+04	39.91	7.27	307.60	6.73	4.00E-04			
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin	1.93E-12	1.93E-12	1.30E+04	39.91	7.27	307.60	6.73	4.00E-04			
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin	9.09E-12	9.09E-12	1.30E+03	39.91	7.27	307.60	6.73	4.00E-03			
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin	1.74E-11	1.74E-11	3.90E+01	39.91	7.27	302.95	6.64	1.30E-01			
Polychlorinated Dibenzofurans (PCDF)			1.30E+05	26.80	7.27	154.97	6.73	4.00E-05			
2,3,7,8-Tetrachlorodibenzofuran	1.04E-11	1.04E-11	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			
1,2,3,7,8-Pentachlorodibenzofuran	1.12E-11	1.12E-11	3.90E+03	26.80	7.27	152.63	6.64	1.30E-03			
2,3,4,7,8-Pentachlorodibenzofuran	4.51E-12	4.51E-12	3.90E+04	26.80	7.27	152.63	6.64	1.30E-04			
1,2,3,4,7,8-Hexachlorodibenzofuran	8.86E-12	8.86E-12	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			
1,2,3,6,7,8-Hexachlorodibenzofuran	9.32E-12	9.32E-12	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			
2,3,4,6,7,8-Hexachlorodibenzofuran	6.40E-12	6.40E-12	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			
1,2,3,7,8,9-Hexachlorodibenzofuran	1.60E-12	1.60E-12	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			
1,2,3,4,6,7,8-Heptachlorodibenzofuran	1.86E-11	1.86E-11	1.30E+03	26.80	7.27	154.97	6.73	4.00E-03			
1,2,3,4,7,8,9-Heptachlorodibenzofuran	3.07E-12	3.07E-12	1.30E+03	26.80	7.27	154.97	6.73	4.00E-03			
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	8.20E-12	8.20E-12	3.90E+01	26.80	7.27	152.63	6.64	1.30E-01			
				_							
				_							

4. Emission Calculations

Compound	R1 (lbs/hr)	R2 (lbs/hr)	R1 (lbs/day)	R2 (lbs/day)	R2 (lbs/yr)	R2 (tons/yr)
Benzene	8.46E-02	8.46E-02	2.03E+00	2.03E+00	7.39E+02	3.70E-01
Ethyl Benzene	2.35E-01	2.35E-01	5.64E+00	5.64E+00	2.05E+03	1.03E+00
Carbon Disulfide						
Styrene						
Perchloroethylene (Tetrachloroethylene)						
Toluene	2.62E-03	2.62E-03	6.30E-02	6.30E-02	2.29E+01	1.15E-02
Trichloroethylene						
o-Xylene						
p-Xylene						
Polychlorinated Dibenzo-p-Dioxins (PCDD						
2,3,7,8-Tetrachlorodibenzo-p-Dioxin	9.63E-13	9.63E-13	2.31E-11	2.31E-11	8.41E-09	4.21E-12
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin	2.62E-12	2.62E-12	6.29E-11	6.29E-11	2.29E-08	1.14E-11
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin	1.64E-12	1.64E-12	3.93E-11	3.93E-11	1.43E-08	7.16E-12
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin	2.13E-12	2.13E-12	5.11E-11	5.11E-11	1.86E-08	9.29E-12
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin	1.93E-12	1.93E-12	4.64E-11	4.64E-11	1.69E-08	8.44E-12
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin	9.09E-12	9.09E-12	2.18E-10	2.18E-10	7.94E-08	3.97E-11
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin	1.74E-11	1.74E-11	4.18E-10	4.18E-10	1.52E-07	7.61E-11
Polychlorinated Dibenzofurans (PCDF)						
2,3,7,8-Tetrachlorodibenzofuran	1.04E-11	1.04E-11	2.50E-10	2.50E-10	9.12E-08	4.56E-11
1,2,3,7,8-Pentachlorodibenzofuran	1.12E-11	1.12E-11	2.68E-10	2.68E-10	9.76E-08	4.88E-11
2,3,4,7,8-Pentachlorodibenzofuran	4.51E-12	4.51E-12	1.08E-10	1.08E-10	3.94E-08	1.97E-11
1,2,3,4,7,8-Hexachlorodibenzofuran	8.86E-12	8.86E-12	2.13E-10	2.13E-10	7.74E-08	3.87E-11
1,2,3,6,7,8-Hexachlorodibenzofuran	9.32E-12	9.32E-12	2.24E-10	2.24E-10	8.14E-08	4.07E-11
2,3,4,6,7,8-Hexachlorodibenzofuran	6.40E-12	6.40E-12	1.54E-10	1.54E-10	5.59E-08	2.79E-11
1,2,3,7,8,9-Hexachlorodibenzofuran	1.60E-12	1.60E-12	3.84E-11	3.84E-11	1.40E-08	6.99E-12
1,2,3,4,6,7,8-Heptachlorodibenzofuran	1.86E-11	1.86E-11	4.46E-10	4.46E-10	1.62E-07	8.12E-11
1,2,3,4,7,8,9-Heptachlorodibenzofuran	3.07E-12	3.07E-12	7.38E-11	7.38E-11	2.69E-08	1.34E-11
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	8.20E-12	8.20E-12	1.97E-10	1.97E-10	7.16E-08	3.58E-11
Total	3.22E-01	3.22E-01	7.73E+00	7.73E+00	2.81E+03	1.41E+00

Tier 3 Report -HRA.Scen2Case1.DF&TACs

5a. MICR

MICR Resident = CP (mg/(kg-day))^-1 * Q (ton/yr) * (X/Q) Resident * CEF Resident * MP Resident * 1e-6 * MWAF

MICR Worker = CP (mg/(kg-day))^-1 * Q (ton/yr) * (X/Q) Worker * CEF Worker * MP Worker * WAF Worker * 1e-6 * MWAF

Compound	Residential	Commercial
Benzene	4.31E-07	1.98E-07
Ethyl Benzene	1.04E-07	4.79E-08
Carbon Disulfide		
Styrene		
Perchloroethylene (Tetrachloroethylene)		
Toluene		
Trichloroethylene		
o-Xylene		
p-Xylene		
Polychlorinated Dibenzo-p-Dioxins (PCDD		
2,3,7,8-Tetrachlorodibenzo-p-Dioxin	2.54E-10	2.13E-11
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin	6.92E-10	5.80E-11
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin	4.33E-11	3.63E-12
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin	5.62E-11	4.71E-12
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin	5.10E-11	4.28E-12
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin	2.40E-11	2.01E-12
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin	1.38E-12	1.16E-13
Polychlorinated Dibenzofurans (PCDF)		
2,3,7,8-Tetrachlorodibenzofuran	1.85E-10	2.31E-11
1,2,3,7,8-Pentachlorodibenzofuran	5.94E-11	7.42E-12
2,3,4,7,8-Pentachlorodibenzofuran	2.40E-10	2.99E-11
1,2,3,4,7,8-Hexachlorodibenzofuran	1.57E-10	1.96E-11
1,2,3,6,7,8-Hexachlorodibenzofuran	1.65E-10	2.06E-11
2,3,4,6,7,8-Hexachlorodibenzofuran	1.13E-10	1.42E-11
1,2,3,7,8,9-Hexachlorodibenzofuran	2.84E-11	3.54E-12
1,2,3,4,6,7,8-Heptachlorodibenzofuran	3.29E-11	4.11E-12
1,2,3,4,7,8,9-Heptachlorodibenzofuran	5.45E-12	6.80E-13
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	4.36E-13	5.44E-14
Total	5.37E-07	2.46E-07
Total	PASS	
	PASS	PASS

Tier 3 Report -HRA.Scen2Case1.DF&TACs **5b.** Is Cancer Burden Calculation Needed (MICR >1E-6)?

New X/Q at which MICR_{70yr} is one-in-a-million $[(\mu g/m^3)/(tons/yr)]$:

New Distance, interpolated from X/Q table using New X/Q (meter):

Zone Impact Area (km²):

Zone of Impact Population (7000 person/km²):

Cancer Burden:

Page 4 of 7 7/12/2018 **31 of 48**

NO

6. Hazard Index Summary

A/N: Scenario 2, Case 1

Application deemed complete date: 06/26/18

HIA = [Q(lb/hr) * (X/Q)max * MWAF]/Acute REL

HIC = [Q(ton/yr) * (X/Q) * MP * MWAF] / Chronic REL

HIC 8-hr= [Q(ton/yr) * (X/Q) * WAF * MWAF] / 8-hr Chronic REL

Target Organs	Acute	Chronic	8-hr Chronic	Acute Pass/Fail	Chronic Pass/Fail	8-hr Chronic Pass/Fail
Alimentary system (liver) - AL		2.50E-04		Pass	Pass	Pass
Bones and teeth - BN				Pass	Pass	Pass
Cardiovascular system - CV				Pass	Pass	Pass
Developmental - DEV	6.59E-02	2.68E-04		Pass	Pass	Pass
Endocrine system - END		2.50E-04		Pass	Pass	Pass
Eye	1.49E-06			Pass	Pass	Pass
Hematopoietic system - HEM	6.59E-02	5.91E-02	5.91E-02	Pass	Pass	Pass
Immune system - IMM	6.59E-02			Pass	Pass	Pass
Kidney - KID		2.46E-04		Pass	Pass	Pass
Nervous system - NS	1.49E-06	1.83E-05		Pass	Pass	Pass
Reproductive system - REP	6.59E-02	2.68E-04		Pass	Pass	Pass
Respiratory system - RES	1.49E-06	2.18E-05		Pass	Pass	Pass
Skin				Pass	Pass	Pass

Page 5 of 7 7/12/2018 **32 of 48**

6a. Hazard Index Acute - Resident

HIA = [Q(lb/hr) * (X/Q)max resident * MWAF] / Acute REL

	HIA - Residential											
Compound	AL	CV	DEV	EYE	HEM	IMM	NS	REP	RESP	SKIN		
Benzene			4.11E-03		4.11E-03	4.11E-03		4.11E-03				
Ethyl Benzene												
Carbon Disulfide												
Styrene												
Perchloroethylene (Tetrachloroethylene)												
Toluene			9.30E-08	9.30E-08			9.30E-08	9.30E-08	9.30E-08			
Trichloroethylene												
o-Xylene												
p-Xylene												
Polychlorinated Dibenzo-p-Dioxins (PCDD												
2,3,7,8-Tetrachlorodibenzo-p-Dioxin												
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin												
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin												
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin												
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin												
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin												
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin												
Polychlorinated Dibenzofurans (PCDF)												
2,3,7,8-Tetrachlorodibenzofuran												
1,2,3,7,8-Pentachlorodibenzofuran												
2,3,4,7,8-Pentachlorodibenzofuran												
1,2,3,4,7,8-Hexachlorodibenzofuran												
1,2,3,6,7,8-Hexachlorodibenzofuran												
2,3,4,6,7,8-Hexachlorodibenzofuran												
1,2,3,7,8,9-Hexachlorodibenzofuran												
1,2,3,4,6,7,8-Heptachlorodibenzofuran												
1,2,3,4,7,8,9-Heptachlorodibenzofuran												
1,2,3,4,6,7,8,9-Octachlorodibenzofuran												
Total			4.11E-03	9.30E-08	4.11E-03	4.11E-03	9.30E-08	4.11E-03	9.30E-08			

HIA = [Q(lb/hr) * (X/Q)max Worker * MWAF] / Acute REL

HIA - Commercial											
Compound	AL	CV	DEV	EYE	HEM	IMM	NS	REP	RESP	SKIN	
Benzene			6.59E-02		6.59E-02	6.59E-02		6.59E-02			
Ethyl Benzene											
Carbon Disulfide											
Styrene											
Perchloroethylene (Tetrachloroethylene)											
Toluene			1.49E-06	1.49E-06			1.49E-06	1.49E-06	1.49E-06		
Trichloroethylene											
o-Xylene											
p-Xylene											
Polychlorinated Dibenzo-p-Dioxins (PCDD											
2,3,7,8-Tetrachlorodibenzo-p-Dioxin											
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin											
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin											
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin											
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin											
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin											
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin											
Polychlorinated Dibenzofurans (PCDF)											
2,3,7,8-Tetrachlorodibenzofuran											
1,2,3,7,8-Pentachlorodibenzofuran											
2,3,4,7,8-Pentachlorodibenzofuran											
1,2,3,4,7,8-Hexachlorodibenzofuran											
1,2,3,6,7,8-Hexachlorodibenzofuran											
2,3,4,6,7,8-Hexachlorodibenzofuran											
1,2,3,7,8,9-Hexachlorodibenzofuran											
1,2,3,4,6,7,8-Heptachlorodibenzofuran											
1,2,3,4,7,8,9-Heptachlorodibenzofuran											
1,2,3,4,6,7,8,9-Octachlorodibenzofuran											
Total			6.59E-02	1.49E-06	6.59E-02	6.59E-02	1.49E-06	6.59E-02	1.49E-06		

DF Emissions for Scenario 1, Case 1:

Dataset: Worst-case concentrations with blended flowrates [deep soil run 1 @ 350 scfm flowrate + shallow soil run 2 @ 150 scfm]

Sampling Location: STACK SVE1B Run Number: S-1B-M428-1 Run Date: 04/11/18

Null Date.	04/11/10								
Parameter	Catch Weight		Concentration	าร	Emissi	on Rate	Shallow Run 2	@ 150 scfm	For HRA
	(pg)	(ng/DSCM)	(12% CO ₂)	(@ 7% O ₂)	(gms/sec)	(lbs/hr)	(lbs/hr)		(lbs/hr)
PCDDs									
2,3,7,8-TCDD	1.7	3.27E-04	3.49E-04	3.93E-04	5.40E-14	4.29E-13	5.3417E-13		9.629E-13
Other TCDD	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.41453E-12		9.415E-12
1,2,3,7,8-PeCDD	2.76	5.31E-04	5.66E-04	6.37E-04	8.77E-14	6.96E-13	1.92381E-12		2.62E-12
Other PeCDD	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.21026E-12		8.21E-12
1,2,3,4,7,8-HxCDD	2.54	4.89E-04	5.21E-04	5.87E-04	8.07E-14	6.41E-13	9.98259E-13		1.639E-12
1,2,3,6,7,8-HxCDD	2.43	4.67E-04	4.99E-04	5.61E-04	7.72E-14	6.13E-13	1.51481E-12		2.128E-12
1,2,3,7,8,9-HxCDD	2.48	4.77E-04	5.09E-04	5.73E-04	7.88E-14	6.26E-13	1.30728E-12		1.933E-12
Other HxCDD	14.15	2.72E-03	2.90E-03	3.27E-03	4.50E-13	3.57E-12	1.10399E-11		1.461E-11
1,2,3,4,6,7,8-HpCDD	13.1	2.52E-03	2.69E-03	3.02E-03	4.16E-13	3.30E-12	5.78657E-12		9.091E-12
Other HpCDD	14.8	2.85E-03	3.04E-03	3.42E-03	4.70E-13	3.73E-12	5.04431E-12		8.777E-12
OCDD	23.8	4.58E-03	4.88E-03	5.50E-03	7.56E-13	6.00E-12	1.14217E-11		1.742E-11
TOTAL PCDDs	77.76	1.50E-02	1.60E-02	1.80E-02	2.47E-12	1.96E-11	5.72295E-11		7.684E-11
PCDFs									
2,3,7,8-TCDF	3.9	7.50E-04	8.00E-04	9.01E-04	1.24E-13	9.84E-13	9.45241E-12		1.044E-11
Other TCDF	26	5.00E-03	5.34E-03	6.00E-03	8.26E-13	6.56E-12	2.10195E-10		2.168E-10
1,2,3,7,8-PeCDF		5.23E-04	5.58E-04	6.28E-04	8.64E-14	6.86E-13	1.04825E-11		1.117E-11
2,3,4,7,8-PeCDF		6.21E-04	6.63E-04	7.46E-04	1.03E-13	8.15E-13	3.69613E-12		4.511E-12
Other PeCDF	17.85	3.43E-03	3.66E-03	4.12E-03	5.67E-13	4.50E-12	7.27714E-11		7.727E-11
1,2,3,4,7,8-HxCDF	7.43	1.43E-03	1.52E-03	1.72E-03	2.36E-13	1.87E-12	6.98327E-12		8.857E-12
1,2,3,6,7,8-HxCDF	5.41	1.04E-03	1.11E-03	1.25E-03	1.72E-13	1.36E-12	7.95274E-12		9.317E-12
2,3,4,6,7,8-HxCDF	1.64	3.15E-04	3.37E-04	3.79E-04	5.21E-14	4.14E-13	5.98349E-12		6.397E-12
1,2,3,7,8,9-HxCDF	1.85	3.56E-04	3.80E-04	4.27E-04	5.88E-14	4.67E-13	1.13459E-12		1.601E-12
Other HxCDF	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0		0
1,2,3,4,6,7,8-HpCDF	25.2	4.85E-03	5.17E-03	5.82E-03	8.01E-13	6.36E-12	1.22245E-11		1.858E-11
1,2,3,4,7,8,9-HpCDF	1.8	3.46E-04	3.69E-04	4.16E-04	5.72E-14	4.54E-13	2.62062E-12		3.075E-12
Other HpCDF	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.39294E-12		4.393E-12
OCDF	11.6	2.23E-03	2.38E-03	2.68E-03	3.69E-13	2.93E-12	5.27153E-12		8.197E-12
TOTAL PCDFs	108.63	2.09E-02	2.23E-02	2.51E-02	3.45E-12	2.74E-11			
TOTAL PCDDs and PCDFs	186.39	3.59E-02	3.82E-02	4.30E-02	5.92E-12	4.70E-11			

TAC Emissions for HRAs

Dataset: Scenario 2, Case 1 - Blended flow rate assuming 150 scfm from shallow wells and 350 scfm from deep wells with worst-case/representative effluent TAC concentrations

shallow soil = worst-case detected effluent data on April 5, 2018 during shallow constant rate testing

deep soil = representative effluent TAC concentrations for deep soil (i.e., detected effluent data on April 13, 2018 during Day 4 of deep constant rate testing)

Study	Sample Location	Sample ID	Sample Date	Time	Benzene	Ethylbenzene	Toluene	Average Flow Rate	Benzene Emission Rate	Ethylbenzene Emission Rate	Toluene Emission Rate
		Analytical Method EPA TO-15M		ppmv	ppmv	ppmv	scfm	(lbs/hr)	(lbs/hr)	(lbs/hr)	
			Mol	ecular Weight (g/mol)	78.1	106.16	92.14				
Shallow Zone	Effluent	VSS01367	04/05/18	1205	1.3	2.2	0.033	150	0.0024	0.0055	7.22E-05
Deep Zone	Effluent	VSS01391	04/13/18	1151	19	39	0.5	350	0.0822	0.2294	2.55E-03
								FOR HRA	0.0846	0.235	2.62E-03

Dataset: Scenario 2, Case 2 - Assumed total flow rate of 500 scfm multiplied by a benzene concentration of 25 ppmv and ethylbenzene concentration of 50 ppmv

Toluene rate assumed to be Case 1

Revised 1 (B):2 (EB) ratio	Benzene	Ethylbenzene	Average Flow Rate	Benzene Emission Rate	Ethylbenzene Emission Rate	Toluene Emission Rate	
	ppmv	ppmv	scfm	(lbs/hr)	(lbs/hr)	(lbs/hr)	
	25	50	500	0.1546	0.4202	2.62E-03	
			FOR HRA	0.1546	0.4202	2.62E-03	

TIER 3 SCREENING RISK ASSESSMENT DATA INPUT

(Procedure Version 8.1 & Package N, September 1, 2017) - Risk Tool VI.1

Application Deemed Complete Date	06/26/18
A/N	Case 2, Scenario 2
Facility Name	Del Amo Torrance

1. Stack Data	Input	Units
Hours/Day	24	hrs/day
Days/Week	7	days/wk
Weeks/Year	52	wks/yr
Control Efficiency	0.000	
Does source have T-BACT?	NO	
Source type (Point or Volume)	P	P or V
Stack Height or Building Height	20	feet
Building Area	5000	ft^2
Distance-Residential	400	meters
Distance-Commercial	50	meters
Meteorological Station	Hawthor	ne Airport
Project Duration (Short term options: 2, 5, or 9 years; Else 30 years)	5	years

Source Type	Other		
Screening Mode (NO = Tier 1 or Tier 2; YES = Tier 3)	YES		

FOR SOURCE TYPE OTHER THAN BOILER, CREMATORY, ICE, PRESSURE WASHER, OR SPRAY BOOTH, FILL IN THE USER DEFINED TABLE BELOW

Fac Name: Del Amo Torrance A/N: se 2, Scenario 2

TAC Code	Compound	Emission Rate (lbs/hr)	Molecular Weight	R1 - Uncontrolled (lbs/hr)	Efficiency Factor (Fraction range 0-1)	R2-Controlled (lbs/hr)
B1	Benzene	1.50E-01	78.11	1.50E-01	0.00000	0.15
E3	Ethyl Benzene	4.20E-01	106.16	4.20E-01	0.00000	0.42
C3	Carbon Disulfide		76.14		0.00000	
S6	Styrene		104.16		0.00000	
P2	Perchloroethylene (Tetrachloroethylene)		165.83		0.00000	
Т3	Toluene	2.60E-03	92.13	2.60E-03	0.00000	0.0026
Т8	Trichloroethylene		130.4		0.00000	
X3	o-Xylene		106.18		0.00000	
X4	p-Xylene		106.17		0.00000	
P22	Polychlorinated Dibenzo-p-Dioxins (PCDD)		459.7548		0.00000	
P23	2,3,7,8-Tetrachlorodibenzo-p-Dioxin	9.63E-13	321.9744	9.63E-13	0.00000	9.62946E-13
P24	1,2,3,7,8-Pentachlorodibenzo-p-Dioxin	2.62E-12	356.4195	2.62E-12	0.00000	2.61994E-12
P25	1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin	1.64E-12	390.8646	1.64E-12	0.00000	1.6389E-12
P26	1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin	2.13E-12	390.8646	2.13E-12	0.00000	2.12771E-12
P27	1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin	1.93E-12	390.8646	1.93E-12	0.00000	1.93279E-12
P28	1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin	9.09E-12	425.3097	9.09E-12	0.00000	9.09066E-12
P29	1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin	1.74E-11	459.7548	1.74E-11	0.00000	1.74245E-11
P30	Polychlorinated Dibenzofurans (PCDF)		443.76		0.00000	
P31	2,3,7,8-Tetrachlorodibenzofuran	1.04E-11	305.97156	1.04E-11	0.00000	1.04361E-11
P32	1,2,3,7,8-Pentachlorodibenzofuran	1.12E-11	340.4201	1.12E-11	0.00000	1.11685E-11
P33	2,3,4,7,8-Pentachlorodibenzofuran	4.51E-12	340.4201	4.51E-12	0.00000	4.51081E-12
P34	1,2,3,4,7,8-Hexachlorodibenzofuran	8.86E-12	374.8652	8.86E-12	0.00000	
P35	1,2,3,6,7,8-Hexachlorodibenzofuran	9.32E-12	374.8652	9.32E-12	0.00000	
P37	2,3,4,6,7,8-Hexachlorodibenzofuran	6.40E-12	374.8652	6.40E-12	0.00000	
P36	1,2,3,7,8,9-Hexachlorodibenzofuran	1.60E-12	374.8652	1.60E-12	0.00000	1.6012E-12
P38	1,2,3,4,6,7,8-Heptachlorodibenzofuran	1.86E-11	409.3103	1.86E-11	0.00000	
P39	1,2,3,4,7,8,9-Heptachlorodibenzofuran	3.07E-12	409.3103	3.07E-12	0.00000	3.07462E-12
P40	1,2,3,4,6,7,8,9-Octachlorodibenzofuran	8.20E-12	443.7554	8.20E-12	0.00000	8.1973E-12

TIER 3 SCREEN INPUT & CANCER BURDEN CALCULATION

(Procedure Version 8.1 & Package N, September 1, 2017) - Risk Tool V1.1

Screening program used	AERSCREEN
Convert 1-hr to Annual Conc. Factor	0.1

Instructions: Run a screening program at 1 lb/hr rate to get the max 1-hr concentrations at residential & commercial receptors. Enter values into the yellow highlighted cells in the table below. Review risk result in Tier 3 Report.

Modeling emissions rate	0.1260	g/sec
Modeling emissions rate	1.00	lbs/hr
Modeling emissions rate	4.38	tons/yr
Max Hours per day	24	hr/day
Days per week	7	dy/wk
Weeks per year	52	wk/yr

MODELING RESULTS - MAX ONE HOUR

Distance residential	400	meters
Max. 1-hr Conc. at Residential receptor	1.31E+00	$\mu g/m^3$
Annualized Conc. Residential	0.13	$\mu g/m^3$
Distance Commerical	50	meters
Max. 1-hr Conc. at Comm. receptor	2.10E+01	$\mu g/m^3$
Annualized Conc. Commercial	2.10	$\mu g/m^3$

Annualized X/Q

X/Q Residential	0.030	$(\mu g/m^3)/(tons/yr)$
X/Q Commercial	0.480	$(\mu g/m^3)/(tons/yr)$

Hourly X/Q (X/Q Max)

X/Q Residential	1.311	$(\mu g/m^3)/(lbs/hr)$
X/Q Commercial	21.019	$(\mu g/m^3)/(lbs/hr)$

SCREEN INPUT DATA - BRITISH UNITS

Temperature	1550.00	°F
Stack diameter	18.00	in
Stack height	20.00	ft
Actual exhaust rate	500.00	acfm
Modeling emissions rate	1.00	lb/hr

SCREEN INPUT DATA - METRIC UNITS

Temperature	1116.333	K
Stack diameter	0.457	meters
Stack area	0.164	m ²
Stack height	6.096	meters
Stack velocity	1.438	m/s
Modeling emissions rate	0.12611	g/s

Tier 3 Screen Input - Procedure Version 8.1
HRA.Scen2Case2.DF&TACs
39 of 48
7/12/2018

TIER 3 SCREENING RISK ASSESSMENT REPORT

A/N: ase 2, Scenario 2

(Procedure Version 8.1 & Package N, September 1, 2017) - Risk Tool V1.1

1. Stack Data		
Equipment Type	Other	-
Combustion Eff	0.0	-
	No T-BACT	-
Operation Schedule	24 7 52	hrs/day days/week weeks/year
Stack Height	20	ft
Distance to Residential	400	_m
Distance to Commercial	50	m
Meteorological Station	Hawthorne A	irport

2. Tier 3 Data

Fac: Del Amo Torrance

Dispersion Factors tables	Point Source
For Chronic X/Q	Table 6
For Acute X/Q max	Table 6.4

Dilution Factors

Receptor	X/Q (µg/m³)/(tons/yr)	X/Qmax (μg/m³)/(lbs/hr)
Residential	0.03	1.31
Commercial - Worker	0.48	21.02

Application deemed complete date: 6/26/2018

Intake and Adjustment Factors

	Residential	Worker
Year of Exposure	5	
Combined Exposure Factor (CEF) - Table 4	389.23	11.17
Worker Adjustment Factor (WAF) - Table 5	1	1.00

A/N: Case 2, Scenario 2

3. Rule 1401 Compound Data

Compound	R1 - Uncontrolled (lbs/hr)	R2 - Controlled (lbs/hr)	CP (mg/kg-day) ⁻¹	MP MICR Resident	MP MICR Worker	MP Chronic Resident	MP Chronic Worker	REL Chronic (µg/m³)	REL 8-hr Chronic (μg/m³)	REL Acute (μg/m³)	MWAF
Benzene	1.50E-01	1.50E-01	1.00E-01	1.00	1.00	1.00	1.00	3.00E+00	3.00E+00	2.70E+01	
Ethyl Benzene	4.20E-01	4.20E-01	8.70E-03	1.00	1.00	1.00	1.00	2.00E+03			Ţ
Carbon Disulfide				1.00	1.00	1.00	1.00	8.00E+02		6.20E+03	Ţ
Styrene				1.00	1.00	1.00	1.00	9.00E+02		2.10E+04	
Perchloroethylene (Tetrachloroethylene)			2.10E-02	1.00	1.00	1.00	1.00	3.50E+01		2.00E+04	1
Toluene	2.60E-03	2.60E-03		1.00	1.00	1.00	1.00	3.00E+02		3.70E+04	1
Trichloroethylene			7.00E-03	1.00	1.00	1.00	1.00	6.00E+02			
o-Xylene				1.00	1.00	1.00	1.00	7.00E+02		2.20E+04	Ţ
p-Xylene				1.00	1.00	1.00	1.00	7.00E+02		2.20E+04	
Polychlorinated Dibenzo-p-Dioxins (PCDD			1.30E+05	39.91	7.27	307.60	6.73	4.00E-05			1
2,3,7,8-Tetrachlorodibenzo-p-Dioxin	9.63E-13	9.63E-13	1.30E+05	39.91	7.27	307.60	6.73	4.00E-05			1
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin	2.62E-12	2.62E-12	1.30E+05	39.91	7.27	307.60	6.73	4.00E-05			1
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin	1.64E-12	1.64E-12	1.30E+04	39.91	7.27	307.60	6.73	4.00E-04			
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin	2.13E-12	2.13E-12	1.30E+04	39.91	7.27	307.60	6.73	4.00E-04			1
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin	1.93E-12	1.93E-12	1.30E+04	39.91	7.27	307.60	6.73	4.00E-04			1
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin	9.09E-12	9.09E-12	1.30E+03	39.91	7.27	307.60	6.73	4.00E-03			
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin	1.74E-11	1.74E-11	3.90E+01	39.91	7.27	302.95	6.64	1.30E-01			1
Polychlorinated Dibenzofurans (PCDF)			1.30E+05	26.80	7.27	154.97	6.73	4.00E-05			
2,3,7,8-Tetrachlorodibenzofuran	1.04E-11	1.04E-11	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			
1,2,3,7,8-Pentachlorodibenzofuran	1.12E-11	1.12E-11	3.90E+03	26.80	7.27	152.63	6.64	1.30E-03			
2,3,4,7,8-Pentachlorodibenzofuran	4.51E-12	4.51E-12	3.90E+04	26.80	7.27	152.63	6.64	1.30E-04			
1,2,3,4,7,8-Hexachlorodibenzofuran	8.86E-12	8.86E-12	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			
1,2,3,6,7,8-Hexachlorodibenzofuran	9.32E-12	9.32E-12	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			
2,3,4,6,7,8-Hexachlorodibenzofuran	6.40E-12	6.40E-12	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			
1,2,3,7,8,9-Hexachlorodibenzofuran	1.60E-12	1.60E-12	1.30E+04	26.80	7.27	154.97	6.73	4.00E-04			1
1,2,3,4,6,7,8-Heptachlorodibenzofuran	1.86E-11	1.86E-11	1.30E+03	26.80	7.27	154.97	6.73	4.00E-03			1
1,2,3,4,7,8,9-Heptachlorodibenzofuran	3.07E-12	3.07E-12	1.30E+03	26.80	7.27	154.97	6.73	4.00E-03			1
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	8.20E-12	8.20E-12	3.90E+01	26.80	7.27	152.63	6.64	1.30E-01			
				·				<u> </u>			
											. <u></u>

A/N: Case 2, Scenario 2

4. Emission Calculations

Compound	R1 (lbs/hr)	R2 (lbs/hr)	R1 (lbs/day)	R2 (lbs/day)	R2 (lbs/yr)	R2 (tons/yr)
Benzene	1.50E-01	1.50E-01	3.60E+00	3.60E+00	1.31E+03	6.55E-01
Ethyl Benzene	4.20E-01	4.20E-01	1.01E+01	1.01E+01	3.67E+03	1.83E+00
Carbon Disulfide						
Styrene						
Perchloroethylene (Tetrachloroethylene)						
Toluene	2.60E-03	2.60E-03	6.24E-02	6.24E-02	2.27E+01	1.14E-02
Trichloroethylene						
o-Xylene						
p-Xylene						
Polychlorinated Dibenzo-p-Dioxins (PCDD						
2,3,7,8-Tetrachlorodibenzo-p-Dioxin	9.63E-13	9.63E-13	2.31E-11	2.31E-11	8.41E-09	4.21E-12
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin	2.62E-12	2.62E-12	6.29E-11	6.29E-11	2.29E-08	1.14E-11
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin	1.64E-12	1.64E-12	3.93E-11	3.93E-11	1.43E-08	7.16E-12
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin	2.13E-12	2.13E-12	5.11E-11	5.11E-11	1.86E-08	9.29E-12
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin	1.93E-12	1.93E-12	4.64E-11	4.64E-11	1.69E-08	8.44E-12
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin	9.09E-12	9.09E-12	2.18E-10	2.18E-10	7.94E-08	3.97E-11
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin	1.74E-11	1.74E-11	4.18E-10	4.18E-10	1.52E-07	7.61E-11
Polychlorinated Dibenzofurans (PCDF)						
2,3,7,8-Tetrachlorodibenzofuran	1.04E-11	1.04E-11	2.50E-10	2.50E-10	9.12E-08	4.56E-11
1,2,3,7,8-Pentachlorodibenzofuran	1.12E-11	1.12E-11	2.68E-10	2.68E-10	9.76E-08	4.88E-11
2,3,4,7,8-Pentachlorodibenzofuran	4.51E-12	4.51E-12	1.08E-10	1.08E-10	3.94E-08	1.97E-11
1,2,3,4,7,8-Hexachlorodibenzofuran	8.86E-12	8.86E-12	2.13E-10	2.13E-10	7.74E-08	3.87E-11
1,2,3,6,7,8-Hexachlorodibenzofuran	9.32E-12	9.32E-12	2.24E-10	2.24E-10	8.14E-08	4.07E-11
2,3,4,6,7,8-Hexachlorodibenzofuran	6.40E-12	6.40E-12	1.54E-10	1.54E-10	5.59E-08	2.79E-11
1,2,3,7,8,9-Hexachlorodibenzofuran	1.60E-12	1.60E-12	3.84E-11	3.84E-11	1.40E-08	6.99E-12
1,2,3,4,6,7,8-Heptachlorodibenzofuran	1.86E-11	1.86E-11	4.46E-10	4.46E-10	1.62E-07	8.12E-11
1,2,3,4,7,8,9-Heptachlorodibenzofuran	3.07E-12	3.07E-12	7.38E-11	7.38E-11	2.69E-08	1.34E-11
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	8.20E-12	8.20E-12	1.97E-10	1.97E-10	7.16E-08	3.58E-11
Total	5.73E-01	5.73E-01	1.37E+01	1.37E+01	5.00E+03	2.50E+00

Tier 3 Report -HRA.Scen2Case2.DF&TACs

5a. MICR

MICR Resident = CP (mg/(kg-day))^-1 * Q (ton/yr) * (X/Q) Resident * CEF Resident * MP Resident * 1e-6 * MWAF

MICR Worker = CP (mg/(kg-day))^-1 * Q (ton/yr) * (X/Q) Worker * CEF Worker * MP Worker * WAF Worker * 1e-6 * MWAF

Compound	Residential	Commercial
Benzene	7.63E-07	3.51E-07
Ethyl Benzene	1.86E-07	8.56E-08
Carbon Disulfide		
Styrene		
Perchloroethylene (Tetrachloroethylene)		
Toluene		
Trichloroethylene		
o-Xylene		
p-Xylene		
Polychlorinated Dibenzo-p-Dioxins (PCDD		
2,3,7,8-Tetrachlorodibenzo-p-Dioxin	2.54E-10	2.13E-11
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin	6.92E-10	5.80E-11
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin	4.33E-11	3.63E-12
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin	5.62E-11	4.71E-12
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin	5.10E-11	4.28E-12
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin	2.40E-11	2.01E-12
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin	1.38E-12	1.16E-13
Polychlorinated Dibenzofurans (PCDF)		
2,3,7,8-Tetrachlorodibenzofuran	1.85E-10	2.31E-11
1,2,3,7,8-Pentachlorodibenzofuran	5.94E-11	7.42E-12
2,3,4,7,8-Pentachlorodibenzofuran	2.40E-10	2.99E-11
1,2,3,4,7,8-Hexachlorodibenzofuran	1.57E-10	1.96E-11
1,2,3,6,7,8-Hexachlorodibenzofuran	1.65E-10	2.06E-11
2,3,4,6,7,8-Hexachlorodibenzofuran	1.13E-10	1.42E-11
1,2,3,7,8,9-Hexachlorodibenzofuran	2.84E-11	3.54E-12
1,2,3,4,6,7,8-Heptachlorodibenzofuran	3.29E-11	4.11E-12
1,2,3,4,7,8,9-Heptachlorodibenzofuran	5.45E-12	6.80E-13
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	4.36E-13	5.44E-14
Total	9.51E-07	4.37E-07
	PASS	PASS
L		

Tier 3 Report -HRA.Scen2Case2.DF&TACs **5b. Is Cancer Burden Calculation Needed (MICR >1E-6)?**

New X/Q at which MICR_{70yr} is one-in-a-million $[(\mu g/m^3)/(tons/yr)]$: New Distance, interpolated from X/Q table using New X/Q (meter):

Zone Impact Area (km²):

Zone of Impact Population (7000 person/km²):

Cancer Burden:

Page 4 of 7 7/12/2018 43 of 48

NO

6. Hazard Index Summary

HIA = [Q(lb/hr) * (X/Q)max * MWAF]/Acute REL

HIC = [Q(ton/yr) * (X/Q) * MP * MWAF] / Chronic REL

HIC 8-hr= [Q(ton/yr) * (X/Q) * WAF * MWAF] / 8-hr Chronic REL

Target Organs	Acute	Chronic	8-hr Chronic	Acute Pass/Fail	Chronic Pass/Fail	8-hr Chronic Pass/Fail
Alimentary system (liver) - AL		4.44E-04		Pass	Pass	Pass
Bones and teeth - BN				Pass	Pass	Pass
Cardiovascular system - CV				Pass	Pass	Pass
Developmental - DEV	1.17E-01	4.62E-04		Pass	Pass	Pass
Endocrine system - END		4.44E-04		Pass	Pass	Pass
Eye	1.48E-06			Pass	Pass	Pass
Hematopoietic system - HEM	1.17E-01	1.05E-01	1.05E-01	Pass	Pass	Pass
Immune system - IMM	1.17E-01			Pass	Pass	Pass
Kidney - KID		4.40E-04		Pass	Pass	Pass
Nervous system - NS	1.48E-06	1.82E-05		Pass	Pass	Pass
Reproductive system - REP	1.17E-01	4.62E-04		Pass	Pass	Pass
Respiratory system - RES	1.48E-06	2.16E-05		Pass	Pass	Pass
Skin				Pass	Pass	Pass

Page 5 of 7 7/12/2018 44 of 48

A/N: Case 2, Scenario 2

Application deemed complete date: 06/26/18

6a. Hazard Index Acute - Resident

HIA = [Q(lb/hr) * (X/Q)max resident * MWAF] / Acute REL

	HIA - Residential										
Compound	AL	CV	DEV	EYE	HEM	IMM	NS	REP	RESP	SKIN	
Benzene			7.28E-03		7.28E-03	7.28E-03		7.28E-03			
Ethyl Benzene											
Carbon Disulfide											
Styrene											
Perchloroethylene (Tetrachloroethylene)											
Toluene			9.21E-08	9.21E-08			9.21E-08	9.21E-08	9.21E-08		
Trichloroethylene											
o-Xylene											
p-Xylene											
Polychlorinated Dibenzo-p-Dioxins (PCDD											
2,3,7,8-Tetrachlorodibenzo-p-Dioxin											
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin											
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin											
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin											
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin											
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin											
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin											
Polychlorinated Dibenzofurans (PCDF)											
2,3,7,8-Tetrachlorodibenzofuran											
1,2,3,7,8-Pentachlorodibenzofuran											
2,3,4,7,8-Pentachlorodibenzofuran											
1,2,3,4,7,8-Hexachlorodibenzofuran											
1,2,3,6,7,8-Hexachlorodibenzofuran											
2,3,4,6,7,8-Hexachlorodibenzofuran											
1,2,3,7,8,9-Hexachlorodibenzofuran											
1,2,3,4,6,7,8-Heptachlorodibenzofuran											
1,2,3,4,7,8,9-Heptachlorodibenzofuran											
1,2,3,4,6,7,8,9-Octachlorodibenzofuran											
Total			7.28E-03	9.21E-08	7.28E-03	7.28E-03	9.21E-08	7.28E-03	9.21E-08		

6a. Hazard Index Acute - Worker

HIA = [Q(lb/hr) * (X/Q)max Worker * MWAF] / Acute REL

A/N: Case 2, Scenario 2

Application deemed complete date: 06/26/18

	HIA - Commercial									
Compound	AL	CV	DEV	EYE	HEM	IMM	NS	REP	RESP	SKIN
Benzene			1.17E-01		1.17E-01	1.17E-01		1.17E-01		
Ethyl Benzene										
Carbon Disulfide										
Styrene										
Perchloroethylene (Tetrachloroethylene)										
Toluene			1.48E-06	1.48E-06			1.48E-06	1.48E-06	1.48E-06	
Trichloroethylene										
o-Xylene										
p-Xylene										
Polychlorinated Dibenzo-p-Dioxins (PCDD										
2,3,7,8-Tetrachlorodibenzo-p-Dioxin										
1,2,3,7,8-Pentachlorodibenzo-p-Dioxin										
1,2,3,4,7,8-Hexachlorodibenzo-p-Dioxin										
1,2,3,6,7,8-Hexachlorodibenzo-p-Dioxin										
1,2,3,7,8,9-Hexachlorodibenzo-p-Dioxin										
1,2,3,4,6,7,8-Heptachlorodibenzo-p-Dioxin										
1,2,3,4,6,7,8,9-Octachlorodibenzo-p-Dioxin										
Polychlorinated Dibenzofurans (PCDF)										
2,3,7,8-Tetrachlorodibenzofuran										
1,2,3,7,8-Pentachlorodibenzofuran										
2,3,4,7,8-Pentachlorodibenzofuran										
1,2,3,4,7,8-Hexachlorodibenzofuran										
1,2,3,6,7,8-Hexachlorodibenzofuran										
2,3,4,6,7,8-Hexachlorodibenzofuran										
1,2,3,7,8,9-Hexachlorodibenzofuran										
1,2,3,4,6,7,8-Heptachlorodibenzofuran										
1,2,3,4,7,8,9-Heptachlorodibenzofuran										
1,2,3,4,6,7,8,9-Octachlorodibenzofuran										
Total			1.17E-01	1.48E-06	1.17E-01	1.17E-01	1.48E-06	1.17E-01	1.48E-06	

DF Emissions for Scenario 1, Case 1:

Dataset: Worst-case concentrations with blended flowrates [deep soil run 1 @ 350 scfm flowrate + shallow soil run 2 @ 150 scfm]

Sampling Location: STACK SVE1B Run Number: S-1B-M428-1 Run Date: 04/11/18

Run Date:	04/11/18								
Parameter	Catch Weight		Concentration	าร	Emission	on Rate	Shallow Run 2	@ 150 scfm	For HRA
	(pg)	(ng/DSCM)	(12% CO ₂)	(@ 7% O ₂)	(gms/sec)	(lbs/hr)	(lbs/hr)		(lbs/hr)
PCDDs	07	,			,	, ,	, ,		, ,
2,3,7,8-TCDD	1.7	3.27E-04	3.49E-04	3.93E-04	5.40E-14	4.29E-13	5.3417E-13		9.629E-13
Other TCDD		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.41453E-12		9.415E-12
1,2,3,7,8-PeCDD		5.31E-04	5.66E-04	6.37E-04	8.77E-14	6.96E-13	1.92381E-12		2.62E-12
Other PeCDD		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.21026E-12		8.21E-12
1,2,3,4,7,8-HxCDD	2.54	4.89E-04	5.21E-04	5.87E-04	8.07E-14	6.41E-13	9.98259E-13		1.639E-12
1,2,3,6,7,8-HxCDD		4.67E-04	4.99E-04	5.61E-04	7.72E-14	6.13E-13	1.51481E-12		2.128E-12
1,2,3,7,8,9-HxCDD		4.77E-04	5.09E-04	5.73E-04	7.88E-14	6.26E-13	1.30728E-12		1.933E-12
Other HxCDD		2.72E-03	2.90E-03	3.27E-03	4.50E-13	3.57E-12	1.10399E-11		1.461E-11
1,2,3,4,6,7,8-HpCDD		2.52E-03	2.69E-03	3.02E-03	4.16E-13	3.30E-12	5.78657E-12		9.091E-12
Other HpCDD		2.85E-03	3.04E-03	3.42E-03	4.70E-13	3.73E-12	5.04431E-12		8.777E-12
OCDD	23.8	4.58E-03	4.88E-03	5.50E-03	7.56E-13	6.00E-12	1.14217E-11		1.742E-11
TOTAL PCDDs	77.76	1.50E-02	1.60E-02	1.80E-02	2.47E-12	1.96E-11	5.72295E-11		7.684E-11
PCDFs									
2,3,7,8-TCDF	3.9	7.50E-04	8.00E-04	9.01E-04	1.24E-13	9.84E-13	9.45241E-12		1.044E-11
Other TCDF	26	5.00E-03	5.34E-03	6.00E-03	8.26E-13	6.56E-12	2.10195E-10		2.168E-10
1,2,3,7,8-PeCDF	2.72	5.23E-04	5.58E-04	6.28E-04	8.64E-14	6.86E-13	1.04825E-11		1.117E-11
2,3,4,7,8-PeCDF	3.23	6.21E-04	6.63E-04	7.46E-04	1.03E-13	8.15E-13	3.69613E-12		4.511E-12
Other PeCDF	17.85	3.43E-03	3.66E-03	4.12E-03	5.67E-13	4.50E-12	7.27714E-11		7.727E-11
1,2,3,4,7,8-HxCDF	7.43	1.43E-03	1.52E-03	1.72E-03	2.36E-13	1.87E-12	6.98327E-12		8.857E-12
1,2,3,6,7,8-HxCDF	5.41	1.04E-03	1.11E-03	1.25E-03	1.72E-13	1.36E-12	7.95274E-12		9.317E-12
2,3,4,6,7,8-HxCDF	1.64	3.15E-04	3.37E-04	3.79E-04	5.21E-14	4.14E-13	5.98349E-12		6.397E-12
1,2,3,7,8,9-HxCDF	1.85	3.56E-04	3.80E-04	4.27E-04	5.88E-14	4.67E-13	1.13459E-12		1.601E-12
Other HxCDF	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0		0
1,2,3,4,6,7,8-HpCDF	25.2	4.85E-03	5.17E-03	5.82E-03	8.01E-13	6.36E-12	1.22245E-11		1.858E-11
1,2,3,4,7,8,9-HpCDF	1.8	3.46E-04	3.69E-04	4.16E-04	5.72E-14	4.54E-13	2.62062E-12		3.075E-12
Other HpCDF	0	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.39294E-12		4.393E-12
OCDF	11.6	2.23E-03	2.38E-03	2.68E-03	3.69E-13	2.93E-12	5.27153E-12		8.197E-12
TOTAL PCDFs	108.63	2.09E-02	2.23E-02	2.51E-02	3.45E-12	2.74E-11			
TOTAL PCDDs and PCDFs	186.39	3.59E-02	3.82E-02	4.30E-02	5.92E-12	4.70E-11			

TAC Emissions for HRAs

Dataset: Scenario 2, Case 1 - Blended flow rate assuming 150 scfm from shallow wells and 350 scfm from deep wells with worst-case/representative effluent TAC concentrations

shallow soil = worst-case detected effluent data on April 5, 2018 during shallow constant rate testing

deep soil = representative effluent TAC concentrations for deep soil (i.e., detected effluent data on April 13, 2018 during Day 4 of deep constant rate testing)

Study	Sample Location	Sample ID	Sample Date	Time	Benzene	Ethylbenzene	Toluene	Average Flow Rate	Benzene Emission Rate	Ethylbenzene Emission Rate	Toluene Emission Rate
			Analytical	Method EPA TO-15M	ppmv	ppmv	ppmv	scfm	(lbs/hr)	(lbs/hr)	(lbs/hr)
	Molecular Weight (g/mol)		78.1	106.16	92.14						
Shallow Zone	Effluent	VSS01367	04/05/18	1205	1.3	2.2	0.033	150	0.0024	0.0055	7.22E-05
Deep Zone	Effluent	VSS01391	04/13/18	1151	19	39	0.5	350	0.0822	0.2294	2.55E-03
								FOR HRA	0.0846	0.235	2.62E-03

Dataset: Scenario 2, Case 2 - Assumed total flow rate of 500 scfm multiplied by a benzene concentration of 25 ppmv and ethylbenzene concentration of 50 ppmv

Toluene rate assumed to be Case 1

Revised 1 (B):2 (EB) ratio	Benzene Ethylbenzene		Average Flow Rate	Benzene Emission Rate	Ethylbenzene Emission Rate	Toluene Emission Rate	
	ppmv	ppmv	scfm	(lbs/hr)	(lbs/hr)	(lbs/hr)	
	25	50	500	0.1546	0.4202	2.62E-03	
			FOR HRA	0.1546	0.4202	2.62E-03	